TY - JOUR T1 - Genome downsizing, physiological novelty, and the global dominance of flowering plants JF - bioRxiv DO - 10.1101/174615 SP - 174615 AU - Kevin A. Simonin AU - Adam B. Roddy Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/08/10/174615.abstract N2 - During the Cretaceous (145-66 Ma), early angiosperms rapidly diversified, eventually outcompeting the ferns and gymnosperms previously dominating most ecosystems. Heightened competitive abilities of angiosperms are often attributed to higher rates of transpiration facilitating faster growth. This hypothesis does not explain how angiosperms were able to develop leaves with smaller, but densely packed stomata and highly branched venation networks needed to support increased gas exchange rates. Although genome duplication and reorganization have likely facilitated angiosperm diversification, here we show that genome downsizing facilitated reductions in cell size necessary to construct leaves with a high density stomata and veins. Rapid genome downsizing during the early Cretaceous allowed angiosperms to push the frontiers of anatomical trait space. In contrast, during the same time period ferns and gymnosperms exhibited no such changes in genome size, stomatal size, or vein density. Further reinforcing the effect of genome downsizing on increased gas exchange rates, we found that species employing water-loss limiting crassulacean acid metabolism (CAM) photosynthesis, have significantly larger genomes than C3 and C4 species. By directly affecting cell size and gas exchange capacity, genome downsizing brought actual primary productivity closer to its maximum potential. These results suggest species with small genomes, exhibiting a larger range of final cell size, can more finely tune their leaf physiology to environmental conditions and inhabit a broader range of habitats. ER -