RT Journal Article SR Electronic T1 Mathematical model for Plant-Insect interaction with dynamic response to PAD4-BIK1 interaction and effect of BIK1 inhibition JF bioRxiv FD Cold Spring Harbor Laboratory SP 134619 DO 10.1101/134619 A1 Sanjay A1 Sabahuddin Ahmad A1 M. I. Siddiqi A1 Khalid Raza YR 2017 UL http://biorxiv.org/content/early/2017/05/05/134619.abstract AB Plant-insect interaction system has been a widely studied model of the ecosystem. Attempts have long been made to understand the numerical behaviour of this counter system and make improvements in it from initial simple analogy based approach with predator-prey model to the recently developed mathematical interpretation of plant-insect interaction including concept of plant immune interventions Caughley and Lawton (1981). In our current work, we propose an improvement in the model, based on molecular interactions behind plant defense mechanism and it’s effect on the plant growth and insect herbivory. Motivated from an interaction network of plant biomolecules given by Louis and Shah (2014) and extending the model of Chattopadhyay, et al (2001), we propose here a mathematical model to show how plant insect interaction system is governed by the molecular components inside. Insect infestation mediated induction of Botrytis Induced Kinase-1 (BIK-1) protein causes inhibition of Phyto Alexin Deficient-4 (PAD4) protein. Lowered PAD4, being responsible for initiating plant defense mechanism, results in degraded plant immune potential and thus causes loss of plant quality. We adapt these interactions in our model to show how they influence the plant insect interaction system and also to reveal how silencing BIK-1 may aid in enhanced production of plant biomass by increasing plant immunity mediated by increase in PAD4 and associated antixenotic effects. We hypothesize the significance of BIK-1 inhibition which could result in the improvement of the plant quality. We explain the interaction system in BIK-1 inhibition using mathematical model. Further, we adopted the plethora of computational modeling and simulations techniques to identify the mechanisms of molecular inhibition.