PT - JOURNAL ARTICLE AU - Jacob Peter Matson AU - Raluca Dumitru AU - Phillip Coryell AU - Ryan M Baxley AU - Weili Chen AU - Kirk Twaroski AU - Beau R. Webber AU - Jakub Tolar AU - Anja-Katrin Bielinsky AU - Jeremy Purvis AU - Jeanette Gowen Cook TI - Rapid DNA Replication Origin Licensing Protects Stem Cell Pluripotency AID - 10.1101/164368 DP - 2017 Jan 01 TA - bioRxiv PG - 164368 4099 - http://biorxiv.org/content/early/2017/07/17/164368.short 4100 - http://biorxiv.org/content/early/2017/07/17/164368.full AB - Complete and robust human genome duplication requires loading MCM helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single cell analyses we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation towards all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance.