TY - JOUR T1 - Polar-angle representation of saccadic eye movements in human superior colliculus JF - bioRxiv DO - 10.1101/169003 SP - 169003 AU - Ricky R Savjani AU - Elizabeth Halfen AU - Jung Hwan Kim AU - David Ress Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/07/26/169003.abstract N2 - The superior colliculus (SC) is a layered midbrain structure involved in directing eye movements and coordinating visual attention. Electrical stimulation and neuronal recordings in the intermediate layers of monkey SC have shown a retinotopic organization for the mediation of saccadic eye-movements. However, in human SC the topography of saccades is unknown. Here, a novel experimental paradigm and highresolution (1.2-mm) functional magnetic resonance imaging methods were used to measure activity evoked by saccadic eye movements within SC. Results provide three critical observations about the topography of the human SC: (1) saccades along the superior-inferior visual axis are mapped across the medial-lateral anatomy of the SC; (2) the saccadic eye-movement representation is in register with the retinotopic organization of visual stimulation; and (3) activity evoked by saccades occurs deeper within SC than that evoked by visual stimulation. These approaches lay the foundation for studying the organization of human subcortical eye-movement mechanisms.HighlightsHigh-resolution functional MRI enabled imaging from intermediate layers of human SCSaccades along superior-inferior visual field are mapped across medial-lateral SCSaccadic eye movement maps lie deeper in SC and are in alignment with retinotopyeTOC Blurb Savjani et al. found the polar angle representation of saccadic eye movements in human SC. The topography is similar in monkey SC, is in register with the retinotopic organization evoked by visual stimulation, but lies within deeper layers. These methods enable investigation of human subcortical eye-movement organization and visual function. ER -