RT Journal Article SR Electronic T1 A neuropeptide signaling system that rapidly enforces paternity in the Aedes aegypti mosquito JF bioRxiv FD Cold Spring Harbor Laboratory SP 136150 DO 10.1101/136150 A1 Laura B. Duvall A1 Nipun S. Basrur A1 Henrik Molina A1 Conor J. McMeniman A1 Leslie B. Vosshall YR 2017 UL http://biorxiv.org/content/early/2017/05/09/136150.abstract AB Female Dengue and Zika vector mosquitoes (Aedes aegypti) generally mate once, with sperm from this male fertilizing all eggs produced in her lifetime. Here we implicate HP-I, an Aedes- and male-specific neuropeptide transferred to females, and its cognate receptor in the female, NPYLR1, in rapid enforcement of paternity. HP-I mutant males were ineffective in enforcing paternity when a second male was given access to the female within 1 hour. NPYLR1 mutant females produced mixed paternity offspring at high frequency. Synthetic HP-I injected into wild-type virgins reduced successful matings, but had no effect on NPYLR1 mutant females. Asian tiger mosquito (Ae. albopictus) HP-I potently activated Ae. aegypti NPYLR1. Invasive Ae. albopictus males are known to copulate with and sterilize Ae. aegypti females, and cross-species transfer of HP-I may contribute to this phenomenon. This neuropeptide system promotes rapid paternity enforcement within Ae. aegypti, but may promote local extinction in areas where they compete with Ae. albopictus.One Sentence Summary Aedes-specific peptide rapidly enforces paternityText Ae. aegypti females typically mate only once with one male in their lifetime, a behavior known as “monandry” (1). This single mating event provisions the female with sufficient sperm to fertilize the >500 eggs she will produce during her ∼4-6 week lifespan in the laboratory (2). Successful mating is capable of inducing lifetime refractoriness to subsequent insemination by other males, enforcing the paternity of the first male (3-5). In other species, males use diverse strategies to assure the paternity of their offspring, for instance physical barriers such as mating plugs found in mice (6) and Anopheline mosquitoes (7), and anti-aphrodisiac pheromones used by Drosophila melanogaster males to tag female flies as non-virgin (8). Another widely used strategy in insects is the transfer of biologically active male seminal proteins, produced by the male accessory gland and secreted into the ejaculatory duct along with sperm during insemination, to affect the sexual receptivity of the female (3, 9-13). Perhaps the best-characterized male seminal fluid protein in insects is the Drosophila fly sex peptide (11), which acts on the sex peptide receptor in the female to suppress receptivity and trigger egg production (12). Drosophila sex peptide receptor mutant females will readily remate with multiple males, and wild-type females that mate with sex peptide mutant males remain sexually receptive.