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Abstract: Elucidating the wiring diagram of the 

human cell is a central goal of the post-genomic era. 
We combined genome engineering, confocal live-cell 
imaging, mass spectrometry and data science to sys-
tematically map the localization and interactions of 
human proteins. Our approach provides a data-driven 
description of the molecular and spatial networks that 
organize the proteome. Unsupervised clustering of 
these networks delineates functional communities 
that facilitate biological discovery, and uncovers that 
RNA-binding proteins form a specific sub-group de-
fined by unique interaction and localization proper-
ties. Furthermore, we discover that remarkably pre-
cise functional information can be derived from pro-
tein localization patterns, which often contain enough 
information to identify molecular interactions. Paired 
with a fully interactive website opencell.czbiohub.org, 
we provide a resource for the quantitative cartog-
raphy of human cellular organization. 

 
Sequencing the human genome has transformed cell bi-
ology by defining the protein parts list that forms the 
canvas of cellular operation (1, 2). This paves the way 
for elucidating how the ~20,000 proteins encoded in the 

genome organize in space and time to define the cell’s 
functional architecture (3, 4). Where does each protein 
localize within the cell? Can we comprehensively map 
how proteins assemble into larger functional commu-
nities? A main challenge to answering these fundamen-
tal questions is that cellular architecture is organized 
along multiple scales. Therefore, several approaches 
need to be combined for its elucidation (5). In a series 
of pioneering studies, human protein-protein interac-
tions have been mapped using ectopic expression strat-
egies with yeast two-hybrid (Y2H) (6) or epitope tag-
ging coupled to immunoprecipitation-mass spectrome-
try (IP-MS) (7, 8), while protein localization has been 
charted using immuno-fluorescence in fixed samples 
(9). A complementary approach is to directly modify 
genes in a genome by appending sequences that illumi-
nate specific aspects of the corresponding proteins’ 
function (commonly referred to as “endogenous tag-
ging” (10)). For example, endogenously tagging a gene 
with a fluorescent reporter enables to image protein 
sub-cellular localization in live cells, and supports 
functional characterization in a native cellular environ-
ment (10, 11). The use of endogenous tagging to study 
the organization of a eukaryotic cell is illustrated by 
seminal work in the budding yeast S. cerevisiae. There, 
libraries of tagged strains have enabled the 
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comprehensive mapping of protein localization and 
molecular interactions across the yeast proteome (12–
14). These libraries were made possible by the relative 
simplicity of homologous recombination and genome 
engineering in yeast (15). In human cells, earlier work 
has leveraged alternative strategies including expres-
sion from bacterial artificial chromosomes (16) or cen-
tral-dogma tagging (17) because of the difficulty of 
site-specific gene editing. CRISPR-mediated genome 
engineering now allows for homologous recombina-
tion-based endogenous tagging to be applied for the in-
terrogation of the human cell (10, 11, 18).  
 Here, we combine experimental and analytical 
strategies to create OpenCell, a proteomic map of hu-
man cellular architecture. We generated a library of 
1,310 CRISPR-edited HEK293T cell lines harboring 
fluorescent tags on individual proteins, which we char-
acterized by pairing confocal microscopy and mass 
spectrometry. Our dataset constitutes the most compre-
hensive live-cell image collection of human protein lo-
calization to date. In addition, integration of IP-MS us-
ing the fluorescent tags for affinity capture enables 
measurement of localization and interactions from the 
same samples. For a quantitative description of cellular 
architecture, we introduce a data-driven framework to 
represent protein interactions and localization features, 
supported by a new machine learning algorithm for im-
age encoding. This approach allows us to delineate 
communities of functionally related proteins by unsu-
pervised clustering and facilitates the generation of 
mechanistic hypotheses, including for proteins that had 
so far remained uncharacterized. We further demon-
strate that the localization pattern of each protein is de-
fined by unique and specific features that can be used 
for functional interpretation, to the point that spatial re-
lationships often contain enough information to predict 
interactions at the molecular scale. Finally, our analysis 
enables an unsupervised description of the human pro-
teome’s organization, and highlights in particular that 
RNA-binding proteins exhibit unique functional signa-
tures that shape the proteome’s network.  
 
 
Engineered cell library. Fluorescent protein (FP) fu-
sions are versatile tools that can measure both protein 
localization by microscopy and protein-protein 

interactions by acting as affinity handles for IP-MS (18, 
19) (Fig. S1A). Here, we constructed a library of fluo-
rescently tagged HEK293T cell lines by targeting hu-
man genes with the split-mNeonGreen2 system (20) 
(Fig. 1A). Split-FPs greatly simplify CRISPR-based 
genome engineering by circumventing the need for mo-
lecular cloning (18), and allowed us to generate endog-
enous genomic fusions (Fig. 1B) that preserve native 
expression regulation. A full description of our pipeline 
is available in the Methods section ((21) ; summarized 
in Fig. 1C through E). In brief, FP insertion sites (N- or 
C-terminus) were chosen on the basis of information 
from the literature or structural analysis (Fig. S1B; Ta-
ble S1). For each tagged target we isolated a polyclonal 
pool of CRISPR-edited cells, which was then charac-
terized by live-cell 3D confocal microscopy, IP-MS, 
and genotyping of tagged alleles by next-generation se-
quencing. Open-source software development and ad-
vances in instrumentation supported scalability (Fig. 
1C). In particular, we developed crispycrunch, a 
CRISPR design software that enables guide RNA se-
lection and homology donor sequence design 
(github.com/czbiohub/crispycrunch). We also fully au-
tomated the acquisition of data microscopy data in Py-
thon for on-the-fly computer vision and selection of de-
sirable fields of view imaged in 96-well plates 
(github.com/czbiohub/2021-opencell-microscopy-au-
tomation). Our mass-spectrometry protocols use the 
high sensitivity of timsTOF instruments (22) which al-
lowed miniaturization of IP-MS down to 0.8x106 cells 
of starting material (Fig. S1C; about a tenth of the ma-
terial required in previous approaches (7, 8)).  
 In total, we targeted 1757 genes, of which 1310 
(75%) could be detected by fluorescence imaging and 
form our current dataset (full library details in Table 
S1).  From these, we obtained paired IP-MS measure-
ments for 1260 targets (96%, Fig. 1D). The 1310-pro-
tein collection includes a balanced representation of the 
pathways, compartments and functions of the human 
proteome (Fig. S1D), with the exception of processes 
specific to mitochondria, organellar lumen or extracel-
lular matrix. Indeed, the split-FP system tags a gene of 
interest with a short sequence (mNG11) while a larger 
FP fragment (mNG21-10) is expressed separately (Fig. 
1A). In the version used here, the mNG21-10 fragment 
is expressed in the nucleo-cytoplasm and prevents 
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access to proteins inside organellar compartments. 
Membrane proteins can be tagged as long as one termi-
nus extends in the nucleo-cytoplasm. In future itera-
tions, other split systems that contain compartment-
specific signal sequences could be used to target orga-
nellar lumen (23).  

Fluorescent tagging was readily successful for 
essential genes, suggesting that FP fusions are well tol-
erated (Fig. S2A). To evaluate other factors contrib-
uting to successful fluorescent detection, we measured 
RNA and protein concentration in HEK293T cells (Fig. 
S2B; using a 24-fraction scheme for deep proteome 
quantification; see fully annotated proteome in Table 
S2). This revealed that protein abundance is the main 
limitation to detection (Fig. 1D, S2C; see details for un-
successful targets in Table S3); most successful targets 
are among the top 50% most abundant (Fig. S2D). 
Gene-editing efficiency was another important factor: 
among well-expressed targets, failure was correlated 
with significantly lower rates of homologous recombi-
nation (Fig. S2E), which would impair the selection of 
edited cells by fluorescence-activated cell sorting 
(FACS). Training a regression model revealed that the 
combination of protein abundance and editing effi-
ciency could predict successful detection with 82% ac-
curacy. 

To maximize throughput, we used a polyclonal 
strategy to select genome-edited cells by FACS. Poly-
clonal pools contain cells with distinct genotypes. 
HEK293T are pseudo-triploid (24) and a single edited 
allele is sufficient to confer fluorescence. Moreover, 
various DNA repair mechanisms compete with homol-
ogous recombination for the resolution of CRISPR-in-
duced genomic breaks (25) so that alleles containing 
non-functional mutations can be present in addition to 
the desired fusion alleles. However, such alleles do not 
support fluorescence and are therefore unlikely to im-
pact other measurements, especially in the context of a 
polyclonal pool. We developed a stringent selection 
scheme to significantly enrich for fluorescent fusion al-
leles (Fig. S3A). Our final cell library has a median 
61% of mNeonGreen-integrated alleles, 5% wild-type 
and 26% other non-functional alleles (Fig. S3B, full 
genotype information in Table S1).  

Finally, we verified that our engineering ap-
proach maintained the endogenous abundance of the 

tagged target proteins. For this, we quantified protein 
expression by Western blotting using antibodies spe-
cific to proteins targeted in 12 different cell pools (Fig. 
S3C), and by single-shot mass spectrometry in 63 
tagged lines (Fig. S3D). Both approaches revealed a 
median abundance of tagged targets in engineered lines 
at about 80% of untagged HEK293T control, with 5 
outliers (8% of total) identified by proteomics (Fig. 
S3D, all within 3.5-fold of control). Importantly, the 
overall proteome composition was unchanged in all 
tagged lines (Fig. S3E-F). Overall, our gene-editing 
strategy preserves near-endogenous abundances and 
circumvents the limitations of ectopic overexpression 
(11, 26, 27), which include aberrant localization, 
changes in organellar morphology, and masking effects 
(see the examples of SPTLC1, TOMM20 and 
MAP1LC3B in Fig. S3G). Therefore, OpenCell sup-
ports the functional profiling of tagged proteins in their 
native cellular context. 

Interactome analysis and stoichiometry-driven 
clustering. Affinity enrichment coupled to mass spec-
trometry is an efficient and sensitive method for the 
systematic mapping of protein interaction networks 
(28). We isolated tagged proteins (“baits”) from cell ly-
sates solubilized in digitonin, a mild non-ionic deter-
gent that preserves the native structure and properties 
of membrane proteins (29). Specific protein interactors 
(“preys”) were identified by proteomics from biologi-
cal triplicate experiments (see Figure S4A-B and (21) 
for a detailed description of our statistical analysis, 
which builds upon established methods (7)). In total, 
the full interactome from our 1260 OpenCell baits in-
cludes 29,922 interactions between 5292 proteins (baits 
and preys, Fig. 2A, full interactome data in Table S4).  
To assess the quality of our interactome, we estimated 
its precision (the fraction of true positive interactions 
over all interactions) and recall (the fraction of interac-
tions identified compared to a ground truth set) using 
reference data (Fig. S4B). For recall analysis, we quan-
tified the coverage in our data of interactions included 
in CORUM (30), a compendium of protein interactions 
manually curated from the literature. To estimate pre-
cision, we quantified how many of our interactions in-
volved protein pairs expected to localize to the same 
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broad cellular compartment (31) (Fig. S4B). To bench-
mark OpenCell against other large-scale interactomes, 
we compared its precision and recall to Bioplex (over-
expression of HA-tagged baits (8, 32)), the yeast-two-
hybrid human reference interactome (HuRI (6)) and 
our own previous data (GFP fusions expressed from 
bacterial artificial chromosomes (7)) (Fig. S4C-E). We 
also calculated compression rates for each dataset as a 
measure of the overall richness in network patterns and 
motifs distinguishable from noise, which correlates 
with overall network quality: real-world networks con-
tain redundant information which can be compressed, 
while pure noise is not compressible (see (33)) (Fig. 
S4F). Across all metrics, OpenCell outperformed pre-
vious approaches. OpenCell also includes many inter-
actions not reported in previous datasets (Fig. S4E,G). 
Our interactome may better reflect biological interac-
tions because it preserves near-endogenous protein ex-
pression.  
 A powerful way to interpret interactomes is to 
identify communities of interactors (8, 13). To this end, 
we applied unsupervised Markov clustering (MCL) 
(34) to the graph of interactions defined by our data 
(5292 baits and preys). We first measured the stoichi-
ometry of each interaction, using a quantitative ap-
proach we previously established (7). Interaction stoi-
chiometry measures the abundance of a protein interac-
tor relative to the abundance of the bait in a given im-
muno-precipitation sample. We have shown that stoi-
chiometry can be interpreted as a proxy for interaction 
strength, and that interactions can be classified between 
core (i.e. high) and low stoichiometries (7). In our cur-
rent data, both high- and low-stoichiometry interac-
tions were significantly enriched for proteins pairs 
sharing gene ontology annotations (Fig. S4H). Using 
stoichiometry to assign weights to the edges in the in-
teraction graph (Fig. 2B), a first round of MCL deline-
ated inter-connected protein communities and led to 
better clustering performance than clustering based on 
connectivity alone (Fig. S4I). To better delineate stable 
complexes, we further refined each individual MCL 
community by additional clustering while removing 
low-stoichiometry interactions. The resulting sub-clus-
ters outline core interactions within existing communi-
ties (Fig. 2B). Figure 2C illustrates how this unsuper-
vised approach enables to delineate functionally related 

proteins: all subunits of the machinery responsible for 
the translocation of newly translated proteins at the ER 
membrane (SEC61/62/63) and of the EMC (ER Mem-
brane Complex) are grouped within respective core in-
teraction clusters, but both are part of the same larger 
MCL community. This mirrors the recently appreciated 
co-translational role of EMC for insertion of transmem-
brane domains at the ER (35). Additional proteins that 
have only recently been shown to act co-translationally 
are found clustering with translocon or EMC subunits, 
including ERN1 (IRE1) (36) and CCDC47 (37, 38). 
Thus, clustering can facilitate mechanistic exploration 
by grouping proteins involved in related pathways. 
Overall, we identified 300 communities including a to-
tal of 2096 baits and preys (full details in Table S4). 
Ontology analysis revealed that these communities are 
significantly enriched for specific cellular functions, 
supporting their biological relevance (82% of all com-
munities are significantly enriched for specific biolog-
ical process or molecular function GO ontology terms; 
see Table S5 for complete analysis). A graph of inter-
actions between communities reveals a richly inter-
connected network (Fig. 2D), the structure of which 
outlines the global architecture of the human interac-
tome (discussed further below).   
 A direct application of interactome clustering is 
to help elucidate the cellular roles of the many human 
proteins that remain poorly characterized (39). We 
identified poorly characterized proteins by quantifying 
their occurrence in article titles and abstracts from Pub-
Med (Fig. 2E). Empirically, we determined that pro-
teins in the bottom 10th percentile of publication count 
(corresponding to less than 10 publications) are very 
poorly annotated (Fig. 2E). This set encompasses a to-
tal of 251 proteins found in interaction communities for 
which our dataset offers potential mechanistic insights. 
For example, the proteins NHSL1, NHSL2 and 
KIAA1522 are all found as part of a community cen-
tered around SCAR/WAVE, a large multi-subunit 
complex nucleating actin polymerization (Fig. 2F). All 
three proteins share sequence homology and are ho-
mologous to NHS (Fig. S5A), a protein mutated in pa-
tients with Nance-Horan syndrome. NHS interacts with 
SCAR/WAVE components to coordinate actin remod-
eling (40). Thus, NHSL1, NHSL2 and KIAA1522 also 
act to regulate actin assembly. A recent mechanistic 
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study supports this hypothesis: NHSL1 localizes at the 
cell’s leading edge and directly binds SCAR/WAVE to 
negatively regulate its activity, reducing F-actin con-
tent in lamellipodia and inhibiting cell migration (41). 
The authors identified NHSL1’s SCAR/WAVE bind-
ing sites, and we find these sequences to be conserved 
in NSHL2 and KIA1522 (Fig. 2F). Therefore, our data 
suggests that both NHSL2 and KIAA1522 are also di-
rect SCAR/WAVE binders and possible modulators of 
the actin cytoskeleton.  
 Our data also sheds light on the function of 
ROGDI, whose variants cause Kohlschuetter-Toenz 
syndrome (a recessive developmental disease charac-
terized by epilepsy and psychomotor regression (42)). 
ROGDI appears in the literature because of its associa-
tion with disease, but no study, to our knowledge, spe-
cifically determines its molecular function. We first ob-
served that ROGDI’s interaction pattern closely 
matched that of three other proteins in our dataset: 
DMXL1, DMXL2 and WDR7 (Fig. 2G). This set ex-
hibited a specific interaction signature with the v-
ATPase lysosomal proton pump. All four proteins in-
teract with soluble v-ATPase subunits (ATP6-V1), but 
not its intra-membrane machinery (ATP6-V0). 
DMXL1 and WDR7 interact with V1 v-ATPase, and 
their depletion in cells compromises lysosomal re-acid-
ification (43). Sequence analysis showed that DMXL1 
or 2, WDR7 and ROGDI are homologous to proteins 
from yeast and Drosophila involved in the regulation of 
assembly of the soluble V1 subunits onto the V0 trans-
membrane ATPase core (44, 45) (Fig. S5B). In yeast, 
Rav1 and Rav2 (homologous to DMXL1/2 and 
ROGDI, respectively) form the stoichiometric RAVE 
complex, a soluble chaperone that regulates v-ATPase 
assembly (45). To assess the existence of a human 
RAVE-like complex, we generated new tagged cell 
lines for DMXL1 and 2, WDR7, and ROGDI. Because 
of the low abundance of these proteins, the localization 
of DMXL2 and ROGDI were not detectable but pull-
downs of DMXL1 and WDR7 confirmed a stoichio-
metric interaction between DMXL1 and 2, WDR7 and 
ROGDI (Fig. 2G, right panels). No direct interaction 
between DXML1 and DMXL2 was detected, suggest-
ing that they might nucleate two separate sub-com-
plexes. Therefore, our data reveals a human RAVE-like 
complex comprising DMXL1 or 2, WDR7 and 

ROGDI, which we propose acts as a chaperone for v-
ATPase assembly based on its yeast homolog. Alto-
gether, these results illustrate how our data can facili-
tate the generation of new mechanistic hypotheses by 
combining quantitative analysis and literature curation. 
 
 
Image dataset: localization annotation and self-su-
pervised machine learning. A key advantage of our 
cell engineering approach is to enable the characteriza-
tion of each tagged protein in live, unperturbed cells. 
To profile localization, we performed spinning-disk 
confocal fluorescence microscopy (63x 1.47NA objec-
tive) under environmental control (37°C, 5% CO2), and 
imaged the 3D distribution of proteins in consecutive 
z-slices. Microscopy acquisition was fully automated 
in Python to enable scalability (Fig. S6A-B). In partic-
ular, we trained a computer vision model to identify 
fields of view (FOVs) with homogeneous cell density 
on-the-fly, which reduced experimental variation be-
tween images. Our dataset contains a collection of 6375 
3D stacks (5 different FOVs for each target) and in-
cludes paired imaging of nuclei with live-cell Hoechst 
33342 staining.  
 We manually annotated localization patterns by 
assigning each protein to one or more of 15 separate 
cellular compartments such as the nucleolus, centro-
some or Golgi apparatus (Fig. 3A). Because proteins 
often populate multiple compartments at steady-state 
(9), we graded annotations using a three-tier system: 
grade 3 identifies prominent localization compart-
ment(s), grade 2 represents less pronounced localiza-
tions, and grade 1 annotates weak localization patterns 
nearing our limit of detection (see Fig. S7A for two rep-
resentative examples, full annotations in Table S6). Ig-
noring grade 1 annotations which are inherently less 
precise, 55% of proteins in our library were detected in 
multiple locations consistent with known functional re-
lationships. for example, clear connections were ob-
served between secretory compartments (ER, Golgi, 
vesicles, plasma membrane), or between cytoskeleton 
and plasma membrane (Fig. S7B, Table S6)). Many 
proteins are found in both nucleus and cytoplasm (21% 
of our library), highlighting the importance of the nu-
cleo-cytoplasmic import and export machinery in shap-
ing global cellular function (46, 47). Importantly, 
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because our split-FP system does not enable the detec-
tion of proteins in the lumen of organelles, multi-local-
ization involving translocation across an organellar 
membrane (which is rare but does happen for mito-
chondrial or peroxisomal proteins) cannot be detected 
in our data.  
 To benchmark our dataset, we compared our lo-
calization annotations against the Human Protein Atlas 
(HPA), the reference antibody-based compendium of 
human protein localization (9). This revealed signifi-
cant agreement between datasets: 75% of proteins 
share at least one localization annotation in common 
(Fig. 3B; this includes 25% of all proteins that share the 
exact same set of annotations, see full description in 
Table S7A). Because HPA mostly reports on cell lines 
other than HEK293T, a perfect overlap is not expected 
as proteins might differentially localize between related 
compartments in different cell types. However, the an-
notations for 147 proteins (11% of our data) were fully 
inconsistent between the two datasets (Fig. S7C). An 
extensive curation of the literature on the localization 
of those proteins allowed us to resolve discrepancies 
for 115 proteins (i.e., 78% of that set; full curation in 
Table S8). Of these, existing literature evidence sup-
ported the OpenCell results for 113 (98.3%) of the 115 
cases (Fig. S7D). This validates that endogenous tag-
ging can help refine the curation of localization in the 
human proteome. Finally, our dataset includes 350 tar-
gets that have orthologs in S. cerevisiae. Comparison 
between OpenCell and yeast localization annotations 
(48) revealed a high degree of concordance (Fig. S7E; 
Table S7B; 81% of proteins share at least one annota-
tion in common, including 36% perfect matches).   
 While expert annotation remains the best per-
forming strategy to curate protein localization (49, 50), 
the low-dimensional description it allows is not well 
suited for quantitative comparisons. Recent develop-
ments in image analysis and machine learning offer 
new opportunities to extract high-dimensional features 
from microscopy images (50, 51). Therefore, we devel-
oped a deep learning model to quantitatively represent 
the localization pattern of each protein in our dataset 
(52). Briefly, our model is a variant of an autoencoder 
(Fig. 3C): a form of neural network that learns to vec-
torize an image through paired tasks of encoding (from 
an input image to a vector in a latent space) and 

decoding (from the latent space vector to a new output 
image). After training, a consensus representation for a 
given protein can be obtained from the average of the 
encodings from all its associated images. This gener-
ates a high-dimensional “localization encoding” (Fig. 
3C) that captures the complex set of features that define 
the spatial distribution of a protein at steady state and 
across many individual cells. One of the main ad-
vantages of this approach is that it is self-supervised. 
Therefore, as opposed to supervised machine learning 
strategies that are trained to recognize pre-annotated 
patterns (for example, manual annotations of protein 
localization (50)), our method extracts localization sig-
natures from raw images without any a priori assump-
tions or manually assigned labels. To visualize the re-
lationships between these high-dimensional encodings, 
we embedded the encodings for all 1,310 OpenCell tar-
gets in two dimensions using UMAP, an algorithm that 
reduces high-dimensional datasets to two dimensions 
(UMAP 1 and UMAP 2) while attempting to preserve 
the global and local structures of the original data (53). 
The resulting map is organized in distinct territories 
that closely match manual annotations (Fig. 3D, high-
lighting mono-localizing proteins). This validates that 
the encoding approach yields a quantitative representa-
tion of the biologically relevant information in our mi-
croscopy data. The separation of different protein clus-
ters in the UMAP embedding (further discussed below) 
mirrors the fascinating diversity of localization patterns 
across the full proteome. Images from nuclear proteins 
offer compelling illustrative examples of this diversity 
and reveal how fine-scale details can define the locali-
zation of proteins within the same organelle (Fig. 3E).  
 
 
Functional specificity of protein localization in the 
human cell. Extracting functional insights directly 
from cellular images is a major goal of modern cell bi-
ology and data science (54). In this context, our image 
library and associated machine learning encodings en-
able us to explore what degree of functional relation-
ship can be inferred between proteins solely based on 
their localization. For this, we first employed an unsu-
pervised Leiden clustering strategy commonly used to 
identify cell types in single-cell RNA sequencing da-
tasets (55). Clusters group proteins that share similar 
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localization properties (every protein in the dataset is 
included in a cluster); these groups can then be ana-
lyzed for how well they match different sets of ground-
truth annotations (Fig. 4A). The average size of clusters 
is controlled by varying a hyper-parameter called reso-
lution (Fig. S8A). Systematically varying clustering 
resolution in our dataset revealed that not only did low-
resolution clusters delineate proteins belonging to the 
same organelles (Fig. 4A-B), clustering at higher reso-
lution also enabled to delineate functional pathways 
and even molecular complexes of interacting proteins 
(Fig. 4A-C). This demonstrates that the spatial distri-
bution of each protein in the cell is highly specific, to 
the point that proteins sharing closely related functions 
can be identified on the sole basis of the similarity be-
tween their spatial distributions. This is further illus-
trated by how finely high-resolution clusters encapsu-
late proteins specialized in defined cellular functions 
(Fig. 4C). For example, our analysis not only separated 
P-body proteins (cluster #83) from other forms of punc-
tated cytoplasmic structures, but also unambiguously 
differentiated vesicular trafficking pathways despite 
their very similar localization patterns: the endosomal 
machinery (#40), plasma membrane endocytic pits 
(#117) or COP-II vesicles (#143) were all delineated 
with high precision (Fig. 4C). Among ER proteins, the 
translocon clusters with the SRP receptor, EMC subu-
nits and the OST glycosylation complex, all responsi-
ble for co-translational operations (#9). This perfor-
mance extends to cytoplasmic (Fig. S8A) and nuclear 
clusters (Fig. S8B), revealing that spatial patterning is 
not limited to membrane-bound organelles and that 
sub-compartments exist also in the nucleo-cytoplasm. 
An illustrative example is a cytoplasmic cluster (#17) 
formed by a group of RNA-binding proteins (including 
ATXN2L, NUFIP2 or FXR1, Fig. 4C) that separate 
into granules upon stress conditions (56–59). Stress 
granules are not formed under the standard growth con-
ditions used in our experiments, but the ability of our 
analysis to cluster these proteins together reveals an un-
derlying specificity to their cytoplasmic localization 
(i.e., “texture”) even in the absence of stress.  
 A direct comparison between imaging and in-
teractome data allows us to further examine the extent 
to which molecular-level relationships (that is, protein 
interactions) can be derived from a comparison of 

localization patterns. For OpenCell targets that directly 
interact, we compared the correlation between their lo-
calization encodings derived from machine learning 
(defining a “localization similarity”) and the stoichiom-
etry of their interaction. This “localization similarity” 
measures the similarity between the global steady-state 
distributions of two proteins, as opposed to a direct 
measure of co-localization. We find that most proteins 
interact with low stoichiometry (as we previously de-
scribed (7)) and without strong similarities in their spa-
tial distribution (Fig 4D, solid oval). This means that 
while low-stoichiometry interactors co-localize at least 
partially to interact, their global distribution within the 
cell is different at steady state. On the other hand, high 
stoichiometry interactors share very similar localiza-
tion signatures (Fig 4D, dashed oval). Indeed, proteins 
interacting within stable complexes annotated in 
CORUM fall into this category (Fig 4E), and the local-
ization signatures of different subunits from large com-
plexes are positioned very closely in UMAP embed-
ding (Fig. 4F). In an important correlate, we found that 
a high similarity of spatial distribution is a strong pre-
dictor of molecular interaction. Across the entire set of 
target pairs (predicted to interact or not), proteins that 
share high localization similarities are also very likely 
to interact (Fig. 4G). For example, target pairs with a 
localization similarity greater than 0.85 have a 58% 
chance of being direct interactors, and a 68% chance of 
being second-neighbors (i.e., sharing a direct interactor 
in common). This suggests that protein-protein interac-
tions could be identified from a quantitative compari-
son of spatial distribution alone. To test this, we fo-
cused on FAM241A (C4orf32), a protein of unknown 
function that was not part of our original library and 
asked whether we could predict its interactions using 
imaging data alone, compared to the classical de-or-
phaning approach that uses interaction proteomics. We 
thus generated a FAM241A endogenous fusion that 
was analyzed with live imaging and IP-MS separately. 
Encoding its localization pattern using a “naïve” ma-
chine learning model that was never trained with im-
ages of this new target revealed a very high localization 
similarity with two subunits of the ER oligo-saccharyl 
transferase OST (>0.85 similarity to STT3B and 
OSTC), and high-resolution Leiden clustering placed 
FAM241A in an image cluster containing only OST 
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subunits (Fig 4H, top). This analysis suggested that 
FAM241A is a high-stoichiometry interactor of OST. 
IP-MS identified that FAM241A was indeed a stoichi-
ometric subunit of the OST complex (Fig. 4H, bottom). 
While the specific function of FAM241A in protein 
glycosylation remains to be fully elucidated, this proof-
of-concept example establishes that live-cell imaging 
can be used as a specific readout to predict molecular 
interactions.  
 Collectively, our analyses establish that the spa-
tial distribution of a given protein contains highly spe-
cific information from which precise functional attrib-
utes can be extracted by modern machine learning al-
gorithms. In addition, we show that while high-stoichi-
ometry interactors share very similar localization pat-
terns, most proteins interact with low stoichiometry and 
share different localization signatures. This reinforces 
the importance of low-stoichiometry interactions for 
defining the overall structure of the cellular network, 
not only providing the “glue” that holds the interactome 
network together (7) but also connecting different cel-
lular compartments. 
 
 
RNA-binding proteins form a unique group in both 
interactome and spatial networks. To gain insight 
into global signatures that organize the proteome, we 
further examined the structures of our imaging and in-
teractome datasets. First, we reduced the dimensional-
ity of each dataset by grouping proteins into their re-
spective spatial clusters (as defined by the high-resolu-
tion localization-based clusters in Figs. 4A, 4C) or in-
teraction communities (as defined in Fig. 2B). We then 
separately clustered these spatial groups (Fig. S9A) and 
interaction communities (Fig. S9B) to formalize paired 
hierarchical descriptions of the human proteome organ-
ization. These hierarchies are highly structured and de-
lineate clear groups of proteins (see comparison to hi-
erarchies expected by chance, Fig. S9C). In both hier-
archies, groups isolated at an intermediate hierarchical 
layer outline “modules” which are enriched for specific 
cellular functions or compartments (Fig. S9A-B; full 
ontology analysis in Suppl. Tables 5 & 9). At a higher 
layer, each dataset is partitioned into three “branches”, 
which represent core signatures that shape the prote-
ome’s architecture from a molecular or spatial 

perspective (Fig. S9A-B). The structure of the localiza-
tion-based hierarchy (Fig. S9A) recapitulates the hu-
man cell’s architecture across its three key compart-
ments (nucleus, cytoplasm, membrane-bound orga-
nelles, Fig. S10A-B), which validates the relevance of 
our unsupervised hierarchical analysis. This motivated 
a deeper examination of the hierarchical architecture of 
the interactome (Fig. S9B, ontology analysis in Table 
S5). We found that intermediate-layer modules of the 
interactome delineate specific cellular functions such 
as transcription or vesicular transport (Fig. S9B), re-
flecting as expected that functional pathways are 
formed by groups of proteins that physically interact 
(60, 61). More strikingly, the highest-layer structure 
showed that two of the three interactome branches were 
defined by clear functional signatures (Fig. S10C-E): 
branch B is significantly enriched in proteins that reside 
in or interact with lipid membranes, while branch C is 
significantly enriched in RNA-binding proteins (RNA-
BPs) (Fig. 5B). This indicates that both membrane-re-
lated proteins and RNA-BPs interact more preferen-
tially with each other than with other kinds of proteins 
in the cell.  
 That membrane-related proteins form a specific 
interaction group is perhaps not surprising as the mem-
brane surfaces that sequester them within the three-di-
mensional cell will be partially maintained upon deter-
gent solubilization. On the other hand, the fact that 
RNA-BPs also form a specific interaction group is un-
expected, since our protein interactions were measured 
in nuclease-treated samples (21) in which most RNAs 
are degraded. This suggests that protein features be-
yond binding to RNAs themselves might drive the pref-
erential interactions of RNA-BPs with each other. 
Therefore, we reasoned that the biophysical properties 
of proteins within each interactome branch might un-
derly their segregation. Indeed, an analysis of protein 
sequence features revealed a separation of different bi-
ophysical properties in each branch (Fig. S10F-G). 
Branch B was enriched for hydrophobic sequences 
(Fig. 5C), consistent with its enrichment for mem-
brane-related proteins, while branch C was enriched for 
intrinsic disorder (Fig. 5C). This is consistent with the 
fact that RNA-BPs are significantly more disordered 
than other proteins in the proteome (Fig. S11A, (62)). 
RNA-BPs are also among the most abundant in the cell 
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(Fig. S11B), and form a higher number of interactions 
than other proteins (Fig. S11C-D).  
 IP-MS measures protein interactions in vitro af-
ter lysis and therefore does not directly address the spa-
tial relationship between interacting proteins. Thus, we 
sought to further examine how RNA-BPs distribute in 
our live-cell imaging data. If RNA-BPs segregate into 
interacting groups in vivo, this should also manifest at 
the level of their intracellular localization: they should 
enrich in the same spatial clusters derived from our un-
supervised machine learning analysis. Indeed, the dis-
tribution of RNA-BP content within spatial clusters re-
vealed a significant over-representation of clusters that 
are either strongly enriched or depleted for RNA-BPs 
(Fig. 5D). Since spatial clusters can be interpreted as 
defining “micro-compartments” within the cell, both 
enrichment and depletion have functional implications: 
not only are RNA-BPs enriched within the same micro-
compartments, they tend to also be excluded from oth-
ers. 16 out of the 26 spatial clusters (62%) that are 
highly enriched in RNA-BPs include at least one pro-
tein involved in biomolecular condensation (as curated 
in PhaSepDB (63)), which might reflect a prevalent 
role for biomolecular condensation in shaping the 
RNA-BP proteome. Collectively, both interactome and 
imaging data underscore that RNA-BPs (a prevalent 
group of proteins that represents 13% of proteins ex-
pressed in HEK293T cells, see Table S2) form a dis-
tinct sub-group within the proteome characterized by 
unique properties.   
 These results motivated a broader analysis of 
the contribution of intrinsic disorder to the spatial or-
ganization of the proteome in our dataset. Plotting the 
distribution of mean intrinsic disorder within spatial 
clusters revealed a significant over-representation of 
clusters both enriched and depleted in disordered pro-
teins (Fig. 5E). 26 out of 182 total spatial clusters were 
enriched for disordered proteins, covering 13% of the 
proteins in our imaging dataset. Overall, the extent to 
which disordered proteins segregate spatially is similar 
to the degree of segregation found for hydrophobic pro-
teins: an analogous analysis revealed that 10% of pro-
teins in our dataset are found within clusters signifi-
cantly enriched for high hydrophobicity (Fig. S12E), 
which map to membrane-bound organelles (Fig. S12F). 
This supports the hypothesis that intrinsic disorder is as 

important a feature as hydrophobicity in organizing the 
spatial distribution of the human proteome. Consistent 
with our previous analysis, high-disorder clusters were 
enriched for RNA-BPs (Fig. 5F), with 15 out of these 
26 clusters containing over 50% of RNA-BPs. High-
disorder clusters were also enriched for proteins anno-
tated to participate in biomolecular condensation (Fig. 
5G), and were predominantly found in the nucleus (19 
clusters, 73% of total, Fig. 5H). 5 out of 7 high-disor-
ders clusters found in the cytosol delineate compart-
ments for which biomolecular condensation has been 
proposed to play an important role (Fig. 5G), namely 
P-bodies (64), stress granules (59), centrosome (65), 
cell junctions (66) and the interface between cell sur-
face and actin cytoskeleton (67).  
 
 
Interactive data sharing at opencell.czbiohub.org 
To enable widespread access to the OpenCell datasets, 
we built an interactive web application that provides 
side-by-side visualizations of the 3D confocal images 
and of the interaction network for each tagged protein, 
together with RNA and protein abundances for the 
whole proteome (Fig. 6). Our web interface is fully de-
scribed in Suppl. Fig S12.  
 
Discussion 
 
OpenCell combines three strategies to augment the de-
scription of human cellular architecture. First, we pre-
sent an integrated experimental pipeline for high-
throughput cell biology, fueled by scalable methods for 
genome engineering, live-cell microscopy and IP-MS. 
Second, we provide an open-source resource of well-
curated localization and interactome measurements, 
easily accessible through an interactive web interface 
at opencell.czbiohub.org. And third, we developed an 
analytical framework for the representation and com-
parison of interaction or localization signatures (includ-
ing a self-supervised machine learning approach for 
image encoding). Finally, we demonstrate how our da-
taset can be used both for fine-grained mechanistic ex-
ploration (to explore the function of multiple proteins 
that were previously uncharacterized), as well as for in-
vestigating the core organizational principles of the 
proteome.  
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 Our current strategy that combines split-FPs 
and HEK293T – a cell line that is heavily transformed 
but easily manipulatable – is mostly constrained by 
scalability considerations. Excitingly, technological 
advances are quickly broadening the set of cellular sys-
tems that can be engineered and profiled at scale. Ad-
vances in stem cell technologies enable the generation 
of libraries that can be differentiated in multiple cell 
types (11), while innovations in genome engineering 
(for example, by modulating DNA repair (68)) pave the 
way for the scalable insertion of gene-sized payload, 
for the combination of multiple edits in the same cell, 
or for increased homozygosity in polyclonal pools. In 
addition, recent developments in high-throughput 
light-sheet microscopy (69) might soon enable the sys-
tematic description of 4D intracellular dynamics (70). 
 A central feature of our approach is to use en-
dogenous fluorescent tags to study protein function. 
Genome-edited cells enable to examine protein func-
tion at near-native expression levels (which can cir-
cumvent some limitations of over-expression (71)), and 
to measure protein localization in live cells (which can 
avoid artefacts caused by fixation or antibody labeling 
(72)). Comparing our data to the current reference da-
tasets of protein-proteins interactions (Fig. S4C-F) or 
localization (Fig. S7C-D) highlights the performance 
of our strategy. In addition, our high success rate tag-
ging essential genes (Fig. S2A; see also (73) in yeast) 
and the successful tagging of the near-complete yeast 
proteome (14, 73) support that fluorescent tagging gen-
erally preserves normal protein physiology. However, 
limitations exist for specific protein targets. FPs are as 
big as an average human protein and their insertion can 
impair function or localization, for example by occlud-
ing important interaction interfaces or impairing sub-
cellular targeting sequences. In other cases, tags can af-
fect expression or degradation rates, which might ex-
plain why we find tagged proteins being expressed at 
80% of their endogenous abundance, and 8% of targets 
in our dataset having outlier abundances at steady-state 
(Fig. S3D). Further, tagging often cannot discriminate 
between different isoforms of a protein (such as splic-
ing or post-translationally modified variants). Finally, 
relying on endogenous expression can be an obstacle 
given the low concentration of most proteins in the hu-
man cell: even using a very bright FP like mNeonGreen 

(74), detecting proteins in the bottom 50% percentile of 
abundance is difficult (Fig. S2D). Solutions to this ob-
stacle include using FP repeats to increase signal (18, 
23) or using tags that bind chemical fluorophores (e.g., 
HaloTag (75)), which can be brighter than FPs or oper-
ate at wavelengths where cellular auto-fluorescence is 
decreased (76). Overall, the full description of human 
cellular architecture remains a formidable challenge 
which will require complementary methods being ap-
plied in parallel. The diversity of large-scale cell biol-
ogy approaches is a solution to this problem (6, 8, 9, 
11, 31, 70, 77–80). Mirroring the advances in genomics 
following the human genome sequence (2), open-
source systematic datasets will likely play an important 
role in how the growth of cell biology measurements 
can be transformed into fundamental discoveries by an 
entire community (81). 
 In addition to presenting a resource of measure-
ments and protocols, we also demonstrate how our data 
can be used to study the global signatures that pattern 
the proteome. Our analysis reveals that RNA-binding 
proteins, which form one of the biggest functional fam-
ily in the cell, are characterized by a unique set of prop-
erties and segregate from other proteins in term of both 
interactions and spatial distribution. It would be fasci-
nating to explore to which extent RNA itself might act 
as a structural organizer of the cellular proteome (62, 
82). This is for example the case for some non-coding 
RNAs whose main function is to template protein in-
teractions to form nuclear bodies (83). High intrinsic 
disorder is one of the distinguishing features of RNA-
BPs, which likely contributes to their unique proper-
ties. Beyond RNA-BPs, our data supports a general role 
for intrinsic disorder in shaping the spatial distribution 
of human proteins. For example, 13% of proteins in our 
dataset are found in spatial clusters that are signifi-
cantly enriched for disordered proteins. This adds to the 
growing appreciation that intrinsic disorder, which is 
much more prevalent in eukaryotic vs. prokaryotic pro-
teomes (84, 85),  plays a key role in the functional sub-
compartmentalization of the eukaryotic nucleo- and cy-
toplasm in the context of biomolecular condensation 
(86).  
 Lastly, we show that the spatial distribution of 
each human protein is very specific, to the point that 
remarkably detailed functional relationships can be 
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inferred on the sole basis of similarities between local-
ization patterns – including the prediction of molecular 
interactions (which complements other studies (87)). 
This highlights that intracellular organization is defined 
by fine-grained features that go beyond membership to 
a given organelle. Our demonstration that self-super-
vised deep learning models can identify complex but 
deterministic signatures from light microscopy images 
opens exciting avenues for the use of imaging as an in-
formation-rich method for deep phenotyping and func-
tional genomics (51). Because light microscopy is eas-
ily scalable, can be performed live and enables meas-
urements at the single-cell level, this should offer rich 
opportunities for the full quantitative description of cel-
lular diversity in normal physiology and disease. 
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Figure 1: the OpenCell library. (A) Functional tagging with split-mNeonGreen2. In this system, mNeonGreen2 is sepa-
rated into two fragments: a short mNG11 fragment, which is fused to a protein of interest, and a large mNG21-10 
fragment, which is expressed separately in trans (that is, tagging is done in cells that have been engineered to constitu-
tively express mNG21-10).  (B) Endogenous tagging strategy: mNG11 fusion sequences are inserted directly within 
genomic open reading frames (ORFs) using CRISPR-Cas9 gene editing and homologous recombination with 
single-stranded oligonucleotides donors (ssODN). (C) The OpenCell experimental pipeline. See text for details. (D) 
Successful detection of fluorescence in the OpenCell library. Out of 1757 genes that were originally targeted, fluores-
cent signal was successfully detected for 1310 (top panel). Low protein abundance is the main obstacle to successful 
detection. Bottom left panel shows the full distribution of abundance for all proteins expressed in HEK293T vs. success-
fully or unsuccessfully detected OpenCell targets; boxes represent 25th, 50th, and 75th percentiles, and whiskers 
represent 1.5x interquartile range. Median is indicated by a white line. P-value: Student’s t-test. (E) The OpenCell data 
analysis pipeline, described in subsequent sections. 
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Figure 2: Protein interactome. (A) Overall description of the interactome. (B) Unsupervised Markov clustering of the 
interactome graph. (C) Example of community and core cluster definition for the translocon/EMC community. (D) The 
complete graph of connections between interactome communities. The density of protein-protein interactions between 
communities is represented by increased edge width. The numbers of targets included in each community is represent-
ed by circles of increasing diameters. (E) Distribution of occurrence in PubMed articles vs. RNA expression for all 
proteins found within interactome communities. The bottom 10th percentile of publication count (poorly characterized 
proteins) is highlighted. (F) NHSL1/NSHL2/KIAA1522 are part of the SCAR/WAVE community and share amino-acid 
sequence homology (right panel). (G) DMXL1/2, WDR7 and ROGDI form the human RAVE complex. Heatmaps repre-
sent the interaction stoichiometry of preys (lines) in the pull-downs of specific OpenCell targets (columns). See text for 
details.
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scalebar: 10 µm). Nuclear stain (Hoechst) is shown in blue.  “Nuclear domains” designate proteins with pronounced 
non-uniform nucleoplasmic localization, for example chromatin binding proteins. (B) Comparison of annotated localization 
for proteins included in both OpenCell and Human Protein Atlas datasets. In this flow diagram, colored bands represent 
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found to localize to a unique cellular compartment. (E) Representative images for 10 nuclear targets that exemplify the 
nuanced diversity of localization patterns across the proteome. Scale bars: 10 µm.
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Figure 4: protein functional features derived from unsupervised image analysis. (A) Comparison of image-based 
Leiden clusters with ground-truth annotations. The Adjusted Rand Index (ARI, (86)) of clusters relative to three 
ground-truth datasets is plotted as a function of the Leiden clustering resolution. ARI (a metric between 0 and 1, see 
Materials and Methods) measures how well the groups from a given partition (in our case, the groups of proteins delin-
eated at different clustering resolutions) match groups defined in a reference set. The amplitude of the ARI curves is 
approximately equal to the number of pairs of elements that partition similarly between sets; the resolution at which 
each curve reaches its maximum corresponds to the resolution that best captures the information in each ground-truth 
dataset. At a low resolution, Leiden clustering delineates groups that recapitulate about half of the organellar localiza-
tion annotations, while at increasing resolutions, clustering recapitulates about a third of pathways annotated in KEGG, 
or molecular protein complexes annotated in CORUM. Shaded regions show standard deviations calculated from 9 
separate repeat rounds of clustering, and average values are shown as a solid line. (B) High correspondence between 
low-resolution image clusters and cellular organelles. (C) Examples of functional groups delineated by high-resolution 
image clusters, highlighted on the localization UMAP. (D) Heatmap distribution of localization similarity (defined as the 
Pearson correlation between two deep learning-derived encoding vectors) vs. interaction stoichiometry between all 
interacting pairs of OpenCell targets. Two discrete sub-groups are outlined: low stoichiometry/low localization similarity 
pairs (solid line) and high stoichiometry/high localization similarity pairs (dashed line). (E) Probability density distribution 
of CORUM interactions mapped on the graph from (D). Contours correspond to iso-proportions of density thresholds 
for each 10th percentile. (F) Localization patterns of different subunits from example stable protein complexes, repre-
sented on the localization UMAP. (G) Frequency of direct (1st-neighbor) or once-removed (2nd neighbor, having a 
direct interactor in common) protein-protein interactions between any two pairs of OpenCell targets sharing localization 
similarities above a given threshold (x-axis). (H) Parallel identification of FAM241A as a new OST subunit by imaging 
or mass-spectrometry. See text for details.

Figure 4 (legend)
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Figure 5: segregation of RNA-BPs in both interactome and imaging datasets. (A) Hierarchical structure of the interac-
tome dataset, see full description in Figure S9B. (B) Distribution of membrane-related (transmembrane or membrane-binding) 
and RNA-BPs within the three interactome branches. (C) Distribution of intrinsic disorder in the RNA-BP branch of the interac-
tome hierarchy (related to Figure S10). Two separate scores are shown for completeness: IUPRED2 (87), and metapredict 
(88), a new aggregative disorder scoring algorithm. Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 
1.5x inter-quartile range. Median is represented by a white line. ** p < 10-4 (Student’s t-test), exact p-values are shown. (D) 
Distribution of RNA-BP percentage across spatial clusters, comparing our data to a control in which the membership of 
proteins across clusters was randomized 1,000 times. Lines indicate parts of the distribution over-represented in our data vs 
control (**: p < 2x10-3, Fisher’s exact t-test). (E) Distribution of disorder score (IUPRED2) across spatial clusters, comparing 
our data to a control in which the membership of proteins across clusters was randomized 1,000 times. Lines indicate parts of 
the distribution over-represented in our data vs control (**: p < 2x10-3, Fisher’s exact t-test). (F) Ontology enrichment analysis 
of proteins contained in high-disorder spatial clusters (average disorder score > 0.45). Enrichment compares to the whole set 
of OpenCell targets (p-value: Fisher’s exact test). (G) Prevalence of proteins annotated to be involved in biomolecular conden-
sation in high-disorder vs. other spatial clusters. Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x 
inter-quartile range. Median is represented by a white line. Note that for both distributions, the median is zero. (H) Distribution 
of high-disorder spatial clusters in the UMAP embedding from Fig. 3D. Individual nuclear clusters are not outlined for readabili-
ty. Multiple high-disorder spatial clusters include compartments or proteins known to be characterized by biomolecular conden-
sation behaviors, which are marked by an asterisk. 
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Figure 6

Figure 6: the OpenCell website. Shown is an annotated screenshot from our web-app at 
http://opencell.czbiohub.org, which is described in more details in Suppl Fig. S12. 
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Figure S1

Figure S1: experimental pipeline (related to Figure 1). (A) IP/MS using FP capture. All mNG11 tagging constructs 
also include an HRV-3C cleavable linker for optional release from the capture resin. (B) Justifying the choice of tag 
insertion in engineered cell lines. To inform tag insertion sites, we used a combination of existing data from the literature 
suggesting preservation of properties, 3D structures of protein complexes from the PDB and sequence analysis to 
avoid important functional motifs. 4% of insertion sites were constrained by the topology of transmembrane protein 
targets (fusion to cytosolic termini), and for 23% of targets no prior data was available. See details in Suppl. Table 1. 
(C) Sensitivity of interaction proteomics detection on a timsTOF instrument. The number of interactors detected in 
pull-downs from 6 different targets is shown, varying the amount of input material. To balance sensitivity and scalability, 
0.8e6 cells were used for high-throughput assays (12 well-plate, wp). (D) Distribution of gene ontology annotations in 
the OpenCell library (successful targets only) compared the whole proteome. Over- and under-represented terms are 
outlined. Because organellar organization and transport between organelles are foundational to human cellular archi-
tecture, proteins in these groups are slightly enriched in our library. Under-represented groups are mostly comprised of 
proteins in compartments that are not accessible to our tagging strategy (mitochondrial functions, extracellular matrix) 
or proteins that are typically present at low copy numbers and therefore difficult to detect at endogenous levels (tran-
scription factors). 
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Figure S2: cell line generation (related to Figure 1). 
(A) Success rate for the generation and detection of 
fluorescently tagged cell lines are compared for the whole 
set of targets we attempted, and the subset of these that 
are essential genes. (B) Correlation of protein and RNA 
abundance in HEK293T cells (OpenCell). For comparison 
purposes, RNA and protein abundances in our dataset 
are compared to two external references: HEK293 cell 
line RNASeq from the Human Protein Atlas, and the HeLa 
proteome published in (7). In both cases, our data 
correlates well with existing references. (C) Repeated 
from Figure 1C. (D) Fluorescent detection success rates 
for proteins at different percentiles of abundance in the 
proteome. (E) For well-expressed proteins (top 50th 
percentile of abundance), successful detection is 
correlated with high rates of CRSIPR-mediated homolo-
gous recombination. 
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Figure S3: cell library characterization and quality control (related to Figure 1). (A) Optimization of sorting strate-
gy. Polyclonal cell pools were sorted using gates of increasing fluorescence (left panel) and genotyped to quantify the 
enrichment for mNG11-inserted alleles (right panel, showing data for 6 different target genes). This informed our final 
sorting strategy in which the top 1% of fluorescent cells (gate I) were selected. (B) Genotype analysis of the polyclonal 
OpenCell library. A single allele is required for fluorescence, but our cell collection is enriched for homozygous inser-
tions. In total, mNG11 insertions account for 61% (median) of alleles in a given cell pool across the full library (Boxes 
represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x interquartile range). The median values of 
mNG11 integrated alleles, wt alleles and other alleles are shown on the right. (C) Measurement of target protein abun-
dance in final selected cell pools vs. parental cell line, by quantitative Western blotting. (D) Measurement of target 
protein abundance in final selected cell pools vs. parental cell line, by single-shot mass spectrometry. In these experi-
ments, tagged lines are measured in a single replicate and compared to 6 replicates of non-edited control cell lines. 
Outliers targets are defined by an abundance that deviates by more than 2.5 standard deviations and by more than 
2-fold of their abundance in the controls. The 5 outlier lines are outlined. (E) Distribution of Pearson correlation values 
measuring the overall correlation of abundances for all cellular proteins in each tagged cell line vs. median control. (F) 
For the outliers outlined in (D), correlation of abundances for all cellular proteins in the tagged cell line vs. median 
control. The abundance correlations for two individual control repeats are shown for reference. (G) Examples of over-
expression artifacts. Single z-slice confocal images are shown (scale bar: 10 µm). Endogenously tagged lines and their 
equivalent overexpression constructs were not imaged using the same laser power, so that signal intensities are not 
directly comparable. Nuclei are shown as blue outlines (nuclei can be located in a different z-plane than the one 
shown). “Masking effects” are defined as the loss of fine localization details upon overexpression. 

Figure S3 (legend)
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In the absence of ground truth data for human protein-protein interactions 
(that is, not only is it likely that we have yet to curate all the interactions that 
do exist, there is no absolute expectation for  interactions that do not exist). 
In this context, it is impossible to calculate exact false positive and false 
negative rates in datasets. Rather, we used proxies to measure recall and 
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Figure S4: interactome analysis (related to Figure 2). (A) Strategy for defining enrichment thresh-
old to define interactions. Our strategy builds upon methods described by Hein et al (7). Here we use 
a quantitative approach to define enrichment thresholds dynamically for each replicate set, globally 
constrained by the parameter αthreshold. (B) To optimize parameter choice, we measured how precision 
(% co-localization) and recall (% CORUM coverage) of the corresponding interaction network varied 
with αthreshold. This informed a final value of 0.12. (C) Comparing interaction recall (% CORUM cover-
age) of OpenCell vs. other large-scale interactomes, including direct or 2nd-neighbor interactions (i.e., 
sharing a direct interactor in common). (D) Comparing interaction precision (% co-localization) of 
OpenCell vs. other large-scale interactomes. CORUM interactions are shown as a reference. (E) 
Direct comparison of OpenCell vs. Bioplex 3.0 on identical bait set. Both datasets use the same HEK-
293T cell line and share a large number (683) of baits in common. Precision and recall analysis by 
varying threshold for interaction detection (αthreshold in OpenCell and pInt in Bioplex)  is shown for the 
intersection set of 683 baits (dots represent values using thresholds used for final publication sets in 
both studies). For these set of overlapping baits, OpenCell also includes many new measured interac-
tions for that intersection set of baits (right panel, top). Interestingly, the interactions unique to Open-
Cell have high precision values (right panel, bottom). (F) Compressibility analysis (31) of OpenCell vs. 
other large-scale interactomes. (G) Number of interactions measured in OpenCell (in the full dataset) 
that were also measured in Hein et al. (7) or BioPlex 3.0. (H) Distribution of GO annotation overlap 
between protein pairs identified in low-stoichiometry and high-stoichiometry interactions. (I) MCL clus-
tering performance (F1 score) using stoichiometry-weighted or unweighted interaction graphs, derived 
from CORUM interactions as described in Drew et al (89). 

Figure S4 (legend)
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Figure S5: sequence analysis of orphan proteins (related 
to Figure 2). (A) Amino-acid sequence alignment between 
human NHSL1, NSHL2, KIAA1522 and NHS. (B) Correspon-
dence of RAVE complex members in S. cerevisiae, D. melano-
gaster and H. sapiens. Note that in S. cerevisiae RAVE also 
includes Skp1, not depicted here. 
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Figure S6: computer vision for automated microscopy acquisition (related to Figure 3). (A) To automate micros-
copy acquisition on 96-well plates and to limit experimental variability between imaging sessions (e.g., to limit variations 
in cell density) we paired an acquisition script, written in Python, with a pre-trained machine learning model to select 
field of views (FOVs) on-the-fly during the acquisition. A total of 25 FOVs are sampled per well in a single z-plane, and 
desirable FOVs are selected for further 3D confocal acquisition on the basis of a score predicted by the pre-trained 
model. (B) Microscopy automation workflow. Microscope hardware is controlled by a Python-based acquisition script 
via an open-source MicroManager-Python bridge (mm2python; https://github.com/czbiohub/mm2python). This 
approach enables us to combine custom acquisition logic with the rich ecosystem of Python-based machine-learning 
packages. Here, we use the scikit-image package to extract features from each FOV snapshot, then use a pre-trained 
random-forest regression model (scikit-learn) to predict a quality score for the FOV. This process is not computationally 
expensive and requires less than a second; the FOV score can therefore be used immediately to determine whether 
the script should acquire a z-stack or else move on to the next position. To maximize the quality of our confocal 
z-stacks, however, we chose to visit and score all 25 FOVs in each well, then re-visit the top-scoring FOVs for confocal 
z-stack acquisition.
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Figure S7: the OpenCell image dataset (related to 
Figure 3). (A) Principle of graded localization annotation 
(manual annotations). (B) Fraction of multi-localization 
between cellular compartments. Complete localization 
annotations can be found in Suppl. Table 6. (C) Compari-
son of annotated localization for proteins in OpenCell and 
Human Protein Atlas (HPA, version v20) datasets for which 
annotations are inconsistent. (D) Extensive literature cura-
tion allows to resolve 77% of OpenCell/HPA discrepancies 
(full details in Suppl. Table 8). Here “direct evidence” refers 
to proteins for which localization has been directly mea-
sured in published studies, while “functional evidence” 
refers to proteins for which localization might not have been 
directly measured, but for which literature establishes a 
function that is predictive of a specific localization. For 
example, SCFD1 is a protein whose main known function is 
to regulate transport between ER and Golgi. This qualifies 
as “functional evidence”. It is annotated as localized in the 
ER and Golgi in OpenCell, and in the nucleoplasm (main) 
and cytosol (additional) in HPA. (E) Comparison of annotat-
ed localization for 350 orthologous proteins in OpenCell 
and S. cerevisiae yeast (from LoQate (46)). Note that in 
yeast Golgi and vesicles are difficult to distinguish.  
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Figure S8: high-resolution image clusters 
(related to Figure 4C). (A) Size of clusters 
(number of proteins in each cluster) as a func-
tion of clustering resolution. Shaded regions 
show standard deviations calculated from 9 
separate repeat rounds of clustering, and aver-
age values are shown as a solid line. (B), (C) 
Examples of clusters of cytoplasmic (B) and 
nuclear (C) proteins. 
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C Figure S9: full hierarchical structure of interactome and localization datasets (related 
to Figure 5). Dendrograms represent the hierarchical relationships connecting (A) the full set 
of protein communities identified in the interactome (see Fig. 2) or (B) the full set of high-reso-
lution clusters identified in the image collection (see Fig. 4C). For each dataset, an intermedi-
ate layer of hierarchy separates 18-19 modules, while an upper hierarchical layer delineates 
three separate branches. Modules and branches are annotated on the basis of gene ontology 
enrichment analysis (see Suppl. Tables 5 & 9). Right-hand panels present the topological 
arrangement of branches (top) and modules (bottoms) in each dataset, highlighted from the 
full graph of connections between interaction communities (“interactome”, see Fig. 2D) or 
from the localization UMAP (“localization”, see Fig. 4C). The color codes between interactome 
and localization datasets are not directly comparable (i.e. same colors are not meant to 
represent the same exact set of proteins). (C) The hierarchical structures derived from 
interactome (left) and localization (right) datasets are compared to the hierarchical structures 
derived from “scrambled” controls – that is, to the hierarchical structure that is expected by 
chance given the proteins present in our dataset. Controls are generated by randomly 
shuffling the membership of each protein between spatial clusters or interaction communities. 
The number of proteins in each cluster or community was preserved from the original data. Figure S9
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Figure S10: biophysical & ontology analysis of the main branches from interactome and localization hierarchies 
(related to Figures 5 and S9). (A) The three branches derived from the image-based hierarchy (see Figure S9A). (B) 
Enrichment analysis of GO annotations in the hierarchical branches, testing GO term enrichment of proteins in each 
branch against all proteins in the interactome (Fisher’s exact test, showing annotations enriched at p < 10-10 and excluding 
near-synonymous annotations). (C) The three branches derived from the interactome hierarchy (see Figure S9B). (D), (E) 
Enrichment analysis of GO annotations in the hierarchical branches, testing GO term enrichment of proteins in each 
branch against all proteins in the interactome (Fisher’s exact test, showing annotations enriched at p < 10-10 and excluding 
near-synonymous annotations). (F) Heat-map representing significance testing of biophysical properties of protein 
sequences in the 3 branches. P-values were obtained using Student’s t-test comparing proteins belonging to a specific 
hierarchical branch against all proteins in the three branches. (G) Box plots representing the significance testing of 
biophysical properties described in (F). Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x 
inter-quartile ranges. Median is represented by a white line. ** p < 10-3 (Student’s t-test), exact p-values are shown. 
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Figure S11: unique properties of RNA-binding proteins (RNA-BPs, related to Figure 5). (A) Distribution of disorder score 
(IUPRED2) for RNA-BPs vs. non-RNA-BPs across the whole proteome. (B) Distribution of protein abundance for RNA-BPs vs 
non-RNA-BPs across the whole proteome (left) and across OpenCell targets only (right). (C) Distribution of number of interac-
tors for RNA-BPs vs non-RNA-BPs across OpenCell targets. (D) For each OpenCell target, the number of interactors is plotted 
as a function of protein abundance. The subset of targets that are RNA-BPs is highlighted on the right-hand panel. Note: for 
boxplots in (A), (B), (C) and (D), boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x interquartile 
range. Median is represented by a white line. (E) Distribution of hydrophobicity score (gravy) across spatial clusters, comparing 
our data to a control in which the membership of proteins across clusters was randomized 1,000 times. Lines indicate parts of 
the distribution over-represented in our data vs control (**: p < 2x10-3, Fisher’s exact t-test). (F) Distribution of high-hydropho-
bicity spatial clusters (average hydrophobicity score > -0.1) in the UMAP embedding from Fig. 3D (left), and ontology enrich-
ment analysis of proteins contained in these clusters (right). Enrichment compares to the whole set of OpenCell targets (p-val-
ue: Fisher’s exact test).
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Figure S12: interactive data exploration at opencell.czbiohub.org. (A) The three principal pages of the OpenCell web app. 
From left to right: the target page, interactor page, and gallery page. (B) The target page consists of three columns. The 
leftmost column contains the functional annotation for the target from UniProt, links to other databases, our manually-as-
signed localization annotations, and measures of protein expression. The middle column contains the image viewer, and the 
rightmost column the interaction network. (C) The image viewer allows the user to scroll through the confocal z-slices using 
a slider or to visualize the z-stack in 3D as a volume rendering; in either mode, the user can pan and zoom by clicking, drag-
ging, and scrolling. (D) The interaction network can be toggled with two alternative, complementary visualizations of the 
target’s protein interactions: a volcano plot of relative enrichment vs. p-value and a scatterplot of interaction stoichiometry 
vs. abundance stoichiometry. In both the network view and the scatterplots, the user can click on an interactor to open the 
target or the interactor page for the corresponding protein. 
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