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Abstract

The combination of diffusion MRI with microscopy provides unique opportunities to study
microstructural features of tissue, particularly when acquired in the same sample. Mi-
croscopy is frequently used to validate diffusion MRI microstructure models, addressing the
indirect nature of dMRI signals. Typically, these modalities are analysed separately, and
microscopy is taken as a gold standard against which dMRI-derived parameters are vali-
dated. Here we propose an alternative approach in which we combine diffusion MRI and
microscopy data obtained from the same tissue sample to drive a single, joint model. This
simultaneous analysis allows us to take advantage of the breadth of information provided by
complementary data acquired from different modalities. By applying this framework to a
spherical-deconvolution analysis, we are able to overcome a known degeneracy between fibre
dispersion and radial diffusion. Spherical-deconvolution based approaches typically estimate
a global fibre response function to determine the fibre orientation distribution in each voxel.
However, the assumption of a ‘brain-wide’ fibre response function may be challenged if the
diffusion characteristics of white matter vary across the brain. Using a generative joint
dMRI-histology model, we demonstrate that the fibre response function is dependent on lo-
cal anatomy, and that current spherical-deconvolution based models may be overestimating
dispersion and underestimating the number of distinct fibre populations per voxel.
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1. Introduction

Diffusion MRI (dMRI) is routinely used to study white matter microstructure and con-
nectivity in vivo and non-invasively [1, 2, 3]. dMRI microstructure models relate variations
in the MR signal to microstructural features of interest. Such inference requires biophysi-
cal modelling of both the tissue architecture and diffusion process. Although many dMRI
models have been proposed, few have been rigorously validated [4, 5], and the link between
the observed diffusion signal and the underlying white matter microstructure remains con-
troversial [6, 7].

Microscopy is often considered a gold standard technique for the validation of dMRI
models. Crucially, microscopy tends to resolve a specific structure of interest (e.g. his-
tological staining of astrocytes or polarised light imaging of myelinated axons) and thus
typically provides specificity that is not guaranteed by MRI. In a typical validation study
the dMRI and microscopy data are analysed separately, then dMRI-derived tissue param-
eters (e.g. fibre orientation, myelin density or axon diameter) are compared to microscopy
equivalents which are taken to be the ground truth [8, 9, 10, 11]. This is possible due to
the complementary nature of the data: both modalities provide information about the same
tissue parameters of interest, but each observe them through a different lens. However,
by analysing the data separately (rather than simultaneously), such paradigms may not be
exploiting the multimodal data to its full potential.

Here we suggest an alternative, data-fusion framework in which we combine dMRI and
microscopy data from the same tissue sample into a single joint model. A joint model may
be advantageous in three respects. Firstly, by considering both datasets simultaneously, we
have access to additional, complementary information about the tissue microstructure and
may be able to accurately determine tissue parameters that are currently unobtainable from
the diffusion signal alone. A secondary benefit of the data-fusion framework is that the
joint model considers both dMRI and microscopy to be informative of the ‘true’ underlying
microstructure, but also that both have sources of uncertainty (Figure 1). Crucially, these
are unique, modality-dependent sources of noise. Therefore, by using a data-fusion frame-
work we can in theory obtain a higher-precision estimate of the underlying microstructure
of interest. Finally, microscopy is typically 2D and may only be sensitive to a subset of
the tissue compartments (e.g. myelinated axons or astrocytes). For example, histological
staining of the tissue (a gold standard microscopy technique) typically produces 2D images
of thin tissue sections, where only the stained microstructure is easily visualised. Thus, the
information provided by microscopy only partially informs on the tissue microstructure. The
joint model can overcome this limitation by considering the microscopy as a soft constraint
on the model, as opposed to a hard constraint or ground truth in post-hoc validation. This
framework is inspired by a similar data-fusion approach [12] which demonstrated improved
brain connectivity analysis when complementary 3T and 7T dMRI data was analysed jointly
rather than separately.

This report considers one example of how dMRI-microscopy data-fusion allows us to
extract tissue parameters which are difficult to obtain from the dMRI data alone. Here
we aim to separate out fibre orientation dispersion from radial diffusion i.e. the apparent
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Figure 1: Top: Microscopy data can provide highly detailed information about specific microstructural
features of the tissue at sub-micrometre resolutions. In comparison, the diffusion MRI signal is an indirect
measure of the same microstructure of interest. Due to the complementary information provided by the
two modalities, we propose a data-fusion framework which simultaneously analyses dMRI and microscopy
data from the same tissue sample to drive a single, joint model. Bottom: (a) A highly dispersed fibre
population with low radial diffusivity may produce the same diffusion MRI signal as a single, coherently
ordered fibre population with high radial diffusivity. The blue line labelled ‘Diffusion MRI’ represents a
simplistic but graphical representation of this degeneracy. (b) Microscopy can estimate and, in the joint
analysis, constrain the fibre dispersion in each MRI voxel to overcome the degeneracy; the dMRI data can
now provide accurate estimates of radial diffusion. Critically, as the microscopy acts as a soft constraint
(rather than fixing the dispersion), both the dMRI and the microscopy data simultaneously inform on the
fibre dispersion. Information about the radial diffusion comes from dMRI data alone. The shading represents
noise in the data and uncertainty in the parameter estimates.
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diffusion coefficient perpendicular to the direction of the fibre. As is illustrated in Figure 1
(bottom), a highly dispersed fibre population with low radial diffusivity may produce the
same dMRI signal as a single, coherently oriented fibre population with high radial diffusion.
This degeneracy is commonly overcome by assuming one can identify a region with a single,
coherently oriented fibre population which is then used to define a global radial diffusivity.
Alternatively, promising developments by Lasič et al. [13], Szczepankiewicz et al. [14], and
more recently by Cottaar et al. [15] demonstrate that, by combining linear and spherical
diffusion tensor encoding, it is possible to disentangle microscopic diffusion anisotropy from
orientation dispersion. Nonetheless, current analyses of conventional dMRI data (based
on single diffusion encoding and which do not assume global diffusivities) are unable to
distinguish these two distinct fibre configurations.

Microscopy can be used to determine the fibre orientations at a much finer spatial reso-
lution (typically ∼ micrometer or sub-micrometer per pixel) and so can estimate the fibre
dispersion in each dMRI voxel. However, microscopy alone is typically uninformative of
the diffusion properties of the tissue. In a joint dMRI-microscopy model (as illustrated in
Figure 1, bottom), once the amount of within-voxel fibre dispersion is constrained, dMRI
can accurately estimate the radial diffusion. In this manner a joint model should be able to
overcome the degeneracy and separate out fibre dispersion from radial diffusion. This could
provide insights into how these two parameters vary across the brain in both health and
disease.

There are many ways to formulate a joint model. In this report we focus on one ap-
proach based on constrained spherical deconvolution (CSD, [16]). As a popular data-driven
analysis, CSD estimates the underlying fibre orientations from a dMRI dataset. In CSD,
the diffusion signal is considered to be the convolution of the fibre orientation distribution
(FOD) with a fibre response function (FRF). Here the FRF describes the diffusion signal
from a single, coherently oriented fibre population. In the model, the FRF is first estimated
empirically (typically from voxels with large fractional anisotropy [16, 17, 18, 19]) and sub-
sequently used as a global deconvolution kernel to determine the underlying FOD. CSD is
thus based around two main assumptions: that it is possible to identify a region which con-
tains a single, non-dispersed fibre population, and that the FRF estimated from this region
holds globally. In other words, it is possible to estimate a valid ‘brain-wide’ FRF. These
assumptions may be challenged if we consider there to be non-zero orientation dispersion
in typical MRI voxels, and the diffusion characteristics of white matter to be dependent
on microstructural properties such as axonal diameter, packing and myelination that can
vary across the brain [20, 21]. Thus, the estimation of a brain-wide fibre response function
could be unreliable and has been shown to produce spurious results [22, 17] when poorly
estimated. Alongside the recent and complimentary publication by Schilling et al. [23] this
report actively demonstrates the extent of FRF variation across the brain.

In this work we combine dMRI and histology data from the same human tissue sam-
ple to investigate the diffusion properties of white matter under conditions where multiple
modalities are informative of the ‘true’ fibre configurations. To highlight the benefits of the
data-fusion framework, this report considers a joint model which is based on non-parametric
CSD. We show that by including histology data into the joint model we are able to over-
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come the degeneracy of fibre dispersion and radial diffusion. As such, we can simultaneously
estimate the diffusion profile of a single fibre bundle (the FRF) and the underlying fibre ori-
entation distribution (the FOD) on a voxel-by-voxel basis. In our results we investigate how
the FRF changes across several white matter regions, and consider the implications this
may have on both the reliability of CSD-based analyses and our understanding of the white
matter microstructure.

2. Methods

This section will first describe the principles of CSD, and how these were developed into
our joint modelling approach (c.f. Joint modelling). As a generative model which spans
multiple modalities, the joint model error balances three terms (a dMRI-data fidelity term,
a microscopy-data fidelity term and a complexity penalty) with two regularisation factors.
Thus, Simulations describes how simulated data (with a known ground truth) was used to
determine appropriate values for the two regularisation factors. Finally, Postmortem data
acquisition provides details of the co-registered high-resolution dMRI (0.4mm isotropic) and
myelin-stained histological data used in this study.

2.1. Constrained spherical deconvolution

In constrained spherical deconvolution (CSD) the diffusion-weighted MR signal atten-
uation, S, measured along an orientation parametrised in spherical coordinates by angles
(θ0, φ0) is considered to be the convolution of the FOD with the single-fibre response function
(FRF):

S(θ0, φ0) =

∫∫
S2

FOD(θ, φ) FRF (θ0 − θ, φ0 − φ) sin(θ) dθ dφ (1)

where both the FOD and FRF are defined on the unit sphere. The FRF describes the signal
profile of a single coherently-oriented fibre bundle and both the FRF and the FOD can be
expressed in terms of spherical harmonics [16].

After estimating an appropriate FRF, the FODs are reconstructed on a voxel-wise basis
by deconvolving the FRF from the diffusion signal S. As the deconvolution is sensitive to
noise, the spherical deconvolution is constrained to minimise physically impossible negative
peaks in the reconstructed FOD [24]. To constrain the optimisation a modified Tikhonov
regularisation method [25] is typically employed to iteratively penalise negative amplitudes
on the FOD and update the FOD estimation.

This report will compare results from the standard CSD model (a deconvolution) with
those from the novel joint modelling approach (a generative model). In the standard CSD
model, processing was performed using the MRtrix3 package (www.mrtrix.org, [26]) and
the FRF was determined empirically using Tournier’s approach [27]. Briefly, the Tournier
algorithm iterates between response function estimation and CSD to determine the 300 most
likely ‘single-fibre’ voxels from which the FRF is estimated.
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Figure 2: The generative joint model. Here the fibre response function (FRF) was considered an axially
symmetric diffusion tensor characterised by diffusivities (d) parallel and perpendicular to the fibre. The
fibre orientation distribution (FOD) was defined on a spherical harmonic basis set of order l = 6. In the
joint model, the FRF and FOD were simultaneously fit to the diffusion data (through convolution) and the
FOD projected onto a 2D plane for comparison with the microscopy-derived FOD.

2.2. Joint modelling

The principles of constrained spherical deconvolution were extended to enable joint esti-
mation of the FRF and FOD for datasets with both dMRI and microscopy data. Although
the joint modelling approach could be applied to any type of microscopy data from which we
can extract fibre orientations, in this work we analyse histological images which have been
stained for myelin and co-registered to 0.4 mm isotropic dMRI data (c.f. 2.4 Postmortem
data acquisition). Through structure tensor analysis [28] of histological images, the primary
fibre orientation was estimated per pixel after which 1400 x 1400 orientations were combined
into a frequency histogram to generate a 2D microscopy-derived FOD (FOD2D,micro) for a
‘superpixel’ comparable to the spatial resolution of dMRI. In the model, the microscopy-
derived FOD acted as a soft constraint on both the fibre orientation and amount of disper-
sion in each MRI voxel. This allowed estimation of the diffusivities both parallel (daxial) and
perpendicular (dradial) to the fibre.

The generative model is described in Figure 2. In the joint model, the FRF and FOD
were combined to predict the dMRI signal, S, along each gradient direction, k(θ0, φ0), using
equation (1). Additionally, the FOD was projected onto the 2D plane (FOD2D,joint) and
re-normalised to fit the microscopy-derived FOD2D,micro. To retain simplicity and avoid
overfitting, in the joint model the FRF was characterised by an axially-symmetric diffusion
tensor, whilst the FOD was defined on a spherical harmonic basis set of order 6. The
model thus contained 30 free parameters: 2 diffusivities (which determined the FRF) and
28 spherical harmonics coefficients (which determined the ODF).
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The model parameters were fitted by minimising a cost function E made of three terms,

E = Ediff + λmicro Emicro + λcomplex Ecomplex, (2)

where Ediff describes the dMRI-data fidelity term, Emicro the microscopy-data fidelity term,
and Ecomplex a complexity penalty. The predicted dMRI signal, Sk, was compared to the
dMRI data, Yk, using the mean squared error,

Ediff =
1

N

N∑
k=1

(Yk − Sk)2. (3)

The projected FOD (FOD2D,joint) was compared to the microscopy-derived FOD2D,micro

using the symmetric Kullback-Leibler divergence DKL [29],

Emicro = DKL(FOD2D,micro || FOD2D,joint) +DKL(FOD2D,joint || FOD2D,micro), (4)

where the Kullback-Leibler divergence of two discrete probability distributions P and Q is
defined as,

DKL(P ||Q) = −
∑
i

P (i) log
Q(i)

P (i)
. (5)

To minimise the presence of spurious peaks in the FOD, a third error term, the complexity
penalty, penalised non-zero spherical harmonic coefficients which were not supported by
the data. Here the complexity penalty minimised the L1-norm of the spherical harmonics
coefficients, x, which describe the 3D FOD where,

Ecomplex =
28∑
n=1

|xn|. (6)

The three error terms were combined into a single cost function (Equation 2), with regu-
larisation factors λmicro and λcomplex respectively, and minimised using MATLAB’s non-linear
solver fmincon [30]. Optimisation constraints ensured that the FOD, daxial and dradial were
positive and that daxial ≥ dradial. The joint model was initialised as follows: in each voxel,
the spherical harmonics coefficients output from CSD [16] provided an initial estimation
of the FOD and the FRF was initialised to daxial = 0.25 µm2/ms, dradial = 0.05 µm2/ms.
MATLABs simulated annealing algorithm simulannealbnd [30] was used to generate three
sets of starting parameters from the above initial conditions. The model was optimised for
each set of starting parameters, and the solution with the lowest error chosen. With this
procedure, the joint model was able to simultaneously optimise both the FRF and FOD on
a voxel-by-voxel basis.

2.3. Simulations

This section will describe two sets of simulations which were used to determine appropri-
ate regularisation factors λmicro and λcomplex. dMRI and histology data was simulated for a
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fairly simple single-fibre configuration. The first set of simulations was used to determine an
appropriate value of λmicro and did not include a complexity penalty (λcomplex = 0). We eval-
uated whether, through the inclusion of histology data (increasing λmicro), the joint model
was able to separate fibre dispersion from radial diffusion by assessing how faithfully the
model could quantify the fibre orientation dispersion. Here we included 3 parameters: the
azimuth, θ, and inclination, φ, of the FOD peak, and the symmetric fibre dispersion around
the peak, characterised by the orientation dispersion index (ODI, Equation 7). In the sec-
ond set, λmicro was fixed and a cross-validation approach was taken to optimise λcomplex.
Here spherical harmonics were used to describe the FOD and we assessed how the residual
error of the model changed with respect to λcomplex.

In both sets of simulations a dispersed FOD was approximated by a Watson distribution
with concentration parameter κ [31, 32]. As proposed by Zhang et al. [32], an orientation
dispersion index was defined as,

ODI =
2

π
arctan(1/κ) (7)

whereby the ODI varies from 0 (no dispersion) to 1 (isotropic dispersion). As above, the
diffusion signal was calculated as the convolution of the FOD with an axially symmetric
FRF (Equation 1) after which zero-mean Gaussian noise was added. In a similar manner to
Sotiropoulos et al. [33], assuming S0 = 100, the SNR was defined as SNR = S0/σnoise. To
simulate histology data, fibre orientations were sampled from the Watson distribution using
rejection sampling, and then projected onto a 2D histological plane and combined into a
frequency histogram. 1400×1400 samples were drawn from the Watson distribution to match
the number of fibre orientations in each ‘superpixel’ of the real data. No additional noise
was added to the histology data. Simulation parameters were fixed to values of ODI = 0.25,
daxial = 0.2 µm2/ms, dradial = 0.1 µm2/ms, SNRdMRI = 15.

We first determined an appropriate value for the weighting of the histology data λmicro,
whilst setting λcomplex = 0. As we were primarily interested in how accurately the model
could separate fibre dispersion from radial diffusion, a wrapper function was used to simplify
the joint model such that the model contained only 3 free parameters: ODI, daxial and
dradial. To do this the fibre orientation was fixed to a specific direction, (θ, φ), after which
the Watson-like FOD could be fully characterised by the ODI alone (rather than the 28
spherical harmonics of the normal joint model). dMRI and histology data was simulated for a
single-fibre population oriented along (θ, φ) and a given ODI. The simplified joint model was
fit to the simulated data using a Markov chain Monte Carlo (MCMC) method, Metropolis
Hastings [34], to find optimal values of ODI, daxial and dradial. daxial and dradial were
initialised using the same parameters as for the real data (daxial = 0.25 µm2/ms, dradial =
0.05 µm2/ms) whilst the dispersion was initialised to ODI = 0.5. The optimisation was
constrained such that the ODI, daxial and dradial were positive and daxial ≥ dradial. It was
preferable here to use MCMC for optimisation (instead of fmincon above) for two reasons.
Firstly, the multiple MCMC samples identify combinations of parameters which produce
an equally good fit. This allowed us to investigate both the precision and accuracy of the
model. Secondly, as there were fewer model parameters to fit (2 diffusivities and the ODI,
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rather than the 30 free parameters above), the optimisation was better suited to MCMC
methods. In these simulations of a single fibre population, the number of model parameters
was greatly reduced as we fit a single-fibre FOD of symmetric dispersion, characterised by
the ODI. In real data, we describe the FOD using spherical harmonics coefficients rather
than the ODI of a Watson distribution, allowing for greater complexity in the FOD shape
(e.g. multiple peaks with complex dispersion). The above procedure was first performed for
a fibre population oriented along the histological plane (φ = 0) where the histological data
was most informative of the ODF shape, and then repeated for various inclinations, φ.

For the second set of simulations, a cross-validation approach was used to determine an
appropriate weighting of the model complexity penalty, λcomplex. The complexity penalty
aims to minimise spurious peaks in the FOD by penalising non-zero spherical harmonics
which are unsupported by the data. If λcomplex were too low it would be ineffective, but
if set too high, the spherical harmonic coefficients would be unable to accurately describe
the FOD. The latter would be identified in a cross-validation study as it would result in
a high error of the model with respect to a validation dataset. For the cross-validation
study, data was simulated for a single-fibre population (as described above) and divided
into training and validation datasets of equal proportions. That is, each set included half
of the gradient directions, distributed fairly evenly across the sphere. For various λcomplex,
the model parameters daxial, dradial, and the spherical harmonic coefficients were fit to the
training data, after which the out-of-sample residual error was calculated.

2.4. Postmortem data acquisition

This study analyses formerly obtained dMRI and histology data; for a detailed descrip-
tion of samples, the data acquisition and post processing see [10]. Briefly, postmortem brain
tissues, which had been immersion fixed in formalin, were obtained from the Oxford Brain
Bank, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
The postmortem tissues were from three male donors with no known neurological condi-
tions who died of non-brain related disease. From each brain, a 5mm thick coronal section
was extracted at the level of the anterior commissure to include various anatomical regions of
interest: the corpus callosum, centrum semiovale, corticospinal tract, and cingulum bundle.

dMRI data was acquired on a 9.4T preclinical MRI scanner equipped with a 100 mm
bore gradient insert (Varian Inc, CA, USA) and with a maximum gradient strength of 400
mT/m. At a spatial resolution of 0.4 mm isotropic, a diffusion-weighting of b = 5000 s/mm2

was achieved with a single-line spin-echo sequence (TE=29 ms, TR = 2.4s) over a total of
120 gradient directions. An additional eight images were collected with negligible diffusion
weighting (b = 8 s/mm2).

After MRI scanning, the tissue was sectioned in half along the anterior-posterior direc-
tion. One half was processed for classic immunohistochemical staining of myelin and the
other for polarised light imaging. As previous work [10] determined that the myelin stain-
ing provided better predictions of dispersion (those more consistent with dMRI data), this
study focused solely on these histological images. For immunohistochemical staining, the
tissue was paraffin embedded and sectioned at 6 µm along the coronal plane. To visualise
the myelin content, three sections of tissue were stained with antibodies against proteolipid
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protein (MCA839G; Bio-Rad; 1:1000) and imaged at a spatial resolution of 0.28 µm/pixel.
Structure tensor analysis [28, 35] of the histological images estimated the primary fibre
orientation per pixel. 1400 x 1400 fibre orientations were then combined into a frequency
histogram to generate a 2D histology-derived FOD at a spatial resolution comparable to the
0.4 mm dMRI data.

To allow for voxel-wise comparison of the multimodal data, the dMRI and histology
were co-registered using a 2D registration based on a Modality Independent Neighbourhood
Descriptor (MIND) [36] algorithm. Previous evaluation of the registered data [10] found
especially good alignment in the corpus callosum facilitating robust voxel-wise comparisons.
However, slight mis-alignment was apparent at tissue boundaries, particularly in specimen
3.

3. Results

3.1. Model validation

Using simulated data we first assessed whether the joint model was able to separate fibre
dispersion from radial diffusion as intended. To determine an appropriate weighting of the
histological data, λmicro, we examined the model specificity and accuracy when estimating
daxial, dradial and the ODI. Figure 3 considers a FOD oriented along the histological plane,
where the histology is most informative. Figure 3a shows samples from fitting a simulated
FOD using MCMC where the ODI, daxial and dradial were optimised simultaneously. With
only dMRI data included in the model (Figure 3a, left), we found a clear degeneracy between
fibre dispersion and radial diffusion as expected. A similar degeneracy exists between daxial
and the ODI which is not shown. In comparison, Figure 3a (right) depicts the same fit
but with both histology and dMRI data included in the model. Here the histology data
acted to constrain the within-voxel fibre dispersion. Even though the histology data was
only informative of the fibre dispersion in 2D, the joint model was able to overcome the
degeneracy and estimate both the fibre dispersion and radial diffusion simultaneously.

In the model, the histologically-derived error was weighted by a regularisation factor
λmicro; when λmicro = 0, the histological data was excluded from the model, corresponding
to the left part of 3a. Figure 3b shows how the accuracy of estimating dradial and the ODI
varies with respect to λmicro. When λmicro = 1, we observe a break in the degeneracy between
dradial and the ODI, demonstrated by the increase in precision and accuracy.

In Figures 3a,b the FOD was oriented along the histological plane, such that the 2D
histological data was highly informative of the FOD shape. In contrast, the histological data
should be minimally informative for FODs oriented out of the histological plane. Figure 4
evaluates the performance of the model for fibre FODs with increasing inclination, φ, with
respect to the histological plane. For λmicro = 1, both dradial and the ODI were estimated
with good accuracy for fibre inclinations of up to 60 degrees. Accurate estimation of dradial
and the ODI for fibres of higher inclination required increasing values of λmicro. Finally, for
an FOD oriented perpendicular to the histological plane, the degeneracy between the ODI
and dradial remained for all λmicro.
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Figure 3: Overcoming the degeneracy between fibre dispersion and radial diffusion. Here, simulated data
for a single-fibre FOD has been fit using MCMC. Note, the fibre orientation dispersion index (ODI) ranges
from 0 (no dispersion) to 1 (isotropic dispersion) and the light grey lines represents the ground truth. Here
we simulate data for a single fibre population oriented along the histological plane, where the histological
data is most informative. a) Each point shows a sample from MCMC where the cost function of the joint
model has been minimised with equally good fit. When the model only considers the dMRI data (left), we
see a clear degeneracy as expected. However, the degeneracy may be overcome through the inclusion of
histology data to the model (right). Part b) examines the effect of λmicro, the weighting of the histological
data. When λmicro = 1, the joint model was able to estimate both the ODI and radial diffusivity to a high
degree of accuracy and precision.

Figure 4: How the accuracy of the joint model, for a given λmicro, is affected by the FOD inclination with
respect to the histological plane, φ. As in Figure 3, data was simulated for a single-fibre FOD and fit using
MCMC. The light grey line represents ground truth values. When λmicro = 1, the joint model was able
to faithfully estimate both the ODI and radial diffusivity for fibres of inclinations up to 60◦ out of the
histological plane.
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Figure 5: Determining λcomplex, the weighting of the complexity penalty. A complexity penalty was added
to prevent spurious peaks occurring in the FOD. Left: Having performed cross-validation on simulated
data, the residual error of the out-of-sample data was estimated for λcomplex ranging from 1 × 10−4 to 1.
λcomplex = 1× 10−2 was chosen for all future optimisations due to the unsubstantial increase in the residual
error. Right: An example voxel from the postmortem dataset. The voxel was optimised both without
a complexity penalty (λcomplex = 0) and with (λcomplex = 0.01). We see how the complexity penalty
successfully minimises the presence of a likely artefactual peak in the FOD, highlighted by the red arrows.

A high value of λmicro may imbalance the microscopy data-fidelity term, Emicro, with
respect to the dMRI-data fidelity term, Ediff , and result in a poor fit of the model to the
dMRI data. Therefore, λmicro = 1 was chosen for all further optimisations.

With λmicro = 1, a procedure of cross-validation was used to determine the weighting of
the complexity penalty, λcomplex. Figure 5 plots the out-of-sample residual error with respect
to λcomplex. To remove spurious peaks from the FOD requires the highest complexity penalty
supported by the data (i.e. one which does not detrimentally increase the residual error).
Consequently, λcomplex = 0.01 was considered optimal.

3.2. Residual error

Figure 6 compares the fit of the joint model and CSD to both the dMRI and histological
data. For standard CSD, the FRF was estimated empirically from the most likely ’single-
fibre’ voxels using the Tournier algorithm [27]. Once estimated, the FRF was held constant
across the sample and used as a deconvolution kernel to estimate, in each voxel, the ODF
from the dMRI data. In comparison, the joint model acted as a forwards model, fitting
to both the dMRI and histology data to estimate the FRF and ODF on a voxel-by-voxel
basis. Figure 6 shows the mean absolute percentage error between the predicted diffusion
signal (convolution of the ODF and FRF, Equation 1) and the dMRI data (top), and the
Kullback-Leibler divergence (Equations 4, 5) between the histological data and the model
FOD when projected into the histological plane (bottom).

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2019. ; https://doi.org/10.1101/563809doi: bioRxiv preprint 

https://doi.org/10.1101/563809
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Top: The residual error (calculated as the mean absolute percentage error) of the model fit to
the dMRI data only. Bottom: The error of the model with respect to the histological data, defined as the
symmetric KullbackLeibler (KL) divergence. When KL = 0, the 2D-FODs are identical. Compared to CSD,
there is a slight increase in the residual error of the joint model with respect to the dMRI data. This is to
accommodate the highly improved fit to the histological data.
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When compared to CSD, the joint model shows a slight increase in the dMRI-associated
error which is concurrent with a largely improved fit to the histological data. This is as
expected: CSD by definition minimises the error with respect to the dMRI data. In com-
parison, the joint model considers additional information about the ‘true’ fibre dispersion
(from the histology data) to avoid overfitting.

3.3. Variations in axial and radial diffusivities

Standard CSD methods define a global FRF and thus assume that the diffusion char-
acteristics of the tissue remain constant across the sample. In contrast, the joint model
overcomes the degeneracy between fibre dispersion and radial diffusion to estimate the FRF
on a voxel-by-voxel basis. In the joint model the FRF is considered an axially symmetric
diffusion tensor described by daxial and dradial. So, the joint model can estimate how the
axial and radial diffusivities (and thus the FRF) vary voxel-wise across the sample.

Figure 7 shows considerable variation in the estimated axial and radial diffusivities across
all three specimens. Here we should again note the less accurate registration of dMRI and
histology data in specimen 3. Previous work [10] demonstrates the mis-alignment of the
tissue around the grey matter tissue boundaries of specimen 3 as well as the more robust
registration across the corpus callosum. Values of axial and radial diffusivity outside of the
corpus callosum in specimen 3 should therefore be viewed with a sceptical eye. Nonetheless,
in Figure 7 (top) we generally see a similar pattern of variation in both axial and radial
diffusivities, with particularly low values of diffusivity often found in the corpus callosum.

To assess how the diffusivities vary with anatomical regions of interest, Figure 7 (bottom)
compares the distribution of axial and radial diffusion in all white matter voxels to those only
in the corpus callosum, centrum semiovale, corticospinal tract and cingulum bundle. We see
considerably lower diffusivities in the corpus callosum, as well as two distinct distributions
of radial diffusivities across all white matter voxels.

3.4. Fibre response function

Figure 8 compares three ways of estimating the FRF from the dMRI data alone: the
two conventional approaches estimate a global FRF, whilst the joint model estimates the
FRF on a voxel-by-voxel basis. Using MRtrix3 [26], the FRF was first estimated from the
300 highest FA voxels and from the most-likely single-fibre voxels defined by the iterative
Tournier algorithm [27]. This was compared to the joint model estimates of the FRF for
voxels in the corpus callosum, centrum semiovale and corticospinal tract. To consider local
changes in the FRF (rather than the voxel-wise variations of Figure 7), Figure 8 shows the
mean FRF across a 2x2 neighbourhood of voxels in each anatomical region.

Both conventional methods typically estimate the FRF from voxels in the corpus cal-
losum. Here the joint model estimated an FRF with lower radial diffusivity and higher
diffusion anisotropy (daxial − dradial) when compared to the conventional FRFs. This would
be consistent with standard methods conflating fibre dispersion with diffusivity in the voxels
used to generate the FRF.
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Figure 7: Heatmaps (top) and raincloud plots (bottom, specimen 1 only) show how the axial and radial
diffusivities (and thus the FRF) vary on a voxel-wise basis across the white matter. We find notably lower
radial diffusivities in the corpus callosum compared to other white matter tracts: the centrum semiovale,
corticospinal tract and cingulum bundle. Additionally, we find two apparent distributions of radial diffusiv-
ities in the white matter. These results challenge standard CSD methods where a global FRF is assumed
constant across the sample. Note the change in scale bar between the axial and radial diffusivities, with the
radial diffusivity generally lower.
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Figure 8: Variations in the observed fibre response function (FRF); here the FRF describes the diffusion
profile of a single fibre bundle aligned vertically with respect to the page. The axial and radial diffusivities
which describe the FRF (defined as an axially-symmetric diffusion tensor) are plotted below. A global FRF
was first estimated from the 300 highest FA voxels and the Tournier algorithm [27] which selects the most
likely ‘single-fibre’ voxels (left). This was compared to the FRF estimated by the joint model in the corpus
callosum, centrum semiovale and corticospinal tract. The joint model estimates the FRF on a voxel-wise
basis. However, here we consider local changes in the FRF; the FRFs shown were characterised by the mean
axial and radial diffusivities over a 2x2 neighbourhood in each anatomical region. We see how the joint
model predicts in general a more anisotropic (oblate) FRF in the corpus callosum and that the FRF appears
to vary considerably with anatomy.
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In the joint model, the FRF appeared to vary considerably with neuroanatomy. Com-
pared to the corpus callosum, Figure 8 depicts higher axial and radial diffusivities in the
centrum semiovale and a highly spherical FRF in the corticospinal tract.

Notably, Figure 8 demonstrates FRF variability across the corpus callosum, which is
typically considered a homogenous tract of coherently oriented fibres. Comparing the ex-
ample FRF’s in Figure 8, the midline of the corpus callosum is characterised by lower axial
diffusivity, higher radial diffusivity and a subsequent decrease in diffusion anisotropy.

3.5. FODs

Notable changes to the estimated FODs were also observed. Figure 9 (top) shows repre-
sentative voxels from the corpus callosum of specimen 1 where, when compared to the CSD,
the joint model estimated narrower FODs and a lower degree of dispersion in the underlying
fibres. This finding was consistent across many (but not all) voxels in the corpus callosum
of all three specimens.

Furthermore, in the joint model we sometimes observed the emergence of additional dis-
tinct fibre populations in the FOD. Figure 9 shows an example from the centrum semiovale;
a known region of crossing fibres.

Figure 9 right (‘FOD2D’) shows the improved fit of the FOD when projected into the
histological plane and compared to the histologically derived FOD2D,micro. This is quantified
by the reduced KL divergence as shown in Figure 6. We see here how the histological data
acts as a soft constraint on both the fibre orientation and amount of dispersion in the MRI
voxel.

3.6. Limitations

Figure 10 demonstrates two cases where, due to limitations of the 2D histological data,
the histology may bias the joint model prediction of the FOD. Firstly, the histology may
underestimate, or totally omit, the volume fraction of a secondary fibre population (Figure
10 top). We see how the joint model thus attempts to minimise the presence of a secondary
fibre population, the resultant FOD being perhaps biased or biologically improbable.

Secondly, the histological data is most sensitive to fibre bundles in, or close to, the histo-
logical plane. Figure 10 (bottom) shows a single voxel from two orthogonal views: looking
down on the histological plane (view 1), and perpendicular to the plane (view 2). In CSD,
we see a single fibre population, primarily oriented out of the histological plane; the CSD-
derived 2D FOD is consequently highly spherical. The histology-derived FOD however looks
substantially different. This may be due to the histology-derived FOD over-emphasising ei-
ther in-plane components of mostly through-plane fibres or minor fibre populations which
lie in the histological plane. Alternatively, there could be mis-registration of the dMRI and
histology data such that the two datasets are incompatible. Consequently, as the joint model
tries to fit the histological data, it appears to split the single-fibre FOD in two. Both exam-
ples in Figure 10 were taken from the centrum semiovale on the left hand side of specimen
one: a known region of complex fibre configurations and, in this specimen, a region of high
dMRI-associated error in the joint model.
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Figure 9: 3D fibre orientation distributions (FODs) derived from CSD and the joint model in both the corpus
callosum (top) and centrum semiovale (bottom). Top: The joint model estimates narrower FODs and lower
dispersion in the underlying fibres. Bottom: In the centrum semiovale, additional distinct fibre populations
are evident in the joint model FODs when compared to CSD. Notably, these peaks are recognisable in both
the CSD FOD and the histology independently, and are not introduced by the histology only. In the right-
hand pane the CSD and joint model FODs have been projected onto the plane of the histological data and
are compared to the histology-derived FOD. Here we see the greatly improved fit of the joint model FOD
to the histology.
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Figure 10: Two cases where the histological data might bias the 3D FOD predicted by the joint model.
Histology may under-estimate the volume fraction of in-plane secondary fibre populations (top), or omit
out-of-plane fibres from the histology-derived 2D FOD (bottom). Here the 3D FOD is seen from two
orthogonal views: looking onto (view 1) and out of (view 2) the histological plane (denoted x/y).

3.7. Orientation of the FOD peak

In the joint model, the histological data constrains both the fibre orientation and amount
of dispersion in each dMRI voxel. This is likely to affect the orientation of the estimated
FOD peak in two respects. Here we define the peak orientation by the azimuthal angle in,
and inclination out of, the histological plane. Firstly, any mis-registration of the dMRI and
histology data may cause a rotation in the azimuthal angle. Secondly, as the histological data
is most informative of in-plane fibres, the joint model may favour FODs of low inclination.
Figure 11 investigates these effects by comparing the orientation of the primary peaks of
FODs estimated by both CSD and the joint model. Figure 11a shows the angular deviation
of the two peaks where the three samples have a median difference of 12.4◦, 11.2◦ and 10.7◦.
Figures 11b and c compare the azimuth and inclination of the primary peaks respectively.
We see how all three specimen show very close correlation with the robust regression line
close to the line of unity and r-values between r = 0.97 − 0.99 . Note that here we use
robust linear regression to limit our sensitivity to outliers and that the r-values of robust
regression (here calculated using MATLABs fitlm [30]) are typically inflated when compared
to standard linear regression.

In 11b specimen 1 we see a prevalence of joint model estimated FOD peaks at azimuthal
angles of θ ± 90◦, i.e along the inferior-posterior axis. This is due to an almost equal
prevalence of histology-defined FODs with peaks at these angles and is probably caused by
an artefact in the histology data. This however does not appear to greatly impact either
the inclination (Figure 11c) or total angular difference (Figure 11a) between the CSD and
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joint model derived FODs of specimen 1. Overall, Figure 11 indicates a markedly stable
relationship between the ODF peaks derived from CSD (dMRI analysis only) and the joint
model (combined dMRI and histology analysis).

4. Discussion

In the joint model we utilised a data-fusion framework to combine co-registered dMRI
and histology data from the same tissue samples, acquired from three postmortem human
brains. This allowed us to test the validity of a brain-wide fibre response function as used in
CSD [16]. With the inclusion of histological data, we were able to constrain both the fibre
orientation and amount of dispersion within each MRI voxel, albeit in 2D. Consequently,
the joint model could overcome the degeneracy between fibre dispersion and radial diffusion
to estimate the FRF and FOD simultaneously on a voxel-by-voxel basis.

Using simulated data, we evaluated the model specificity and accuracy. For simulated
data of single-fibre populations, the joint model provided particularly robust estimates of
both orientation dispersion and radial diffusion for fibre populations in or close to the his-
tology plane (up to inclinations of 60◦), where the histological data was most informative.
However, in both simulation and post-mortem data the joint model was less effective at
reconstructing out-of-plane fibre populations. This was due to an inherent limitation of the
microscopy technique, where fibres oriented out of the plane aren’t readily detected in the
2D histological data. The bias of the model could be reduced if the microscopy was able to
reconstruct the FOD in 3D; 3D polarised light imaging developed by Axer et al. [37], or 3D
confocal microscopy from Schilling et al. [38, 23] being two examples of such techniques. In
addition, future work could take a more heuristic approach where the regularisation factor
λmicro could depend on fibre inclination, as a proxy of how informative the microscopy data
is of the 3D FOD.

In this joint model, the FRF was characterised by axial and radial diffusivities, which
appear to vary considerably across the human brain. Generally, both diffusivities seem to
follow a similar pattern of variation, with particularly low values of radial diffusivity found
in the corpus callosum. Contrary to the assumption of a brain-wide FRF in CSD, our results
demonstrate that the FRF is dependent on the local anatomy. This supports recent findings
by Schilling et al. who used 3D confocal microscopy to investigate FRF variation across
the brain of a squirrel monkey [23]. FRF variation is expected as tissue characteristics such
as axonal density, packing and myelination are unlikely to hold across the entire brain [20].
For example, areas of the corpus callosum have been reported to have only 30% myelination
[39] which would significantly impact the FRF; decreased myelination has been shown to
be associated with high radial diffusivity [40, 41, 42]. Indeed, characteristically different
fibres should each have their own unique FRF, although in practice this would be difficult
to model.

Not only does FRF variation challenge the assumption of the brain-wide FRF used in
CSD, but also implies that current analyses may be biasing the shape of their reconstructed
FODs throughout the brain. Indeed, in known regions of crossing fibres such as the centrum
semiovale, the joint model estimated distinct secondary fibre populations which were often
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Figure 11: Comparing the orientation of the primary FOD peak derived from both CSD and the joint model.
The peak orientation is described by an azimuth and an inclination angle which is defined with respect to
the histological plane (inclination = 0◦). In the joint model, any mis-registration of the dMRI and histology
data may result in a rotation of the peak azimuth. In addition, as histology is most informative of fibres
lying in or close to the histological plane, the joint model might favour FODs of low inclination angles. In
all 3 specimen there is a low angular deviation (a) between the CSD and joint model FOD peaks, with good
correlation between the azimuthal (b) and inclination (c) angles: the robust regression lines are close to
unity with r-values between 0.97-0.99.
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recognisable but not well defined in the CSD-derived FODs. Furthermore, the joint model
often estimated FODs of lower dispersion in single-fibre voxels, particularly across the corpus
callosum. Current algorithms which estimate the FRF directly from the data [17, 27, 27]
typically estimate the FRF from voxels in the corpus callosum which exhibit high fractional
anisotropy. However, even these voxels are unlikely to contain a perfectly coherent fibre
bundle. Indeed, recent studies of both histology [43], polarised light imaging and dMRI
data [10] have found significant levels of dispersion in the corpus callosum, particularly at
the midline [10]. To obtain accurate estimates of the FOD, both this study and that by
Schilling et al. [23] support the development of analyses which estimate a local rather than
global FRF. Both approaches are however limited as they require co-registered dMRI and
microscopy data in postmortem tissue samples. Building on the work by Lasič et al. [13]
and Szczepankiewicz et al. [14], Cottaar et al. combine linear and spherical tensor diffusion
encoding to overcome the degeneracy between fibre dispersion and diffusion anisotropy to
estimate both on a voxel-wise basis, with highly consistent results. Similar techniques could
provide exciting new avenues for local FRF estimation in in vivo data and more faithful
FOD reconstruction in spherical-deconvolution based analyses.

Multimodal datasets also present a number of challenges: one being that the microscopy
data is only representative of a subset of the tissue microstructure. Here the tissue sections
were stained to visualise the myelin content of the tissue, yet only pixels above a certain
staining intensity were recognised as myelinated fibres. Fibres that failed to meet the staining
threshold (perhaps those with with less myelin and typically lower diameter), and other cell
types (e.g. glia) may have therefore been underrepresented or omitted from the microscopy-
derived FOD. Secondly, as the histological stain was only sensitive to myelin, other cell
types (e.g. glia) were excluded from the microscopy FOD. If the unmyelinated axons or
glia both contributed to the diffusion signal and acted to increase the dispersion of the true
FOD, the FOD of the joint model would underestimate the amount of dispersion compared
to that of the true contributing microstructure. Nonetheless, as seen in Figure 9, the joint
model did not act to fit to the histological data perfectly. Indeed the joint model often
estimated a slightly higher degree of dispersion than prescribed by the histology and on
occasion assumed a substantially different FOD, if this was both driven and supported by
the dMRI data. This is a result of the histology acting as a soft constraint, rather than
fixing the fibre orientation and dispersion.

The postmortem dMRI data used here presents a second challenge. Although the data
provides high spatial resolution (0.4 mm isotropic), it has relatively low diffusion contrast.
This is likely due to the postmortem interval (time between death and fixation) and im-
mersion fixation of the human brains from which our samples were taken. It is most likely
that the meninges, specifically the pia mater and the components of the dura, were attached
during immersion fixation of the postmortem brains in this study. As the samples originated
from the centre of each brain, the uptake of fixative to this area will have been particularly
slow as fixative will have had to diffuse from the cortical surface to reach the callosum,
increasing the apparent postmortem interval. Prior to fixation, post-mortem tissue may
begin to decompose, wherein both the postmortem interval and fixation method have been
shown to change the diffusion properties of the tissue [44, 45]. This likely explains both the
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inter-specimen variation in estimated diffusivities and why the diffusivities reported here
are low when compared to in vivo data where, for comparison, the NODDI model assumes
daxial = 1.7 µm2/ms [46, 32]. It is important to note that the joint model generalises to any
dataset which includes dMRI alongside microscopy data from which we can estimate fibre
orientations. This encompasses existing dMRI and histology datasets [38, 47, 10], as well
as data from alternative microscopy techniques such as the mesoscopic fibre orientations
obtained from polarised light imaging [37, 8, 10]. As such, future work aims to apply the
CSD-based joint model to other datasets, of both human and monkey (perfusion-fixed at
death) brain tissue.

Finally, this report looks through the lens of a convolution-based joint model to detail
both the advantages and challenges of a dMRI and microscopy data-fusion framework. As
such, we recognise this model to be only one example of a joint modelling approach. The
microstructure model at the centre of the data-fusion framework can itself take a range of
forms, or be extended to increase both its complexity and specificity. For example, future
work will consider a multi-compartment model of the fibre response function, which distin-
guishes intra- from extra-axonal space, each characterised by a unique diffusion profile. In
this manner, we hope to disentangle which tissue compartment is driving the FRF variation
across the brain.

5. Conclusion

The joint model takes a data-fusion approach, combining dMRI and histology data from
the same tissue sample to investigate the diffusion properties of white matter under condi-
tions where multiple modalities are informative of the ‘true’ tissue microstructure. In the
model, histology acted as a soft constraint on both the fibre orientation and amount of
dispersion in each dMRI voxel. This allowed us to overcome the degeneracy between fibre
orientation dispersion and radial diffusion, to estimate the FOD and FRF on a voxel-by-
voxel basis. Our results demonstrate how the diffusion characteristics of a single fibre (here
characterised by axial and radial diffusivities) vary considerably across the brain. Notably,
the diffusivities were found to vary both between and within white-matter tracts; even in
the corpus callosum where the microstructure is typically considered fairly homogenous.
These findings contradict the assumption of a brain-wide FRF, currently used in many
deconvolution-based analyses. Finally, our results suggest that current diffusion models
may be overestimating dispersion in single-fibre voxels and underestimating the number of
distinct fibre populations in known regions of crossing fibres; both of which have important
implications for tractography [48].
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[14] F. Szczepankiewicz, S. Lasič, D. van Westen, P. C. Sundgren, E. Englund, C.-F. Westin, F. St̊ahlberg,
J. Lätt, D. Topgaard, M. Nilsson, Quantification of microscopic diffusion anisotropy disentangles effects
of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors,
NeuroImage 104 (2015) 241–252. doi:10.1016/j.neuroimage.2014.09.057.

[15] M. Cottaar, F. Szczepankiewicz, M. Bastiani, M. Hernandez-Fernandez, S. N. Sotiropoulos, M. Nilsson,
S. Jbabdi, T. Behrens, S. N. Sotiropoulos, S. Jbabdi, White matter structure modelled as a continuous
vector field, arXivarXiv:1901.05820.

[16] J. D. Tournier, F. Calamante, A. Connelly, Robust determination of the fibre orientation distribution in
diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution, NeuroImage 35 (4)
(2007) 1459–1472. doi:10.1016/j.neuroimage.2007.02.016.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2019. ; https://doi.org/10.1101/563809doi: bioRxiv preprint 

https://doi.org/10.1101/563809
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] C. M. Tax, B. Jeurissen, S. B. Vos, M. A. Viergever, A. Leemans, Recursive calibration of the fiber
response function for spherical deconvolution of diffusion MRI data, NeuroImage 86 (2014) 67–80.
doi:10.1016/j.neuroimage.2013.07.067.

[18] B. Jeurissen, J. D. Tournier, T. Dhollander, A. Connelly, J. Sijbers, Multi-tissue constrained spherical
deconvolution for improved analysis of multi-shell diffusion MRI data, NeuroImage 103 (2014) 411–426.
doi:10.1016/j.neuroimage.2014.07.061.

[19] T. Dhollander, D. Raffelt, A. Connelly, Unsupervised 3-tissue response function estimation from single-
shell or multi-shell diffusion MR data without a co-registered T1 image, in: ISMRM Workshop on
Breaking the Barriers of Diffusion MRI, 2016, p. 5.
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