RT Journal Article SR Electronic T1 Intercellular mRNA trafficking via membrane nanotubes in mammalian cells JF bioRxiv FD Cold Spring Harbor Laboratory SP 137836 DO 10.1101/137836 A1 Gal Haimovich A1 Christopher M. Ecker A1 Margaret C. Dunagin A1 Elliot Eggan A1 Arjun Raj A1 Jeffrey E. Gerst A1 Robert H. Singer YR 2017 UL http://biorxiv.org/content/early/2017/05/14/137836.abstract AB RNAs have been shown to undergo transfer between mammalian cells, though the mechanism behind this phenomenon and its overall importance to cell physiology is not well understood. Numerous publications have suggested that RNAs (microRNAs and incomplete mRNAs) undergo transfer via extracellular vesicles (e.g. exosomes). However, in contrast to a diffusion-based transfer mechanism, we find that full-length mRNAs undergo direct cell-cell transfer via cytoplasmic extensions, called membrane nanotubes (mNTs), which connect donor and acceptor cells. By employing a simple co-culture experimental model and using single-molecule imaging, we provide quantitative data showing that mRNAs are transferred between cells in contact. Examples of mRNAs that undergo transfer include those encoding GFP, mouse β-actin, and human Cyclin D1, BRCA1, MT2A, and HER2. We show that intercellular mRNA transfer occurs in all co-culture models tested (e.g. between primary cells, immortalized cells, and in co-cultures of immortalized human and murine cells). Rapid mRNA transfer is dependent upon actin, but independent of de novo protein synthesis, and is modulated by stress conditions and gene expression levels. Hence, this work supports the hypothesis that full-length mRNAs undergo transfer between cells through a refined structural connection. Importantly, unlike the transfer of miRNA or RNA fragments, this process of communication transfers genetic information that could potentially alter the acceptor cell proteome. This phenomenon may prove important for the proper development and functioning of tissues, as well as host-parasite or symbiotic interactions.Significance Messenger RNA (mRNA) molecules convey genetic information within cells, beginning from genes in the nucleus to ribosomes in the cell body, where they are translated into proteins. Here, we show a novel mode of transferring genetic information from one cell to another. Contrary to previous publications suggesting that mRNAs transfer via extracellular vesicles, we provide visual and quantitative data showing that mRNAs transfer via membrane nanotubes and direct cell-to-cell contact. We predict that this process has a major role in regulating local cellular environments with respect to tissue development and maintenance, cellular responses to stress, interactions with parasites, tissue transplants, and the tumor microenvironment.Author contributions G.H., A.R. and R.H.S. conceived the research and designed the experiments; C.M.E. performed and analyzed the experiments with WM983b+/-GFP, including transwell and exosomes; M.C.D. and E.E. performed and analyzed the WM983b/NIH393 co-culture experiments; G.H. performed and analyzed all other experiments; and G.H., J.E.G, A.R. and R.H.S. wrote the paper.