RT Journal Article SR Electronic T1 GEM: A manifold learning based framework for reconstructing spatial organizations of chromosomes JF bioRxiv FD Cold Spring Harbor Laboratory SP 161208 DO 10.1101/161208 A1 Guangxiang Zhu A1 Wenxuan Deng A1 Hailin Hu A1 Rui Ma A1 Sai Zhang A1 Jinglin Yang A1 Jian Peng A1 Tommy Kaplan A1 Jianyang Zeng YR 2017 UL http://biorxiv.org/content/early/2017/07/10/161208.abstract AB Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, Chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to elucidate the underlying 3D spatial organizations of chromosomes from Hi-C data. Unlike previous chromatin structure reconstruction methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances between distal genomic loci, GEM is able to reconstruct an ensemble of chromatin conformations by directly embedding the neigh-boring affinities from Hi-C space into 3D Euclidean space based on a manifold learning strategy that considers both the fitness of Hi-C data and the biophysical feasibility of the modeled structures, which are measured by the conformational energy derived from our current biophysical knowledge about the 3D polymer model. Extensive validation tests on both simulated interaction frequency data and experimental Hi-C data of yeast and human demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also reconstructed accurate chromatin structures that agreed well with the hold-out or independent Hi-C data and sparse geometric restraints derived from the previous fluorescence in situ hybridization (FISH) studies. In addition, as GEM can generate accurate spatial organizations of chromosomes by integrating both experimentally-derived spatial contacts and conformational energy, we for the first time extended our modeling method to recover long-range genomic interactions that are missing from the original Hi-C data. All these results indicated that GEM can provide a physically and physiologically valid 3D representations of the organizations of chromosomes and thus serve as an effective and useful genome structure reconstructor.