RT Journal Article SR Electronic T1 GAPPadder: A Sensitive Approach for Closing Gaps on Draft Genomes with Short Sequence Reads JF bioRxiv FD Cold Spring Harbor Laboratory SP 125534 DO 10.1101/125534 A1 Chong Chu A1 Xin Li A1 Yufeng Wu YR 2017 UL http://biorxiv.org/content/early/2017/04/07/125534.abstract AB Background Closing gaps in draft genomes is an important post processing step in genome assembly. It leads to more complete genomes, which benefits downstream genome analysis such as annotation and genotyping. Several tools have been developed for gap closing. However, these tools don’t fully utilize the information contained in the sequence data. For example, while it is known that many gaps are caused by genomic repeats, existing tools often ignore many sequence reads that originate from a repeat-related gap.Results In this paper, we propose a new approach called GAPPadder for gap closing. The main advantage of GAPPadder is that it uses more information in sequence data for gap closing. In particular, GAPPadder finds and uses reads that originate from repeate-related gaps. We show that these repeat-associated reads are useful for gap closing, even though they are ignored by all existing tools. Other main features of GAPPadder include utilizing the information in sequence reads with different insert sizes and performing two-stage local assembly of gap sequences. We compare GAPPadder with GapCloser, GapFiller and Sealer on one bacterial genome, human chromosome 14 and the human whole genome with paired-end and mate-paired reads with both short and long insert sizes. Empirical results show that GAPPadder can close more gaps than these existing tools. Besides closing gaps on draft genomes assembled only from short sequence reads, GAPPadder can also be used to close gaps for draft genomes assembled with long reads. We show GAPPadder can close gaps on the bed bug genome and the Asian sea bass genome that are assembled partially and fully with long reads respectively. We also show GAPPadder is efficient in both time and memory usage. The software tool, GAPPadder, is available for download at https://github.com/Reedwarbler/GAPPadder.