TY - JOUR T1 - Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat JF - bioRxiv DO - 10.1101/141747 SP - 141747 AU - Philippa Borrill AU - Sophie A. Harrington AU - Cristobal Uauy Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/05/24/141747.abstract N2 - Transcription factors are vital in plants to regulate gene expression in response to environmental stimuli and to control developmental processes. In this study, we annotated and classified transcription factors in polyploid bread wheat into gene families and explored the NAC family in detail. We combined phylogenetic analysis and transcriptome analysis, using publicly available RNA-seq data, to characterize the NAC gene family and provide hypotheses for putative functions of many NAC transcription factors. This study lays the groundwork for future studies on transcription factors in wheat which may be of great agronomic relevance.ABSTRACT Many important genes in agriculture correspond to transcription factors which regulate a wide range of pathways from flowering to responses to disease and abiotic stresses. In this study, we identified 5,776 transcription factors in hexaploid wheat (Triticum aestivum) and classified them into gene families. We further investigated the NAC family exploring the phylogeny, C-terminal domain conservation and expression profiles across 308 RNA-seq samples. Phylogenetic trees of NAC domains indicated that wheat NACs divided into eight groups similar to rice (Oryza sativa) and barley (Hordeum vulgare). C-terminal domain motifs were frequently conserved between wheat, rice and barley within phylogenetic groups, however this conservation was not maintained across phylogenetic groups. We explored gene expression patterns across a wide range of developmental stages, tissues, and abiotic stresses. We found that more phylogenetically related NACs shared more similar expression patterns compared to more distant NACs. However, within each phylogenetic group there were clades with diverse expression profiles. We carried out a co-expression analysis on all wheat genes and identified 37 modules of co-expressed genes of which 23 contained NACs. Using GO term enrichment we obtained putative functions for NACs within co-expressed modules including responses to heat and abiotic stress and responses to water: these NACs may represent targets for breeding or biotechnological applications. This study provides a framework and data for hypothesis generation for future studies on NAC transcription factors in wheat. ER -