RT Journal Article SR Electronic T1 Immature HIV-1 Lattice Assembly Dynamics are Regulated by Scaffolding from Nucleic Acid and the Plasma Membrane JF bioRxiv FD Cold Spring Harbor Laboratory SP 163295 DO 10.1101/163295 A1 Alexander J. Pak A1 John M. A. Grime A1 Prabuddha Sengupta A1 Antony K. Chen A1 Aleksander E. P. Durumeric A1 Anand Srivastava A1 Mark Yeager A1 John A. G. Briggs A1 Jennifer Lippincott-Schwartz A1 Gregory A. Voth YR 2017 UL http://biorxiv.org/content/early/2017/07/13/163295.abstract AB The packaging and budding of Gag polyprotein and viral ribonucleic acid (RNA) is a critical step in the human immunodeficiency virus-1 (HIV-1) lifecycle. High-resolution structures of the Gag polyprotein have revealed that the capsid (CA) and spacer peptide 1 (SP1) domains contain important interfaces for Gag self-assembly. However, the molecular details of the multimerization process, especially in the presence of RNA and the cell membrane, have remained unclear. In this work, we investigate the mechanisms that work in concert between the polyproteins, RNA, and membrane to promote immature lattice growth. We develop a coarse-grained (CG) computational model that is derived from sub-nanometer resolution structural data. Our simulations recapitulate contiguous and hexameric lattice assembly driven only by weak anisotropic attractions at the helical CA-SP1 junction. Importantly, analysis from CG and single-particle tracking photoactivated localization (spt-PALM) trajectories indicates that viral RNA and the membrane are critical constituents that actively promote Gag multimerization through scaffolding, while over-expression of short competitor RNA can suppress assembly. We also find that the CA amino-terminal domain imparts intrinsic curvature to the Gag lattice. As a consequence, immature lattice growth appears to be coupled to the dynamics of spontaneous membrane deformation. Our findings elucidate a simple network of interactions that regulate the early stages of HIV-1 assembly and budding.SIGNIFICANCE STATEMENT In order for human immunodeficiency virus to proliferate, viral proteins and genomic dimers are assembled at host cell membranes and released as immature virions. Disrupting this key intermediate step in viral replication is a potential target for treatment. However, a detailed molecular view of this process remains lacking. Here, we elucidate a network of constitutive interactions that regulate viral assembly dynamics through a combined computational and experimental approach. Specifically, our analysis reveals the active roles of nucleic acid and the membrane as scaffolds that promote the multimerization of Gag polyprotein which proceeds through multi-step and self-correcting nucleation. Our findings also illustrate the functional importance of the N-terminal, C-terminal, and spacer peptide 1 protein domains.