TY - JOUR T1 - Clustering gene expression time series data using an infinite Gaussian process mixture model JF - bioRxiv DO - 10.1101/131151 SP - 131151 AU - Ian C. McDowell AU - Dinesh Manandhar AU - Christopher M. Vockley AU - Amy K. Schmid AU - Timothy E. Reddy AU - Barbara E. Engelhardt Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/04/26/131151.abstract N2 - Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models cluster number with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison with state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal novel regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster. ER -