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Abstract 18 

 19 

Thyroid hormone (TH) signaling plays critical roles during vertebrate development, including regulation 20 

of skeletal and cartilage growth. TH acts through its receptors (TRs), nuclear hormone receptors (NRs) 21 

that heterodimerize with Retinoid-X receptors (RXRs), to regulate gene expression. A defining difference 22 

between NR signaling during development compared to in adult tissues, is competence, the ability of the 23 

organism to respond to an endocrine signal. Amphibian metamorphosis, especially in Xenopus laevis, the 24 

African clawed frog, is a well-established in vivo model for studying the mechanisms of TH action during 25 

development. Previously, we’ve used one-week post-fertilization X. laevis tadpoles, which are only 26 

partially competent to TH, to show that in the tail, which is naturally refractive to exogenous T3 at this 27 

stage, RXR agonists increase TH competence, and that RXR antagonism inhibits the TH response. Here, 28 

we focused on the jaw that undergoes dramatic TH-mediated remodeling during metamorphosis in order 29 

to support new feeding and breathing styles. We used a battery of approaches in one-week-old tadpoles, 30 

including quantitative morphology, differential gene expression and whole mount cell proliferation 31 

assays, to show that both pharmacologic (bexarotene) and environmental (tributyltin) RXR agonists 32 

potentiated TH-induced responses but were inactive in the absence of TH; and the RXR antagonist UVI 33 

3003 inhibited TH action. At this young age, the lower jaw has not developed to the point that T3-induced 34 

changes produce an adult-like jaw morphology, and we found that increasing TH competence with RXR 35 

agonists did not give us a more natural-metamorphic phenotype, even though Bex and TBT significantly 36 

potentiated cellular proliferation and the TH induction of runx2, a transcription factor critical for 37 

developing cartilage and bone. Prominent targets of RXR-mediated TH potentiation were members of the 38 

matrix metalloprotease family, suggesting that RXR potentiation may emphasize pathways responsible 39 

for rapid changes during development. 40 

 41 
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 3 

Introduction 43 

 44 

 An organism’s acquired ability to respond both qualitatively and quantitatively to a physiological 45 

signal, defined as competence, is distinguished between endocrine signaling during development, which 46 

tends to lead to irreversible, organizational effects, from that of healthy adult tissues, which controls the 47 

functioning of tissues and organs to maintain homeostasis. Thyroid hormone (TH) action regulates many 48 

aspects of vertebrate development including cartilage growth and skeletogenesis (1–4). Over 49 

developmental time, the vertebrate organism traverses from low to high TH competence (5). Vertebrate 50 

development depends upon appropriate timing and concentrations of TH for good biological outcomes. 51 

During human development, adverse outcomes arise from both insufficient and excessive TH (1,6–10). 52 

However, analysis of the effects of TH on mammalian development are confounded by maternal effects 53 

due to the nature of intrauterine growth. Amphibian metamorphosis, the process through which larval 54 

tadpoles develop into adult frogs, overcomes these obstacles; it provides an accessible and dramatic 55 

model for direct investigation of the role TH plays during vertebrate development (11–14). 56 

Metamorphosis is initiated and maintained through the action of TH (15–18). The African clawed frog, 57 

Xenopus laevis, provides an accessible and effective laboratory model for assessing the role of TH 58 

throughout development, and its metamorphosis has been shown to model the essential perinatal surge in 59 

TH signaling in humans (11,14).  60 

 In all vertebrates, TH acts through the thyroid hormone receptors (TRs), which are DNA-binding, 61 

ligand-regulated transcription factors of the nuclear receptor (NR) superfamily (19,20). THs are identical 62 

across all taxa, and the TRs are highly conserved between X. laevis and humans (12,13). Two isoforms of 63 

TR are expressed from two different genes, TRα and TRβ. In X. laevis tadpoles, TRα is expressed before 64 

synthesis of THs commences (21), whereas TRβ expression is induced after the nascent thyroid gland 65 

begins to synthesize THs through TH binding to TRα; it is a direct target gene of TRs (22,23). 3,3',5-66 

triiodo-L-thyronine (T3) is the TH with the highest affinity for the TRs (24–26). TRs bind DNA and can 67 

regulate gene transcription in both the absence and presence of TH. In the most-studied model of TH 68 
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action, apo-TRs recruit co-repressor proteins, which close the chromatin environment to the general 69 

transcription machinery, causing transcriptional repression. In contrast, T3-bound TRs recruit co-activator 70 

proteins, which open the chromatin environment to the general transcription machinery, causing 71 

transcriptional activation (19,20). TRs heterodimerize with another NR, the retinoid-X receptors (RXRs) 72 

(27). RXRs bind several natural ligands, including 9-cis retinoic acid, and they can dimerize with many 73 

different NRs in addition to TRs (28). The TR-RXR heterodimer shows higher affinity for DNA, 74 

especially in the presence of T3, than the TR-TR homodimer (29).  75 

 Due to the importance of TH signaling for proper development, man-made chemicals that disrupt 76 

TR action have the potential to produce adverse outcomes (30). Our initial investigations into disruption 77 

of TR function used an integrated TRE-driven Luc reporter in a rat pituitary cell line that endogenously 78 

expresses both TRα and TRβ (31,32). In that cell culture system, vitamin A (VA) metabolites were the 79 

primary hits for disrupting the TRE-Luc reporter (33). VA metabolites can activate both the retinoic acid 80 

receptors (RARs) and the RXRs, depending upon the metabolite (34). RARs, like TRs and RXRs, are 81 

members of the NR superfamily. The documented but not mechanistically understood ability of VA 82 

metabolites to convert into each other make using them to determine RAR vs RXR function difficult. A 83 

pharmaceutical RAR ligand did not affect the TRE-Luc reporter (32), but a pharmaceutical RXR agonist 84 

did (33). Since RARs should not bind a TRE, and RXRs heterodimerize with TRs on TREs, these results 85 

would appear unsurprising were it not for the fact that, in most adult tissues and cells, RXR ligands are 86 

unable to affect the action of the TR-RXR heterodimer (35,36). Pituitary cells, like the reporter cell line, 87 

are an exception, wherein RXR ligands do affect the ability of TR to control the hypothalamus-pituitary-88 

thyroid (HPT) axis (37); the biological reasons for this are not understood. In fact, the pharmaceutical 89 

RXR agonist used in this study, bexarotene (brand name Targretin, Bex), produces severe hypothyroidism 90 

in patients given the drug, which limits its usability as a chemotherapeutic (38–40). However, given the 91 

inability of RXR ligands to affect TR function in peripheral tissues, such as the liver—a major site of TR 92 

function—the TR-RXR heterodimer is generally considered to be an example of a “non-permissive” RXR 93 

heterodimer, meaning that only the ligand for the TR, TH, can induce activation. This is also thought to 94 
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“make sense” because TH is an endocrine hormone that tightly regulates several important biological 95 

functions like heart rate, and tight, endocrine-type regulation would be complicated if a second hormone 96 

or environmental ligand (dietary, etc) were also able to affect TR-RXR action (35). 97 

 Tributyltin (TBT) is a pervasive environmental pollutant that was the first described endocrine 98 

disruptor when it was discovered that exposure to TBT caused marine gastropods to develop imposex 99 

phenotypes, where female gastropods develop male secondary sex characteristics (41,42). TBT was 100 

widely used as an antifoulant in marine paints. Mechanistic work determined that TBT functioned 101 

through the mollusk RXR, and that treating marine gastropods with either 9-cis retinoic acid or TBT 102 

produced the same imposex phenotype (43–45). Biophysical investigations showed that TBT covalently 103 

binds to a cysteine residue at the entrance to the RXR ligand-binding pocket, creating an activated 104 

conformation in the RXR (46). In the rat pituitary reporter cell line, TBT behaved like Bex, strongly 105 

suggesting that it was functioning as an RXR agonist (33,47). These results left open the question as to 106 

whether RXR agonists in a developing organism would behave like RXR agonists in most adult tissues 107 

(i.e. RXR agonists have no effect on TR action) or like in our pituitary reporter cell line (i.e. RXR 108 

agonists could modulate TR function).  109 

  Previously, we developed a suite of quantitative assays to assess function and possible disruption 110 

of TH action in 1-week post-fertilization (1wk-PF) tadpoles (NF 48) (48). 1wk-PF tadpoles express TRα, 111 

but they do not yet have an active thyroid gland; therefore, they are TH negative and are considered pre-112 

competent (21). Addition of T3 to their rearing water activates many metamorphic pathways, but the 113 

addition of T3 does not make their TH competence complete. For example, tail resorption, the last step of 114 

metamorphosis, is minimal even under supraphysiological doses of T3, because at least in part, the tail 115 

expresses high levels of the T3-deactivating enzyme, deiodinase 3 (49). We found that the addition of Bex 116 

or TBT to the rearing water of 1wk-PF tadpoles in the presence of T3 significantly potentiated the action 117 

of T3 in larval tissues undergoing resorption, including the tail (47,50). In effect TBT/Bex increased T3 118 

competence in the tail to near metamorphic levels. At the transcriptomic level in the tadpole tail we found 119 

that TBT acted identically to Bex, solidifying that the mechanism of TBT action on TH function was at 120 
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the level of RXR agonism (50). We wondered if the potentiating effects of RXR agonists affected 121 

metamorphic phenotypes beyond resorption.  122 

 Amphibian metamorphosis affects almost every tissue system and cell fate decision. TH induces 123 

the jaw to remodel to facilitate the transition from an herbivorous tadpole to a carnivorous adult frog. 124 

During natural metamorphosis, visible jaw morphological changes start at NF 59, which is approximately 125 

45 days post-fertilization (PF) under ideal rearing conditions (51,52). Thomson describes three phases of 126 

Meckels cartilage development in the lower jaw (LJ): 1) a lag phase (NF 57-59) with low levels of cell 127 

proliferation, 2) a division phase (NF 60-62) of rapid cell division, and 3) a synthesis phase (NF 62-66) 128 

wherein the matrix content of the cartilage increases significantly (53,54). Rose showed that tadpoles 129 

prior to NF 57 (~41 days PF) respond to the TH but the beak-like morphological changes that result are 130 

not seen in a natural metamorphosis (51). Between NF 48 and NF 57 significant, non-TH-induced growth 131 

occurs to the cartilages of the lower jaw, and this growth appears to be essential for producing appropriate 132 

morphology upon TH administration. Bearing this in mind, we investigated whether RXR ligands were 133 

able to potentiate the T3-induced changes that are possible at NF 48, where we have an extant suite of 134 

quantitative assays to monitor potential disruption of T3 action (48). We found that both Bex and TBT 135 

potentiated T3-induced proliferation, the activation of runx2, a transcription factor necessary for 136 

maturation of cartilage and bone ossification, and the matrix metalloproteases mmp11 and mmp13l. On 137 

the other hand, the RXR antagonist UVI 3003 (UVI) (55) prevented T3-induced morphological changes 138 

while not inhibiting proliferation, and it only selectively inhibited gene transcription. In addition, Bex and 139 

TBT still potentiated T3 action in the LJ in tadpoles at NF 54, which are considered prometamorphic and 140 

fully competent to respond to THs.  141 

 142 

 143 
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 7 

Materials and Methods: 145 

 146 

Reagents: 147 

 3,3',5-triiodo-L-thyronine (T3, T6397-100MG) and tributyltin chloride (TBT, T50202-5G) were 148 

purchased from MilleporeSigma (Burlington, MA) and Bexarotene (Bex, 5819/10 and UVI 3003 (UVI, 149 

3303/10) were purchased from Tocris Biosciences (Bio-Techne, Minneapolis, MN). All treatment ligands 150 

were dissolved or diluted in dimethyl sulfoxide (DMSO, Thermo Fisher Scientific, Waltham, MA). oLH 151 

(ovine luteinizing hormone) was purchased through the National Hormone and Peptide Program (Los 152 

Angeles, CA), pregnant mare serum gonadotropin was purchased from Thermo Fisher Scientific, and 153 

tricaine methanesulfonate was purchased from Western Medical Supply (Arcadia, CA). 154 

 155 

Animal husbandry: 156 

 The laboratory has an approved University of California Davis Institutional Animal Care and Use 157 

protocol that covers the husbandry and mating of adult Xenopus laevis frogs and ligand exposure of larval 158 

tadpoles. Wild-type X. laevis frogs were mated and embryos cultured as described (Mengeling 2017). 159 

 160 

Tadpole precocious metamorphosis morphology assay: 161 

 NF 48 (1-week post-fertilization) tadpoles were treated, fixed for photography, and dorsal head 162 

photos taken using a Leica DFC3000 G camera on a Leica MZLFIII microscope as described (Mengeling 163 

2016 and 2017). Treatment concentrations, unless otherwise indicated were 10 nM T3, 30 nM Bex, 1 nM 164 

TBT, and 600 nM UVI, based upon previous results. The angle of the lower jaw was measured using the 165 

FIJI (56) distribution of ImageJ (57). GraphPad Prism 9 (GraphPad Software, La Jolla, CA) was used to 166 

generate box and whisker plots, where boxes represent the 25th to 75th percentiles with the bar at the 167 

median, and whiskers are maximum and minimum values. For statistical analyses, each animal counted as 168 

an individual, and 2 clutches (ten tadpoles/clutch) were assayed independently to control for clutch-to-169 

clutch variability. NF 54 tadpoles were treated as NF 48 animals except that the volume/tadpole of rearing 170 
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water was increased to 50 ml, and treatments were stopped at three days rather than five, due to the 171 

extreme gill resorption in the T3 + Bex animals. Three independent clutches of NF 54 tadpoles were used 172 

with 4-5 tadpoles per clutch.  173 

 174 

Immunohistochemistry of lower jaws for proliferation: 175 

 The lower jaws from tadpoles fixed as for morphology were removed as follows: a straight cut 176 

was made just posterior to the olfactory epithelium and anterior to the eyes. the upper and lower jaw were 177 

separated, and two diagonal cuts were made on the outer rim of the jaw to separate the cartilage from the 178 

excess tissue. LJs were treated as described for immunohistochemical analysis of phospho-Histone H3 179 

reactivity (EMD Millepore, 06-570, 1/300 dilution)  (48,58). Anti-phospho-Histone H3 (Ser10) was from 180 

EMD Millepore (06-570, 1/300 dilution), and goat anti-rabbit IgG (H+L) conjugated with Alexa Fluor 181 

488 was from Molecular Probes (A11008, 1/400 dilution). Positive cells were counted from blinded 182 

images using the Cell Counter tool of Fiji.  183 

 184 

Gene Expression: 185 

 Tadpoles were treated with ligands for 48 hours as for morphology and as described (47,50), 186 

using a 2-way ANOVA design: vehicle (DMSO), T3, RXR ligand, and T3 + RXR ligand. Lower jaws 187 

were isolated from unfixed tadpoles as for immunohistochemistry. Pools of 15 LJs from a single clutch 188 

were used for total RNA extraction. LJ tissue was disrupted and homogenized by bead beating with two 189 

0.125-inch stainless steel beads for 1 minute in a Mini-Beadbeater-16 (Biospec Products, Bartlesville, 190 

OK). Total RNA was extracted using the RNeasy Plus Mini Kit per the manufacturer’s instructions 191 

(Qiagen, Germantown, MD). Total RNA was quantified using a NanoDrop (Thermo Fisher Scientific, 192 

Waltham, MA). One microgram of total RNA was used to synthesize cDNA with the High-Capacity 193 

Reverse Transcription Kit (Thermo Fisher Scientific), and 0.5 μl of cDNA from a 20-μl reaction was used 194 

in a 10-μl reaction using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) in a Roche 195 

LightCycler 480. The X. laevis rpl8 gene was used as a normalizer. Statistics were performed using 2-way 196 
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 9 

ANOVA analysis with a Sidak’s multiple comparison test (MCT) in GraphPad Prism 9. Sequences for the 197 

primers used for quantitative PCR are given S1 Table. 198 

 199 

Transgenic tadpole luciferase reporter assay: 200 

 NF 54 tadpoles, sorted at 1wk-PF for GFP+ expression in the eye lens, were staged by assessing 201 

morphology of the hind limb, according to the normal scale by Nieuwkoop and Faber (59), and then 202 

treated through their rearing water for two days as previously described (50). Treatment concentrations 203 

were 10 nM T3 and 2 nM TBT. No mortality arose from the treatments over the treatment period. After 204 

treatment, tadpoles were anesthetized in 0.1% MS-222 (Western Medical) buffered with 0.1% sodium 205 

bicarbonate. The LJs were excised and minced on ice prior to freezing and then processed and assayed as 206 

described. Each animal was treated as an individual for statistical purposes (n = 9 per treatment) from two 207 

independent clutches (4 animals in one clutch and 5 in the other). Two-way ANOVA using clutch and 208 

treatment as covariates with Tukeys MCT to compare treatments was used from GraphPad Prism 9.  209 

 210 

  211 
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Results: 212 

 213 

RXR agonists potentiate T3-induced morphological changes to the lower jaw, and an RXR 214 

antagonist abrogates T3 effects 215 

 Using our precocious metamorphosis assay system, we treated X. laevis 1wk-PF tadpoles (NF 48) 216 

for five days by exposure through their rearing water with vehicle or 10 nM T3 in the presence or absence 217 

of RXR ligands. This treatment period did not result in animal mortality under any of the treatment 218 

conditions. Previously, we found that 30 nM Bex and 1 nM TBT produced maximal, non-toxic responses, 219 

and so we used them here (47,50). The dorsal head photos in Figure 1 show representative animals from 220 

each treatment regimen. Vehicle treatment resulted in normal tadpole morphology (Figure 1a), and 221 

treatment with the RXR ligands in the absence of T3 (Figure 1b-1d) did not result in morphological 222 

changes. Treatment with 10 nM T3 (Figure 1e) resulted in visible gill resorption and decreased the angle 223 

of Meckels cartilage. Co-treatment with either RXR agonist, Bex or TBT, potentiated the T3-inductions 224 

of gill resorption and the angle of Meckels cartilage (Figure 1f-1g). However, co-treatment with the RXR 225 

antagonist UVI 3003, abrogated the effect of T3 on both morphologic phenotypes.  226 

 227 

Figure 1: RXR agonists potentiate T3-induced changes to lower jaw morphology, while an RXR 228 

antagonist abrogates T3 action. a-h: Representative dorsal head photos of tadpoles treated for five days 229 

starting at 1wk-PF (30 nM Bex, 1 nM TBT, 600 nM UVI). i-k: Quantification of changes to the jaw 230 

angle. Boxes represent 25th-75th percentiles with the line at the median (n = 10-15 from 2-3 clutches), and 231 

whiskers represent the min and max values. Statistics show results from Sidak’s multiple comparison test 232 

in conjunction with 2-way ANOVA (****, p < 0.0001). l: Effect of Bex and TBT on T3-induced jaw 233 

angle changes as a function of time. Data points represent means from 20 animals from two different 234 

clutches; error bars delineate the 95% confidence intervals, indicating statistical significance. m: 235 

Treatment with 30 nM Bex augments jaw angle narrowing as a function of T3 dose. Statistics are the 236 

same as in the time course, although the clutches were different. 237 
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 238 

 In order to quantify the effects of T3 and the RXR ligands on Meckels cartilage, we measured the 239 

angle of the LJ (Figure 1i-k) from independent clutches of tadpoles, using ten animals per clutch. The 240 

inset photos (Figure 1a, 1e, 1f) show the change in angle that was measured. Protrusion of the Meckels 241 

cartilage caused a decrease in the LJ angle. Figure 1i shows that in the presence of T3, 30 nM Bex 242 

significantly potentiated the decrease in the LJ angle (compare red boxes). 2-way ANOVA analysis 243 

indicated significance for the interaction between T3 and Bex (p < 0.0001. As with our study on the 244 

effects of RXR agonists on T3-induced tail resorption, 1 nM TBT behaved almost identically to 30 nM 245 

Bex; the interaction between T3 and TBT was significant (p < 0.0001). In contrast, co-treatment of T3 246 

and the RXR antagonist UVI prevented T3 action, and the LJ angle was not significantly changed from 247 

vehicle-treated tadpoles (Figure 1k); however, due to the strong abrogation of the T3-induction by UVI, 248 

the interaction between T3 and T3+UVI was still significant by 2-way ANOVA (p < 0.0001). Figure 1l 249 

shows the LJ angle measurement as a function of treatment time. Again, co-treatment of either Bex or 250 

TBT with T3 caused an identical response that showed an acceleration of the Meckels cartilage 251 

protrusion. Tadpoles treated for four days with T3 plus RXR agonist had the same decrease in LJ angle as 252 

tadpoles treated for five days with T3-alone. Over a T3-dose curve, the T3-induced decrease in LJ angle 253 

was significant starting at 5 nM T3 (error bars represent the 95% confidence interval), and all doses of T3 254 

in the presence of Bex showed a significantly reduced LJ angle compared to T3-alone, such that 5 nM T3 255 

plus Bex/TBT produced the same LJ angle as 15 nM T3 (Figure 1m), which is the dose that produces the 256 

maximal change in LJ angle. 257 

 258 

RXR agonists potentiated T3-induced cellular proliferation in Meckels cartilage, but the RXR 259 

antagonist had no effect 260 

 In young tadpoles, exogenous T3 administration triggers proliferation in several tissues, including 261 

the LJ (58). We excised LJs after four days of treatment for whole mount immunohistochemistry (IHC) of 262 

the mitotic marker phosopho-Ser10 Histone 3 (pH3) to assess the effects of T3 and RXR ligands on 263 
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cellular proliferation in Meckels cartilage. 1wk-PF tadpoles were treated for four days instead of five to 264 

facilitate LJ removal; T3-induced changes to the gills and brain make removing the LJ more difficult after 265 

five days of treatment. Proliferative cells were counted from blinded images over the area of Meckels 266 

cartilage (Figure 2a). Figure 2b-f show representative photos of different ligand treatment combinations 267 

from which proliferative cells were counted. For quantification, each combination of T3 and RXR ligand 268 

were assayed with two independent clutches, and for each clutch, RXR agonist potentiation was 269 

significant. Figure 2g-i shows the two clutches combined for each group. Vehicle-treated LJs had few 270 

proliferative cells (Figure 2g-i). In contrast, treatment with 10 nM T3 increased the number of mitotic 271 

cells at least 15-fold for each treatment group. Co-treatment of either 30 nM Bex (Figure 2g) or 1 nM 272 

TBT (Figure 2h) RXR agonists with the T3 resulted in a significant increase in the number of 273 

proliferating cells in the Meckels cartilage. Since the RXR agonists induced a significant increase in 274 

proliferative cells, we expected that co-treatment of the RXR antagonist UVI with T3 would result in a 275 

decrease in proliferative cells. However, as Figure 2i shows, that is not the case; UVI did not inhibit 276 

cellular proliferation in Meckels cartilage. Therefore, the RXR agonists potentiated both the decrease in 277 

LJ angle and the induction of cell division; however, UVI prevented T3 action morphologically (Figure 278 

1h) but had no effect on T3-induction of proliferation (Figure 2i). Aurora kinase B (aurkb) is the kinase 279 

that performs the phosphorylation of Ser10 of H3. T3 induced aurkb mRNA expression (figure 2j-l); 280 

however, neither Bex (Figure 2j) nor TBT (Figure 2k) significantly increased that induction, suggesting 281 

that increased aurkb expression alone was not the mechanism through which the RXR agonists 282 

potentiated cell proliferation in Meckels cartilage. UVI inhibition of aurkb was not significantly different 283 

from T3-alone (p = 0.081) (Figure 2l). 284 

 285 

Figure 2: RXR agonists potentiate T3 action on cellular proliferation in the LJ of 1wk-PF tadpoles.  a: 286 

Region of Meckels cartilage used for quantitation of proliferation. b-f: Representative photos of the 287 

effects of different treatments on proliferation using phopho-Ser10-H3 reactivity. g-i: Quantification of 288 

proliferation in the presence and absence of T3 and RXR ligands. Boxes and statistics are as in Figure 1 289 
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(n = 20-30 jaws from 2-3 clutches). j-l: RXR ligands do not significantly affect the T3-induced expression 290 

of aurora kinase B mRNA (aurkb). Bars represent the mean of 3-6 independent clutches, and statistics 291 

show results from Sidak’s multiple comparison test in conjunction with 2-way ANOVA (****, p < 292 

0.0001; ***, p < 0.001; *, p < 0.05). 293 

 294 

RXR agonist potentiation of gene expression is gene specific 295 

 Our previous work examining the role of RXR ligands to perturb T3-mediated gene expression in 296 

the tails of 1-wk-PF tadpoles after a 48-hour induction, showed that the bona fide TR target gene for TRβ, 297 

thrb, was modestly, but significantly, potentiated by the RXR agonists and inhibited by the antagonist 298 

when assayed at the transcriptomic level using Tag-Seq. However, over a time course assayed by RT-299 

qPCR, the same two-day time point showed no significant potentiation and inhibition by the agonists and 300 

antagonist, respectively (50). Using RT-qPCR to assess thrb expression in the LJ after two days of 301 

treatment, we found significant activation by T3 (white bars in Figure 3a), but neither Bex nor TBT 302 

potentiated that induction (slashed bars in Figure 3a, Bex, TBT). UVI also did not inhibit the T3 induction 303 

(slashed bar in Figure 3a, UVI). TH-bZIP is a transcription factor that is one of the most strongly TH-304 

induced genes during metamorphosis. It is encoded by the thibz gene, and it is another TR direct target 305 

gene, having at least two TREs in the promoter region (60). In the LJ, T3 strongly induced thibz 306 

expression (Figure 3b, white bars), but the RXR agonists did not potentiate the signal (Figure 3b, slashed 307 

bars, Bex, TBT). However, UVI did significantly reduce the T3 induction of thibz (Figure 3b, slashed bar, 308 

UVI). In the tail, we found the same outcome: the RXR agonists did not affect thibz expression, but the 309 

RXR antagonist significantly did (47,50). These results strongly suggest that the RXR agonists and 310 

antagonist are not always operating reciprocally. 311 

 312 

Figure 3: RXR ligands have gene-specific effects on T3-induced differential gene expression. Left 313 

column: The effect of RXR agonist Bex on T3-induced gene expression. Middle column: The effect of 314 

environmental RXR agonist TBT on T3-induced genes. Right column: The effect of RXR antagonist UVI 315 
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on T3-induced genes. Striped bars indicate the presence of the RXR ligand, and white bars show 316 

induction in the absence of the RXR ligand. Statistics show results from Sidak’s multiple comparison test 317 

in conjunction with 2-way ANOVA (****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05). 318 

 319 

 During metamorphosis, matrix metalloprotease activity is essential for both tissue resorption and 320 

tissue remodeling. We and others have shown the importance of stromelysin-3 (mmp11) and collagenase-321 

3 (mmp13l) expression (61–63). We found in the LJ that mmp11 was strongly activated by T3 (white bars 322 

in Figure 3c). Co-treatment with 30 nM Bex increased mmp11 expression, although this result did not 323 

reach statistical significance (p = 0.068), using the maximal number of biological replicates (n = 6) 324 

recommended for pooled, outbred animal tissues. However, co-treatment of T3 with 1 nM TBT did result 325 

in significantly potentiation of mmp11 expression (n =3, p = 0.0004). Furthermore, UVI inhibited the T3 326 

induction of mmp11 significantly (n = 4, p = 0.001). In the experiments using Bex, even though T3 on its 327 

own activated the mmp13l gene 20.8-fold (S.E.M. = 4.95) (white bars in Figure 3d), this activation did not 328 

reach statistical significance (p = 0.0589), like it does in the tail. However, co-treatment with Bex 329 

increased mmp13l activation to significance (p < 0.0001) compared to both vehicle and T3-only 330 

treatments (slashed bar in Figure 3d, Bex). This situation held true for co-treating T3 with TBT (slashed 331 

bar in Figure 3d, TBT): T3-alone activation of mmp13l was not significant (p = 0.65), while T3 + TBT 332 

treatment was significantly potentiated (p < 0.0001) compared to both vehicle and T3-alone (slashed bar 333 

in Figure 3d, TBT). In contrast, in the experiments using UVI, the 7.3-fold activation by T3-alone did 334 

reach statistical significance (p = 0.0008, n = 4), but UVI did not significantly inhibit T3 induction of the 335 

gene (p = 0.14).   336 

 Runx2 is a transcription factor that is required for the transition from proliferating chondrocytes 337 

to hypertrophic chondrocytes in the maturation of cartilage for the development of a bony skeleton (64–338 

66). In non-amniote animals like fish and amphibia, it is required earlier for rostral cartilage formation 339 

(67,68). Due to the extensive changes to jaw cartilage during metamorphosis, we investigated whether T3 340 

regulated its expression. In the LJ, T3 induced expression of runx2 approximately 7-fold (white bars in 341 
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Figure 3e), and this induction was significantly potentiated through co-treatment of either Bex or TBT 342 

with the T3 (slashed bars in Figure 3e, Bex, TBT). In addition, UVI co-treatment significantly inhibited 343 

runx2 induction by T3 (slashed bar in Figure 3e, UVI). T3 did not regulate the expression of runx3, nor 344 

did we see activation of certain runx2 downstream targets like col10a1 (collagen10α1) (data not shown). 345 

 346 

RXR agonists potentiate T3-action in TH-competent (NF 54) tadpoles 347 

 While 1wk-PF tadpoles are considered only partially competent to respond to THs, tadpoles at 348 

NF 54 (approximately 26 days PF) are considered fully competent to respond to THs and to be entering 349 

metamorphosis (21,49,61). We raised tadpoles to NF 54, using hind limb development to determine the 350 

developmental stage (59), and then treated them with 10 nM T3 in the presence and absence of 30 nM 351 

Bex to investigate whether the RXR agonist could still potentiate the action of T3 in a fully competent 352 

tadpole. Tadpoles were treated for three days with compounds (a longer treatment time was not possible 353 

due to the extreme gill resorption in T3 plus Bex animals), and then we measured the LJ angle. Figure 4a 354 

(white boxes) shows that T3-alone caused a small but significant decrease in the lower jaw angle. As in 355 

NF 48 tadpoles, Bex-only treatment had no effect on the lower jaw morphology—tadpoles were 356 

indistinguishable from vehicle-treated. Bex co-treatment with T3 significantly potentiated the decrease in 357 

the LJ angle at this later stage of growth (Figure 4a), suggesting that the ability to increase the 358 

competence for T3 in the lower jaw was still possible, even for these presumed fully competent animals. 359 

 360 

Figure 4: RXR agonists potentiate T3 action in the LJ in pro-metamorphic NF 54 tadpoles. a. Bex 361 

potentiates the T3-induced decrease in the LJ angle in NF 54 tadpoles treated for three days. Boxes and 362 

statistics are as in Figure 1 (n = 14 jaws from 3 clutches). Statistics show results from Sidak’s multiple 363 

comparison test in conjunction with 2-way ANOVA (****, p < 0.0001; ***, p < 0.001; *, p < 0.05). b. 364 

TBT potentiates T3-inducible, integrated luciferase reporter expression in the LJ of NF 54 tadpoles. 365 

  366 
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 Previously we developed a transgenic line of X. laevis frogs that express firefly luciferase (Luc) 367 

under the regulation of the X. laevis thibz TH response elements (TREs) (47,48). In NF 48 tadpoles, 368 

assaying the entire head for Luc activation is required in order to generate a signal robust enough for 369 

statistics. At NF 54 we are able to analyze individual tissues, so we treated NF 54 tadpoles for 2 days with 370 

10 nM T3 in the presence and absence of 2 nM TBT, and then we excised the lower jaws as we did for 371 

gene expression analysis. Luc activity was determined in the lower jaw samples and was normalized to 372 

the protein concentration of each sample. We assayed two clutches independently using two different 373 

TRE-Luc-bearing F2 male frogs to generate embryos with two different wild-type female frogs. TRE-Luc 374 

F2 males, even though they arise from the same founder female, display different levels of Luc activation 375 

by T3 that are nonetheless consistent within a clutch. Figure 4B shows the results of both clutches 376 

individually, showing the different levels of T3 activation between the two clutches. For clutch 2, a TBT-377 

only treatment was also included and showed no activation. Using a 2-way ANOVA analysis of the 378 

combined data from both clutches where treatment and clutch were covariates, clutch was a significant 379 

source of variance (p = 0.0005), as was treatment (p < 0.0001). Using a Tukey multiple comparisons test 380 

post hoc on the combined clutch data, TBT significantly potentiated the T3 activation of the Luc reporter 381 

(p = 0.0092). This result indicates that the RXR agonists at this high-TH-competence stage could further 382 

increase the competence of LJ tissue for T3 at the beginning of natural metamorphosis. 383 

   384 

 385 

  386 
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Discussion 387 

 388 

 In this report we have expanded upon our earlier findings concerning the ability of RXR agonists 389 

to function as a competence factor for TH signaling during vertebrate development (47,48,50). The poor 390 

biological outcomes that arise from insufficient or inappropriate TH during development have 391 

demonstrated the need for assessing the ability of man-made chemicals present in the environment to 392 

disrupt those signaling pathways.  393 

 In order to look at TH disruption in vivo and during development, we have used amphibian 394 

metamorphosis of the African clawed frog, Xenopus laevis. Metamorphosis performs two reciprocal 395 

functions: 1) development of adult tissues and organs required for life as a frog, and 2) removal of larval 396 

tissues no longer needed by the adult frog. Limb formation and growth and lung development are 397 

examples of development of new tissues and organs, and jaw development is an example of remodeling 398 

that must occur for the herbivorous tadpole to become a carnivorous frog. The other side of the 399 

metamorphic coin involves the resorption of larval tissues that are no longer required in the frog, such as 400 

gills and the tail. Naturally, removal of larval tissues must occur after the adult tissues have developed 401 

and become functional. For example, tail resorption is the last step in metamorphosis because it must 402 

occur after limb development is complete and the limbs are functional for locomotion. Under natural 403 

development, it takes approximately two months to go from a fertilized egg through a larval tadpole to a 404 

juvenile frog, with the metamorphic transition from tadpole to frog taking approximately 4.5 weeks under 405 

ideal conditions (13,18,21,59).  406 

 Our studies here employed a precocious metamorphosis assay, to determine whether a disruptor 407 

of TH signaling, which we have previously described disrupting larval tissue resorption phenotypes 408 

(47,50), can also disrupt a larval-to-adult remodeling function, namely, cartilage development in the LJ. 409 

By using 1wk-PF tadpoles, we were able to control the dose of TH, as tadpoles at this age do not yet 410 

synthesize THs. In this scenario, T3 and the potential disrupting chemicals taken up by the tadpole 411 

through administration in the rearing water. Although the LJ of the 1wk-PF tadpole is not able to support 412 
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normal metamorphic changes to the LJ, molecularly the LJ can respond to T3 administration with 413 

reproducible morphological and molecular readouts.  414 

 Previously, we found that both the pharmaceutical RXR agonist Bex and the environmental RXR 415 

agonist TBT disrupted TH signaling in 1wk-PF tadpoles by significantly potentiating the ability of T3 to 416 

drive gill and tail resorption. Furthermore, the RXR antagonist UVI abrogated T3 action. Bex and TBT 417 

functioned identically in a global transcriptomic analysis of T3 signaling in the tail (50), indicating that 418 

TBT was functioning as a bona fide RXR agonist (43,44,46,69–72). Here, we show that the RXR agonists 419 

potentiate T3 action in the LJ by accelerating the rate of change and by increasing the potency of each T3 420 

dose. As in the tail, TBT and Bex behaved nearly identically in the LJ independent of the experimental 421 

readout. In addition, the RXR antagonist abrogated the morphological changes induced by T3. We also 422 

measured the ability of the agonists and antagonist to disrupt T3-induced cellular proliferation. TBT and 423 

Bex both significantly potentiated proliferation, but UVI did not inhibit it. These findings suggest that the 424 

mechanisms of RXR agonist potentiation and of RXR antagonist inhibition are not strictly reciprocal. 425 

Furthermore, in contrast to their effects on proliferation, the opposite was seen in their effects on the T3-426 

induction of the thibz gene. There, the RXR agonists had no effect, and the RXR antagonist significantly 427 

inhibited thibz activation. This was also seen in tail expression of thibz (50). How the agonists and 428 

antagonist are working at the molecular level is beyond the scope of these studies, but more than one 429 

mechanism is in play. Interestingly, RXR agonist s and the antagonist do not always behave in a 430 

reciprocal manner at all molecular or cellular targets when examined in detail. 431 

 UVI prevented morphological changes to the LJ in the presence of T3 but did not inhibit cellular 432 

proliferation, which suggests that cellular proliferation was not the main driver behind the morphological 433 

narrowing of the LJ. A better fit to the morphology patterns observed with RXR agonists and antagonist 434 

modulation of the LJ T3 response is the expression patterns of the matrix metalloproteases we tested. 435 

Both mmp11 and mmp13l expression levels were potentiated by RXR agonists and inhibited by UVI. This 436 

was also true for the transcription factor runx2, which in mice is required for formation of ossified bones 437 

(73). In Xenopus and zebrafish, runx2 is required earlier for cranial cartilage formation (67,68), but in our 438 
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hands, it was significantly activated by T3 exposure, and that activation was potentiated by the RXR 439 

agonists and inhibited by UVI. We believe this is the first example of T3 activating runx2 expression. In 440 

human thyroid cancer and breast cancer cells, TRβ suppressed the expression of runx2 in the presence of 441 

TH, acting as a tumor suppressor (74,75).  442 

 An advantage of using 1wk-PF tadpoles for characterizing disruptors of TH signaling is the size 443 

uniformity of the tadpoles. We normally don’t have to normalize to the vehicle-treated control in each 444 

clutch, as we didn’t in Figure 1. However, as the tadpoles age, this size uniformity disappears, making 445 

morphological measurements more intrusive, as the animals must be housed separately and anesthetized 446 

and photographed before treatment for individual comparisons to after treatment changes. An advantage 447 

of assaying the LJ angle, is that it does not scale with tadpole head size; therefore, tadpoles can be group 448 

housed and measured only after fixation at the end of treatment. This provides a facile assay for TH 449 

disruption over developmental time, which in the case of RXR ligands, as they affect TH competence, 450 

could change as the animal develops and intrinsically increases in TH competence.  451 

 That said, we also chose NF 54 to assess whether the RXR agonists could still potentiate T3 452 

action in the LJ because that is when plasma T3 is first detectable, and therefore, NF 54 is often 453 

considered the dividing line between premetamorphic and metamorphic tadpoles (21). However, NF 54 is 454 

nearly three weeks before metamorphic morphological changes in the jaw become apparent at NF 59 (51), 455 

and it is approximately two weeks before exogenous T3 leads to normal metamorphic development in the 456 

LJ. Therefore, TH competence in the LJ may still not be complete at NF 54 so that the cartilages can 457 

continue to develop in their normal T3-independent fashion until they are in the form that can remodel 458 

appropriately to an adult jaw. Thus, as prometamorphosis proceeds, the animal may be vulnerable to 459 

inappropriate RXR ligand activity from the environment. Ordinarily,  endogenous retinoids can be 460 

controlled by the P450 retinoid-degrading enzymes,  (76,77), yet organotins, or other as yet unknown 461 

chemicals in the environment that activate RXR, evade this buffer, and, therefore, still pose a unique and 462 

challenging problem for the exquisitely timed process of metamorphosis.  463 

 464 
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