RT Journal Article SR Electronic T1 The population genetics of human disease: the case of recessive, lethal mutations JF bioRxiv FD Cold Spring Harbor Laboratory SP 091579 DO 10.1101/091579 A1 Carlos Eduardo G. Amorim A1 Ziyue Gao A1 Zachary Baker A1 José Francisco Diesel A1 Yuval B. Simons A1 Imran S. Haque A1 Joseph Pickrell A1 Molly Przeworski YR 2017 UL http://biorxiv.org/content/early/2017/05/18/091579.abstract AB Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes, reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. The observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on variants with lower mutation rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in this study. Beyond the specific application, this study highlights the parameters likely to be important in shaping the frequencies of Mendelian disease alleles.Author Summary What determines the frequencies of disease mutations in human populations? To begin to answer this question, we focus on one of the simplest cases: mutations that cause completely recessive, lethal Mendelian diseases. We first review theory about what to expect from mutation and selection in a population of finite size and further generate predictions based on simulations using a realistic demographic scenario of human evolution. For a highly mutable type of mutations, such as transitions at CpG sites, we find that the predictions are close to the observed frequencies of recessive lethal disease mutations. For less mutable types, however, predictions substantially under-estimate the observed frequency. We discuss possible explanations for the discrepancy and point to a complication that, to our knowledge, is not widely appreciated: that there exists ascertainment bias in disease mutation discovery. Specifically, we suggest that alleles that have been identified to date are likely the ones that by chance have reached higher frequencies and are thus more likely to have been mapped. More generally, our study highlights the factors that influence the frequencies of Mendelian disease alleles.