RT Journal Article SR Electronic T1 Genomics-enabled analysis of the emergent disease cotton bacterial blight JF bioRxiv FD Cold Spring Harbor Laboratory SP 127670 DO 10.1101/127670 A1 Anne Z. Phillips A1 Jeffrey C. Berry A1 Mark C. Wilson A1 Anupama Vijayaraghavan A1 Jillian Burke A1 J. Imani Bunn A1 Tom W. Allen A1 Terry Wheeler A1 Rebecca Bart YR 2017 UL http://biorxiv.org/content/early/2017/07/28/127670.abstract AB Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains.Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal host-pathogen specificity at the genetic level and strategies for future development of resistant cultivars.Author Summary Cotton bacterial blight (CBB), caused by Xanthomonas citri pv. malvacearum (Xcm), significantly limited cotton yields in the early 20th century but has been controlled by classical resistance genes for more than 50 years. In 2011, the pathogen re-emerged with a vengeance. In this study, we compare diverse pathogen isolates and cotton varieties to further understand the virulence mechanisms employed by Xcm and to identify promising resistance strategies. We generate fully contiguous genome assemblies for two diverse Xcm strains and identify pathogen proteins used to modulate host transcription and promote susceptibility. RNA-Sequencing of infected cotton reveals novel putative gene targets for the development of durable Xcm resistance. Together, the data presented reveal contributing factors for CBB re-emergence in the U.S. and highlight several promising routes towards the development of durable resistance including classical resistance genes and potential manipulation of susceptibility targets.