PT - JOURNAL ARTICLE AU - Andries J. van der Walt AU - Marc W. Van Goethem AU - Jean-Baptiste Ramond AU - Thulani P. Makhalanyane AU - Oleg Reva AU - Don A. Cowan TI - Assembling metagenomes, one community at a time AID - 10.1101/120154 DP - 2017 Jan 01 TA - bioRxiv PG - 120154 4099 - http://biorxiv.org/content/early/2017/06/06/120154.short 4100 - http://biorxiv.org/content/early/2017/06/06/120154.full AB - Background Metagenomics allows unprecedented access to uncultured environmental microorganisms. The analysis of metagenomic sequences facilitates gene prediction and annotation, and enables the assembly of draft genomes, including uncultured members of a community. However, while several platforms have been developed for this critical step, there is currently no clear framework for the assembly of metagenomic sequence data.Results To assist with selection of an appropriate metagenome assembler we evaluated the capabilities of nine prominent assembly tools on nine publicly-available environmental metagenomes, as well as three simulated datasets. Overall, we found that SPAdes provided the largest contigs and highest N50 values across 6 of the 9 environmental datasets, followed by MEGAHIT and metaSPAdes. MEGAHIT emerged as a computationally inexpensive alternative to SPAdes, assembling the most complex dataset using less than 500 GB of RAM and within 10 hours.Conclusions We found that assembler choice ultimately depends on the scientific question, the available resources and the bioinformatic competence of the researcher. We provide a concise workflow for the selection of the best assembly tool.