RT Journal Article SR Electronic T1 Estimation of universal and taxon-specific parameters of prokaryotic genome evolution JF bioRxiv FD Cold Spring Harbor Laboratory SP 137430 DO 10.1101/137430 A1 Itamar Sela A1 Yuri I. Wolf A1 Eugene V. Koonin YR 2017 UL http://biorxiv.org/content/early/2017/05/12/137430.abstract AB Our recent study on mathematical modeling of microbial genome evolution indicated that, on average, genomes of bacteria and archaea evolve in the regime of mutation-selection balance defined by positive selection coefficients associated with gene acquisition that is counter-acted by the intrinsic deletion bias. This analysis was based on the strong assumption that parameters of genome evolution are universal across the diversity of bacteria and archaea, and yielded extremely low values of the selection coefficient. Here we further refine the modeling approach by taking into account evolutionary factors specific for individual groups of microbes using two independent fitting strategies, an ad hoc hard fitting scheme and an hierarchical Bayesian model. The resulting estimate of the mean selection coefficient of s∼10-10 associated with the gain of one gene implies that, on average, acquisition of a gene is beneficial, and that microbial genomes typically evolve under a weak selection regime that might transition to strong selection in highly abundant organisms with large effective population sizes. The apparent selective pressure towards larger genomes is balanced by the deletion bias, which is estimated to be consistently greater than unity for all analyzed groups of microbes. The estimated values of s are more realistic than the lower values obtained previously, indicating that global and group-specific evolutionary factors synergistically affect microbial genome evolution that seems to be driven primarily by adaptation to existence in diverse niches.