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Abstract: Cancer metastasis is a critical culprit frequently blamed for treatment failure, drug 

resistance, poor prognosis, and high mortality rate among all human cancers. Laboratory efforts 

to isolate metastatic cell populations have typically been confined to mouse models, which are 

time-consuming and expensive. Here, we present a model system based on xenografting 

zebrafish embryos to select for cells that are predisposed to progress through the early stages of 

metastasis. This model requires only 3-5 days to achieve distinct intravasation to the zebrafish 

circulatory system. The metastatic cells are easily tracked in real-time as they migrate, as well as 

isolated and propagated in vitro. Once expanded, molecular characterization of the serially 

derived invasive cell populations from the tails of the zebrafish accurately predicts genes, 

signaling pathways, protein-protein interactions, and differential splicing products that are 

important for an invasive phenotype. This zebrafish model therefore offers a high-throughput 

and robust method for identifying gene targets critical for cancer metastasis. 
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Introduction 

Up to 90% of cancer-related deaths have been attributed to metastasis1. Cancer metastasis 

is frequently associated with treatment failure due to drug resistance, poorer prognosis, and high 

mortality in all cancers2. In breast cancers, the presence of metastasis reduces 5-year expected 

survival rates to a dismal 28% compared to 99% survival in localized breast cancer2. The process 

by which cancer cells metastasize from a primary node is typically spoken of through the 

completion of a series of stages: (1) intravasation into the circulatory system; (2) travel through 

the circulatory system; (3) extravasation through the blood vessel endothelia; and finally (4) 

dormancy and/or colonization at the metastatic site1. Unfortunately, the study of cancer 

metastasis and identification of therapeutics specifically targeted towards preventing metastasis 

has been limited by a lack of available models for their study3,4.  

Presently, few model systems allow for the easy isolation and study of a metastatic cell 

population from clinically non-metastatic patients. The first in vivo model for metastatic disease 

was developed in the 1970s by Fidler and Kripke, who injected cultured B16 melanoma cells 

into mice5. Development of in vivo metastasis models has since focused on the use of nude, 

athymic mice, or severe combined immunodeficient (SCID) mice, which lack functional B and T 

cells 6. However, the rodent models suffer from disadvantages that limit their application to 

understanding the metastatic process or developing drugs that can target the metastatic process. 

For example, the long latency period for the rodent models (typically 4-6 months) prevents the 

creation of large-scale, high-throughput drug screens6. Additionally, characterization of cells that 

undergo metastasis is only feasible after euthanasia, providing limited resolution to cells 

undergoing active metastasis using rodent models6. Because of these limitations, rodent models 

for cancer are typically considered better suited for the study of direct antitumor effects on 
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primary tumors rather than on metastasis4. Alternatively, in vitro models, such as the transwell 

invasion assays using either matrix or endothelial cells or various microvessel platforms cannot 

replicate the crucial multistep process required for the metastatic process7–9. Metastasis is an 

increasingly complex production supported through the inclusion of multiple actors such as 

tumor-associated macrophages and neutrophils10–12, stromal components such as cancer-

associated fibroblasts13,14, and even unexpected contributors such as platelets15. Furthermore, in 

vitro models also lack the tumor microenvironment, critical for tumor progression that is present 

in in vivo models8,16,17. As researchers are enlightened to the role that each of these individual 

players plays in metastasis, in vitro models become increasingly obsolete for the accurate 

evaluation of cancer metastasis4. As an alternative, some studies have suggested profiling 

circulating tumor cells (CTCs). However, methods for evaluating CTCs are exceedingly difficult 

due to their rare numbers within the circulation18.  

In recent years, an animal model using the zebrafish (Danio Rerio) has emerged as a 

viable alternative19. Zebrafish models of melanoma, prostate, salivary, and breast cancers, show 

histopathological similarities to their human counterparts when engrafted20–23. Furthermore, 

many of the molecular components involved in metastasis are highly conserved across humans 

and zebrafish24–26. We and others have also shown that cancers modeled in zebrafish display 

similar chemotherapy sensitivity and therapeutic responses when compared to current rodent-

based models22,26–28. In addition to fulfilling critical criteria as an in vivo model, zebrafish offer 

several advantages over other models. For the first two-three weeks, zebrafish have a robust 

innate immune system but have not yet developed a mature adaptive immune system, therefore 

requiring minimal genetic manipulation of host animals for successful engraftment of human 

cancer cells29. Furthermore, cells engrafted in 2dpf zebrafish can survive for up to 10 days, and 
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only require the transplantation of a few hundred cells as opposed to millions of cells that need to 

be transplanted into a single mouse19,30. Furthermore, transgenic zebrafish lines that have been 

engineered to express fluorescent vasculature can leverage the naturally transparent nature of 

early zebrafish to allow for non-invasive, real-time imaging of cancer cell development and 

migration31,32. Additionally, the cost of zebrafish husbandry in a vivarium is significantly less 

than those required for mice33. Finally, each zebrafish breeding pair can yield as many as 300 

embryos allowing for rapid and robust scalability of experiments25,28. 

Here, we report a model utilizing 2dpf zebrafish embryos that leverage the benefits of 

zebrafish for the selection of a cancer cell population analogous to human CTCs. Specifically, 

upon engraftment within the yolk sac of 2dpf zebrafish, a small subpopulation of cells will 

invade through the endothelium into the zebrafish circulatory system, arresting within the caudal 

plexus of the zebrafish within 5 days. These cells can subsequently be physically separated from 

the initial engraftment and propagated in vitro. Serial injection of the putative invasive 

subpopulation through this zebrafish intravasation model subsequently selects for a cell 

population with distinct phenotypic and transcriptomic differences from its parental population. 

Notably, the resulting cellular population accurately identifies enrichment of genes and pathways 

involved in establishing an invasive phenotype. Taken altogether, this model enables the rapid 

and robust isolation of a population of cancer cells predisposed to intravasation within an in vivo 

context, providing researchers with a powerful tool for the study of the early stages of cancer 

metastasis. 
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Results 

Zebrafish xenografts can be used to differentiate functionally invasive cell populations 

 We first sought to establish that cell transplantation into 2dpf zebrafish could differentiate 

between cells that are expected to intravasate and those that are not within a reasonable time 

frame. To begin, we injected cells from two human epithelial breast cancer cell lines, MCF7 and 

MDA-MB-231, into the yolk sac of 2dpf zebrafish embryos. In mouse models, the breast 

adenocarcinoma MCF7 cell line has consistently been shown to be poorly metastatic in vivo34. 

On the other hand, MDA-MB-231 cells, which were derived from the pleural effusion of a 

patient with invasive triple-negative ductal carcinoma, are routinely used as a model for 

aggressive late-stage cancer35,36. Based on our prior studies, each zebrafish yolk sac could be 

injected with up to 200 cells to allow for both high-throughput screenings while also maintaining 

zebrafish viability22. Consistent with their behavior in mice, transiently labeled MCF7 cells 

exhibited minimal intravasation and arrest within the tail of the zebrafish compared to MDA-

MB-231 cells after 5 days (Fig. 1a, b).  

 Based on these initial results, we designed a study involving the serial injection of MDA-

MB-231 cells into 100 transgenic flk:gfp labeled zebrafish (Fig. 1c). An initial “parental” 

population of MDA-MB-231 cells was injected into the yolk sac of zebrafish and monitored for 

arrest within the tail of zebrafish. When >50% of zebrafish exhibited cells within the caudal 

plexus, the tails were cut, and any labeled cells were isolated and grown in vitro to form the “F1” 

generation. Once grown, the F1 population was similarly engrafted into the yolk sac of 2dpf 

zebrafish embryos, subsequently yielding the “F2” population. Final engraftment of the F2 

population was then performed to evaluate their invasive phenotype. Upon injection, we 

observed that the parental, F1, and F2 populations took increasingly shorter amounts of time to 
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achieve >50% intravasation (Fig. 1d). While zebrafish injected with parental cells only achieved 

~40% intravasation after 120 hours, F1- and F2-injected zebrafish achieved >50% intravasation 

within 72 and 24 hours, respectively. Overall, both rounds of serial injection to generate the F1 

and F2 populations as well as culture growth required ~30 days.  

 Upon in vitro culture, the parental, F1, and F2 populations also exhibited dramatically 

different morphological phenotypes (Fig. 1e). While the parental population exhibited a 

cobblestone appearance commonly associated with epithelial cells, the F1 and F2 populations 

exhibited a more protruded, spindle-like morphology associated with invasive, mesenchymal 

cells 37. This epithelial-to-mesenchymal (EMT) phenotype change was also confirmed by 

increasing vimentin, a mesenchymal marker, and decreasing cytokeratin, an epithelial marker, 

expression via immunofluorescence (Fig. 1e). These trends were similarly confirmed in 

quantitative reverse-transcriptase PCR (Fig. 1f). qRT-PCR of epithelial (CK7, CK8, CK20, 

EpCAM), mesenchymal (VIM), EMT TFs (SLUG, SNAIL), and cancer stem cell markers 

(ZEB1, L1CAM) all exhibited trends consistent with an invasive cellular population in the F1 

and F2 populations. Notably, the F1 and F2 populations have retained these differences through 

nearly 2 years of in vitro expansion. 

 Next, we sought to evaluate whether the distinct invasive behaviors of the parental, F1, 

and F2 generations would be retained through an in vitro invasion assay. After one year of 

culture, MCF7, parental, F1, and F2 were clustered and embedded within a 3-dimensional 

invasion assay and evaluated for invasive behavior for 24 hours. As expected, MCF7 clusters did 

not exhibit any invasion in this extracellular matrix. Parental, F1, and F2 clusters exhibited 

invasion with increasing intensity, consistent with their behavior in vivo (Fig. 1e). Importantly, 

while parental clusters did exhibit protrusions after 24 hours, there was minimal cell body 
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migration. By comparison, both the F1 and F2 clusters exhibited significant migration of cell 

bodies, suggesting the parental population had not fully invaded compared to the F1 and F2 

populations.  

 

Selected F1 and F2 populations accurately enrich for metastasis-associated genes and pathways 

 In cancer, only a small subset of cells completes the metastatic cascade and result in the 

formation of a metastatic nodule5,38. Accurate prediction of the particular subpopulation of cells 

from an initial pool of heterogeneous cancer cells would be a critical tool necessary to support 

the discovery of metastasis-targeting therapeutics4. Therefore, we next sought to determine 

whether serial transplantation through the zebrafish model could accurately select for a 

subpopulation of cells that are enriched for metastasis-associated drivers. 

 To address whether the parental, F1, and F2 populations were transcriptionally distinct, 

we performed next-generation bulk RNA-sequencing. Principal component analysis of 

sequenced RNA libraries from the three respective populations revealed significant changes 

between all populations (Fig. 2a). Consistent with our depicted phenotypes, both the F1 and F2 

subpopulations expressed lower epithelial (KRT8, KRT18, KRT19, CLDN3, CLDN4, EGFR, 

and DSP) and higher mesenchymal (VIM, CD44, SNAI2, COL6A3, ITGA5, IL6) genes 

compared to their parental source (Fig. 2b). Overall, using their parental source population as a 

common control, an absolute log 2-fold change cutoff of at least 1.5, and an adjusted p-value 

cutoff of 0.05, the F1 and F2 populations were upregulated in 842 genes and downregulated in 

875 genes (Fig. 2c). Among those genes that were most significantly upregulated were CSF3, 

G0S2, COL7A1, IL16, SAA2, C15orf48, and DNER.  
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F1 and F2 populations are enriched for breast cancer-associated pathways and protein 

interactions 

While differential gene analysis provides researchers with an ability to examine trends in 

individual genes, pathway enrichment analysis provides mechanistic insight based on broader 

gene sets, leveraging the promises of next-generation sequencing39. The Kyoto encyclopedia of 

genes and genomes (KEGG) is a publicly available database of curated gene sets containing 

various cancer-associated gene sets as well as common signaling pathways40. Using the parental 

population as a common control, KEGG analysis identified enrichment of several cancer-

associated gene sets in the F1 and F2 populations relative to parental such as transcriptional 

misregulation in cancer (hsa05202), pathways in cancer (hsa05200), and breast cancer 

(hsa05224) (Fig. 3e). In addition to these cancer-specific gene sets, the F1 and F2 populations 

were also significantly enriched for TNFα, NF-Kβ, MAPK, IL-17, ErbB, HIF-1, RAS, RAP1, 

PI3K-AKT, and mTOR signaling pathways. Gene Set Enrichment Analysis (GSEA) is another 

computational method commonly used to determine whether there is a significant difference in 

pathway expression between biological states41,42. Once again using the parental population as a 

common control, GSEA analysis identified enrichment of several gene sets in the F1 and F2 

populations relative to their parental source, including the hallmark gene set EMT (NES 1.59, p-

value = 0.028, Fig. 2f and Table S2) as well as TNFα signaling, in harmony with KEGG 

analysis.  

 

The F1 and F2 populations are enriched for RNA splicing events and protein-protein 

interactions associated with cancer metastasis 
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 While the existence of differential transcriptomic variations linked to metastasis in breast 

cancer is well studied, the presence of differential RNA splicing events is less explored. Given 

the limited absolute number of genes encoded by the human genome, it is safe to assume that 

differential RNA-splicing, which can result in variations of proteins given a similar genomic 

template, might play a critical role in breast cancer metastasis43. Using a computational 

framework, we identified a total of 526 differentially spliced products spanning 442 unique 

genes when evaluating the F1 and F2 subpopulations relative to their parental counterparts (Fig. 

3a & 3b). Overall, 43 genes displayed both differential expression as well as differential 

splicing. DisGeNET is an integrated platform for evaluating gene-disease associations44. When 

evaluating known gene-disease associations among the 443 unique genes differentially spliced, 

one of the top associations identified was mammary neoplasms, which were associated with 

differentially spliced genes such as HIF1A, BIRC5, LPAR1, SiRT1, and others (Fig. 3c). Next, 

KEGG analysis was performed, identifying enrichment of genes belonging to the KEGG gene set 

Pathways in Cancer (pval = 0.0347, Fig. 3d). Notably, of the genes identified, BIRC5 aka 

Survivin is associated with both mammary neoplasms and pathways in cancer. BIRC5 and its 

splice variants have previously been shown to associate with a poorer overall prognosis in 

metastatic breast cancer45,46. Clinical studies targeting survivin and its splice variants with 

surviving antagonists have been proposed with promising results46. In this study, we identified 

differential splicing of three separate variants of BIRC5, each of varying translated protein length 

(Fig. 3e). 

Next, we sought to evaluate whether the F1 and F2 populations were enriched for 

metastasis-associated protein-protein interactions (PPIs)47. Recent studies investigating PPIs 

have given life to the possibility of targeting important interactions to inhibit extracellular signals 
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in cancer48. We conducted a network analysis of mammary tissue-specific PPIs within either the 

up- or down-regulated genes of the F1 and F2 populations (Fig. 3f). Among genes that were 

significantly upregulated in the F1 and F2 populations, MYC, VIM, JUN, CD81, NFKB1, 

CEBPB, HLA-B, and CEP250 all exhibited high interconnectedness (degree ≥ 10) with other 

upregulated proteins (Fig. 3f and Table S3). On the other hand, downregulated proteins APP, 

GABARAPL1, and MAP1LC3B exhibited high interconnectedness (degree ≥ 10) among the 

downregulated proteins (Fig. 3f and Table S4). All-in-all, both differential splicing and PPI 

network analysis revealed that the F1 and F2 populations were enriched for phenotypes 

consistent with a metastatic signature. 

 

The zebrafish model identifies functionally important drivers of cellular invasion 

 Importantly, one of the key criteria for the selection of the F1 and F2 subpopulations was 

their ability to successfully invade through the yolk sac and intravasate through the endothelium 

of the zebrafish circulatory system. We therefore sought to determine whether the increased 

invasiveness of the F1 and F2 populations could be inhibited through an in vitro functional study. 

We began by identifying seven target genes that spanned a variety of cellular functions and were 

all upregulated within the F1 and F2 populations. The seven genes identified were SNRPA1, 

MT1X, SRGN, CTSD, S100A11, SERPINE1, and DDIT4 (Fig. 4a). Based on their expression in 

RNA-seq data, we determined to investigate whether knockdown of these genes within the F2 

subpopulation by short hairpin RNA (shRNA) could reduce cellular invasion to levels consistent 

with their parental source. To verify successful knockdown, we utilized qRT-PCR amplification 

of these targets in the parental, F1, F2, and F2 infected with a scramble shRNA cell lines. Based 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.07.471608doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471608
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

on qRT-PCR, expression of the seven target genes was successfully reduced to levels like their 

parental counterpart in all genes (Fig. 4b). 

Next, we embedded clusters of each cell line into a 3-dimensional ECM analog and 

evaluated their invasion after a 24-hour period (Fig. 4c). Within each cluster, cells were deemed 

to be invading if a cellular body was identified distinct from the primary cluster body using 

Hoechst staining. Clusters of F2 cells infected with a scramble shRNA depicted similar invasion 

to wild-type F2 (p-value = 0.426) and F1 (p-value = 0.098) clusters, and statistically increased 

invasion relative to the MCF7 (p-value = 0.022) and parental (p-value = 0.003) clusters, 

consistent with their derived zebrafish phenotypes (Fig. 4d). Notably, shRNA-mediated 

knockdown of DDIT4 (p-value = 0.045), MT1X (p-value = 0.026), and S100A11 (p-value = 

0.013) generated statistically significant decreases in invasion compared to the F2-scramble 

infected cells while SRGN (p-value = 0.473), SNRPA1 (p-value = 0.2954), and SERPINE1 (p-

value = 0.152) did not decrease the invasion (Fig. 4d). 

 Finally, we sought to determine whether the genes we targeted exhibited clinical 

relevance within the context of metastatic breast cancer. Using publicly available clinical and 

gene expression data from the METABRIC study49, we first employed the computational tool X-

tile to determine an appropriate cut-off z-score value for the genes of interest50. Based on this 

cut-off, we allocated subjects into either a high- or low- expression pool to perform Kaplan-

Meier survival analysis. Of the seven genes, increased expression of all but SNRPA1 and 

S100A11 exhibited a statistically significant association with poorer overall survival over 240 

months (Fig. 4e). Taken together, these data propose that DDIT4 or MT1X could be viable 

targets for inhibiting breast cancer invasion and metastasis. 
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Discussion  

 Here we report the development and characterization of a model based on zebrafish 

xenografts that enables the rapid and robust selection of cells based on metastatic behavior. This 

model takes advantage of the high scalability and rapid processing potential of zebrafish 

embryos compared to their laboratory mouse counterparts. Through serial xenotransplantation, 

we generated two subpopulations of cells, F1 and F2, based solely on their ability to invade and 

intravasate into the zebrafish circulatory system. Previous studies have demonstrated the utility 

of zebrafish embryos in investigating metastasis, often stopping short of characterizing the 

resulting cells. Here, we have successfully enriched and expanded the subpopulation of 

metastatic cells from an initial heterogeneous population, resulting in cells analogous to human 

CTCs (Fig. 1). Once expanded, characterization of the populations demonstrated an ability to 

accurately model expected phenotypes of cancer metastasis, including an epithelial-to-

mesenchymal transition and pathways involved in cancer (Fig. 2). In addition to transcriptomic 

analysis, differential RNA-splicing and protein-protein interactions in the serially generated F1 

and F2 populations were consistent with expectations of invasive phenotypes from past studies 

(Fig. 3). Furthermore, functional studies involving shRNA-mediated knockdown of select genes 

enriched in the F2 population demonstrated a potential pipeline that could be used to identify 

drivers of cancer metastasis and evaluate the mechanisms of metastasis at high resolution (Fig. 

4). 

By RNA-sequencing, the F1 and F2 populations exhibited increased expression of genes 

that are known to be associated with cancer metastasis. For example, CSF3 (AKA granulocyte 

colony-stimulating factor AKA G-CSF) has been shown to act through multiple methods to 

enhance breast cancer metastasis, such as the induction of granulocytic myeloid-derived 
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suppressor cells which subsequently reduce T cell activation and proliferation or through the 

direct activation of H-Ras oncogene, MAPK, ERK1/2, and AKT signaling pathways51. Similarly, 

mechanisms by which the top upregulated genes G0S252, COL7A153, IL1654, and DNER55 

enhance breast cancer metastasis or seeding have all been independently verified, while 

increased expression of SAA256 and C15orf4857 have been associated with poorer prognosis in 

breast cancers. On the other hand, loss of F1 and F2 downregulated genes such as SUSD2 has 

been linked to enhanced ovarian cancer metastasis in preclinical mouse models58. Furthermore, 

many of the signaling pathways enriched in the F1 and F2 populations have been identified in 

breast cancer and oftentimes lead to enhanced metastasis59–62. In addition, several pathways such 

as the PI3K/AKT, MAPK, and mTOR signaling pathways already have therapeutic compounds 

approved for treatment in breast cancer patients (e.g. rapamycin)63. Additionally, epithelial-

mesenchymal transitions, which were shown to be upregulated in the serially generated F1 and 

F2 populations, have routinely been identified as critical to a cell’s ability to invade through the 

extracellular matrix and intravasate into the bloodstream64. Also, the enrichment of genes such as 

LPAR1 in the F2 population is consistent with previously shown enrichment in breast cancer cell 

line “trailblazer” populations65. The ability of the zebrafish model to identify enrichment of these 

gene sets further speaks to the accuracy by which this model can be used to study cancer 

metastasis. 

Recently, attention has turned towards the role that alternative splicing—the process by 

which multiple functionally distinct transcripts can be encoded from a single gene—plays in 

breast cancer metastasis66. In-depth studies have identified global alternative splicing signatures 

associated with epithelial-mesenchymal transition67 and breast cancer metastases43, among other 

canonical pathways important to cancer metastasis. In this study, we identified differential 
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alternative splicing in 526 transcripts spanning 442 unique genes. Of those genes with spliced 

variants were genes from the KEGG pathways in cancers gene set as well as those with strong 

associations to mammary neoplasms. The F1 and F2 subpopulations were also enriched for genes 

such as BIRC5 with known splice variants involved in breast cancer metastasis. PPIs add a 

further degree of -omics to study the zebrafish model. In this study, we found it important to 

evaluate expected tissue-specific interactions given the importance of extracellular signaling in 

cancer metastasis68. Among upregulated genes, MYC, VIM, and JUN were the most 

interconnected proteins. Similarly, APP, GABARAPL1, and MAP1LC3B were the most 

interconnected downregulated proteins. Silencing of APP has been shown to inhibit cell 

migration and invasion in breast cancers69. Similarly, increased protein activity of 

GABARAPL170,71 and ubiquitination of MAP1LC3B72 have both been implicated in autophagy-

induced cell death, tumor invasion, and metastasis. Subsequent induction of MAP1LC3B by 

proteasome inhibitors induced significant tumor cell death, suggesting a therapeutic strategy for 

targeting PPIs72. 

Ultimately, the zebrafish model utilized here fulfills a critical unmet need in the study of 

tumor metastasis73–75. Current studies involving metastasis are limited by the available in vivo 

technologies. The current gold standard to study tumor metastasis in vivo relies on murine 

models, which are resource-intensive and typically require months between quantifiable data 

points. This makes high-throughput studies impractical. Importantly the use of individual 

patient-derived metastatic cells and an in vivo model to guide clinical strategy is almost 

impossible using mice as the patient would succumb to the disease before sufficient data is 

generated. Zebrafish, on the other hand, are a useful oncogenic model that requires considerably 

less infrastructure, is extremely low-cost, and is uniquely suited for use within clinical timelines 
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(~7-30 days to yield a stable cell line from zebrafish compared to months required for the same 

result in mice)19. Potential clinical applications of this model include predicting the risk of 

metastasis and selecting the drug (or drug cocktail) that elicits the greatest patient-specific 

response in the isolated and expanded metastatic cell populations. 

Despite the advantages of the model demonstrated here, there are certain limitations to 

their application. One concern is that not all cells that intravasate successfully will become 

metastatic nodes76,77. In this iteration of the model, experiments were stopped 5 days after 

injection due to the transient nature of the caudal venous plexus as an organ analogous to the 

bone marrow/fetal liver78. Recently, adult immunodeficient zebrafish analogous to severe 

combined immune deficiency (SCID) mice have been developed79. Future iterations of the model 

may seek to expand this work in adult prkdc-/-, il2rga-/- transgenic fish. Additionally, the cell 

lines used in this proof-of-principle study are conventional cancer cell lines, and therefore may 

not truly replicate the phenotype and behavior of patient-derived cells. Alternatively, injection of 

patient-derived cell samples would ensure greater adherence to expected metastatic behavior. 

These changes would enable the study of late-stage metastatic phenomena such as extravasation, 

dormancy, and metastatic outgrowth. Another confounding variable that needs to be 

acknowledged involves differences in physiological temperature between zebrafish, which are 

bred and maintained at 26-28°C, and humans80. For this study and others, xenografts are 

typically maintained at 34°C for the duration of their injection and monitoring, with no dramatic 

effects on zebrafish viability or xenograft behavior27,81. Finally, despite lacking sites of 

secondary metastasis for breast cancer such as the brain, liver, and bone, adult zebrafish would 

allow the study of lung metastases, which is a major secondary site (~60% incidence) in breast 
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cancer physiology82. All-in-all, we believe that this zebrafish model provides unique advantages 

that will likely facilitate their utility as a preclinical model for cancer metastasis over time. 

In summary, we have established a rapid and robust method that leverages zebrafish to 

routinely isolate metastatically-inclined cells from a heterogeneous population of human 

cancerous cells. These cells can be expanded in vitro and subjected to several iterations of the in 

vivo selection process, allowing the enrichment of increasingly invasive cells. This platform has 

the potential to allow the rapid and inexpensive isolation and propagation of individual patient-

derived metastatic cancer cells and advance basic and translational research in tumor metastasis. 

Given the clinical burden of metastasis, it is imperative that new technologies which take 

advantage of next-generation techniques be developed and are added to the cancer researcher’s 

toolbox. This proposed model does not require any specific device, nor does it rely on specific 

biomarkers, and therefore represents an easily accessible technology that can potentially be 

applied to any and all tumor types. Moving forward, we envision the model demonstrated here 

being used to identify genetic/molecular drivers of metastasis, guide the development of 

metastasis-prevention therapeutics, and predict clinical outcomes for individual patients.   
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Materials and Methods 

Zebrafish husbandry, injections, and isolation  

All animal procedures were conducted in accordance with NIH guidelines for the care 

and use of laboratory animals and approved all experimental protocols with zebrafish by the 

Georgetown University Institutional Animal Care and Use Committee, Protocol #2017-0078. For 

the evaluation of metastasis, cells were first labeled with the lipophilic dye CM-dil (Thermo 

Fisher, V22885) according to the manufacturer’s instructions. Zebrafish embryos were injected 

with 100-200 labeled tumor cells into the yolk sac at 2-day post fertilization (2dpf). 

Tg(kdrl:grcfp) zebrafish express green reef coral fluorescent protein in the vascular endothelium 

31. Invasion into the vasculature was monitored on a day-to-day basis via an Olympus IX-71 

inverted microscope. Embryos were evaluated daily for tumor cell migration and health of the 

embryos. On days of harvest, zebrafish was rinsed twice in autoclaved water followed by a brief 

exposure to ethanol to sterilize zebrafish.  Zebrafish were then washed twice in primocin 

containing 1x PBS. Zebrafish were then incubated for 30 minutes in PBS mixed with 1x 

primocin, 1x plasmocin and Y-compound (1 µM). Tails and heads were cut using a scalpel and 

collected in cell culture medium supplemented with primocin and Y-compound (5µM). Tails 

were rinsed three times in PBS supplemented with primocin and Y-compound and subsequently 

spun in a centrifuge at 300g for 5 minutes at 4℃ and digested in a mixture of 500 µl of PBS and 

Liberase at 37℃ for 20 minutes. After 20 minutes, the digestion was stopped by adding 5 ml of 

complete DMEM and spun in a centrifuge at 300g for 5 minutes at 4℃ and washed once more 

with PBS supplemented with primocin and Y-compound. Cells were subsequently plated in 

culture dishes with M-2D medium supplemented with primocin and plasmocin. Cell medium 
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supplemented with primocin and plasmocin was changed daily for a week then every two days 

for additional two weeks.  

 

Cell Lines 

MDA-MB-231 and MCF7 cells were ordered through ATCC. MDA-MB-231 cells and 

subsequent subpopulations were plated in medium composed of 3:1 (v/v) complete DMEM:F12 

nutrient mix supplemented with insulin (final concentration 2.5 µg/mL), gentamicin (10 mg/mL), 

cholera toxin (0.05 nM), EGF (0.125 ng/mL), hydro-cortisone (25 ng/mL), adenine (25 µg/mL) 

and ROCK inhibitor Y-27632 (10 mM). All cultures were maintained at 37°C in 5% CO2 in a 

humidified chamber. Cells were split at 1-to-6 ratios every four to five days using Accutase. 

 

shRNA-mediated knockdown  

shRNAs targeting the genes of interest were purchased from Sigma-Aldrich, including 

shRNAs targeting S100A11 (TRCN0000289926), SERPINE1 (TRCN0000370107), SRGN 

(TRCN0000007987), DDIT4 (TRCN0000062421), CTSD (TRCN0000003660), and MT1X 

(TRCN0000155121). shRNAs targeting SNRPA1 were gifted by Hani Goodarzi from the 

University of California, San Francisco. shRNA constructs were packaged in HEK 293T cells 

using FuGENE 6 Transfection Reagent (Promega E2691) according to manufacturer’s protocol. 

MDA-MB-231 F2 cells were then infected with shRNA packaged within lentiviruses in Opti-

MEM (Invitrogen 51985034) supplemented with 8µg/mL polybrene (Millipore TR-1003-G). 

Once infected, cells were selected using increasing concentrations of puromycin up to 5µg/mL as 

needed. Once selected, cells were kept in culture medium supplemented with basal level 

puromycin (0.5µg/mL). 
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3-Dimensional Invasion Assay  

 Cells were dissociated into single cells using mechanical and enzymatic dissociation via 

Accutase (Innovative Cell Technologies #AT 104). Once dissociated, 1000 cells/well were 

pipetted within a 96-well U-bottom ultra-low attachment plate (Thermo Fisher #174925) 

followed by a quick centrifugation step at 1200 rpm for 4 minutes. Cells were supplemented with 

250 uL of medium and allowed to cluster undisturbed for 4 days. After 4 days, individual 

clusters were collected and centrifuged at 1200 rpm for 4 minutes at 4°C. Once spun down, the 

supernatant was aspirated, and cell clusters were gently resuspended in neutralized rat tail 

Collagen I/BM mix (2.4 mg/mL Collagen I (Corning #354236) and 2 mg/mL Cultrex 

(BioTechne #3533-005-02), plated on 20 uL of a base layer of Collagen I/Cultrex, overlaied with 

serum free media, and allowed to invade for 24 hours. After 24 hours, embedded clusters were 

fixed for 1 hour at room temperature using 4% formaldehyde, followed by an additional 1 hour 

incubation step in 0.5% Triton X-100 diluted in PBS (v/v). Embedded clusters were stained for 

Phalloidin (Invitrogen, #A22283) and cell nuclei using Hoechst 33342 (Invitrogen #H3570)  for 

1 hour at room temperature. Immunofluorescence images were captured using a ZEISS LSM800 

Laser Scanning Confocal. Finally, ImageJ analysis was used to quantify cellular invasion. 

 

RNA Extraction and qRT-PCR 

 Total RNA of all cell lines was isolated using Monarch Total RNA miniprep kits 

(#T2010S, New England Biolabs) according to manufacturer’s protocol. RNA was extracted and 

measured via Nanodrop-1000. RNA was subsequently sent for either library preparation and 

RNA-sequencing to Genewiz or cDNA preparation via a two-step process beginning with 
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Lunascript RT Supermix Kit (#E3010, New England Biolabs). qRT-PCR was performed on 

cDNA from samples for genes of interest using the Luna Universal qPCR Master Mix (#M3003, 

New England Biolabs) according to manufacturer’s specifications. qPCR was performed on a 

BioRad CFX96 Touch Real-Time detection system with 60 seconds at 95°C followed by 40 

cycles of 15 seconds at 95°C and 30 seconds with plate read followed by a melting curve 

analysis. GAPDH was measured as a reference gene. Primers used are provided in Table S1. The 

relative mRNA expression level was normalized to reference genes and determined using the 2-

ΔΔCT method.   

 

RNA-Sequencing Analysis 

Library preparation and RNA-sequencing from isolated RNA samples was conducted by 

Genewiz, Massachusetts, USA using an Illumina sequencing platform. Only those RNA-samples 

that yielded a RIN score > 7.0 and sufficient RNA quantity were prepped and sequenced. 

Experimental design was made following consultation with Genewiz. Read files were trimmed 

using Trimmomatic 83 and aligned to the human genome (GRCh38.p13) using the STAR aligner 

84. Aligned reads were quantified using featureCounts 85 and differential expression analysis was 

performed in R using DESeq2 86. Normalized feature counts were used for Gene Set Enrichment 

Analysis (GSEA, Broad institute). Matlab R2021a was used to generate heatmaps and 

clustergrams for figures. In heatmaps, colors were scaled by row according to normalized feature 

counts.  

 

Differential RNA-splicing 
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 Reads were aligned using STAR (v2.7.1a) to human genome (hg38) using iGenomes 

GTF annotations. MISO (v0.5.4) was then used to compare alternative splicing of skipped exons 

(paired end mode with fragment lengths of 219.4 (53.7) and 210.3 (52.0), for parental and 

derived lines respectively). Rstudio packages ggbio and ggplot2 were used to map differential 

splicing events and various other plots presented here. 

 

Protein-protein interaction and gene-disease network analysis 

 Network analysis for protein-protein interactions and gene-disease associations were 

performed using NetworkAnalyst and accessed at https://www.networkanalyst.ca 87. Briefly, 

gene lists were inputted into NetworkAnalyst. Network analysis was performed investigating 

breast mammary tissue specific protein-protein interactions with a stringent 30.0 filter and gene-

disease associations. Network visualization was performed using a Force-atlas layout and 

customized using the built-in network visualization toolset. 

  

Kaplan-Meier Survival Curves and Clinical Data 

 Clinical and mRNA expression data from the METABRIC study were downloaded from 

cbioportal.org. Expression data, clinical vital status, and clinical overall survival in months were 

extracted using Matlab R2019b. X-tile software was provided online by the Rimm laboratory and 

accessed via https://medicine.yale.edu/lab/rimm/research/software/. To assess a suitable cutpoint 

for high/low expression data for each gene we used 700/1904 patient samples selected in un-

biased fashion and used it as a “discovery cohort”.  Cutpoints for each gene were determined 

using a dead of disease censor and 20-year cutoff for overall survival in X-tile 50. Kaplan-Meier 
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analysis and plots were subsequently performed in Matlab R2019b using all 1904 patient 

samples and the respective cutpoint for each gene. 
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Data and materials availability: RNA sequencing data in the current study have been deposited 

in the Gene Expression Omnibus (GEO) under accession number GSE153161. 
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Figure 1: 2 days post-fertilized zebrafish embyros can be used to identify differentially invasive cellular populations. (a) 

Injection into the yolk sac of MCF7 and MDA-MB-231 cells results in cell arrest within the caudal plexus in only MDA-MB-

231 injected zebrafish. (b) Cells appear within the tail of the zebrafish within 5 days of injection. (c) Visual workflow of 

proposed serial transplantation of the MDA-MB-231 heterogeneous parental population, which yields the F1 and F2 

subpopulations. (d) 231 parental, F1, and F2 cells have progressively faster time-to-arrest within the zebrafish tail. ≥ 40% of 

injected zebrafish have cells visibly arrested within the tail in 120, 72, and 24 hours, respectively. (e) Phase and 

immunofluorescence images of resulting in vitro cultured 231 parental, F1, and F2 cells after nearly a year in culture. (f) qRT-

PCR amplification of epithelial (CK7, CK8, CK20, EpCAM), mesenchymal (VIM), EMT TFs (SLUG, SNAIL), and cancer 

stem cell markers (ZEB1, L1CAM) of the three subpopulations. (g) Clusters of MCF7, MDA-MB-231 parental, F1, and F2 

cells were embedded within a 3-dimensional Matrigel-based extracellular matrix and allowed to invade over 24 hours. Here, 

Hoechst stain for cell nuclei is shown in white and Phalloidin is depicted in red. Top = ImageJ mask of cell clusters used for 

analysis; Middle = phase microscopy, scale bars = 100 µm; Bottom = A 4x digitally generated inset highlighting edges of 

clusters. 
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Figure 2: RNA-sequencing of MDA-MB-231 derived parental, F1, and F2 populations was performed. (a) Principal-

component analysis reveals transcriptomic distinction between all three subpopulations. (b) A heatmap depicting RNA-

sequencing expression of a select panel of epithelial and mesenchymal markers is shown. (c) A clustergram of the overall 

transcriptomic landscape of the parental, F1, and F2 populations. (d) A volcano plot depicting the most significantly 

upregulated and downregulated genes when comparing the F1 and F2 populations relative to the common parental control. (e) 

A KEGG analysis was performed, revealing enrichment of several important cancer-associated pathways in the F1 and F2 

populations. (f) GSEA analysis identified enrichment of the hallmarks gene set Epithelial-Mesenchymal Transition and TNFα 

Signaling via NF-kβ, among other gene sets. 
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Figure 3: Differential RNA-splicing and protein-protein interactions associated with cancer and metastasis were enriched in 

the F1 and F2 populations compared to parental population. (a) Overall, 107 genes were both significantly differentially 

expressed and differentially spliced. (b) A volcano plot of the 526 differentially spliced transcripts. (c) Gene-disease 

association analysis using DisGeNET revealed differentially spliced genes associated with mammary neoplasms. (d) KEGG 

pathway analysis identified differentially spliced genes included within the Pathways in Cancer geneset. (e) BIRC5 was one 

of the few genes that was both differentially expressed and differentially spliced. The three spliced variants of BIRC5 

differentially spliced in the F1 and F2 populations are shown mapped. (f) Mammary tissue-specific protein-protein 

interactions identified the most interconnected proteins involved in the upregulated (left) and downregulated (right) genes. 
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Figure 4: A functional assay evaluating potential transcriptomic drivers of invasion was performed. (a) Seven target genes, 

each with different cellular functions, were targeted for shRNA-knockdown in the F2 population. (b) qRT-PCR amplification 

quantifying knockdown of the respective gene within the F2 population. Notably, expression of all genes was successfully 

reduced to near parental expression levels. (c) Clusters of various wildtype or shRNA-knockdown cell lines were embedded 

within a 3-dimensional extracellular matrix and allowed to invade for 24 hours. Clusters were subsequently stained with 

Hoechst (blue) and Phalloidin (red) and (d) quantified for cellular invasion via ImageJ analysis. (e) Kaplan-meier survival 

curves analyzing gene expression with overall patient survival using the METABRIC dataset revealed statistically significant 

associations in 5/7 genes targeted. Scale bars = 100 µm 
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Supplemental Information 

 

Table S1. Primers used in study 

Target Forward Primer (5’ – 3’) Reverse Primer (5’ – 3’) 

Cytokeratin 7 CAACATCAAGAACCAGCGTG CACAGAGATATTCACGGCTCC 

Cytokeratin 8 CATAGACAAGGTACGGTTCC CTTCATCCACATCCTTCTTG 

Cytokeratin 20 AACTGAGGTTCAACTAACGGAG CTCTTCCAGGGTGCTTAACTG 

EpCAM GTGAGAACCTACTGGATCATC TCAGCTATGTCCACATCATTC 

Vimentin CCTGGATTTCCTCTTCGTGG TCCGGGAGAAATTGCAGGAG 

SLUG TGCGATGCCCAGTCTAGAAA TTCTCCCCCGTGTGAGTTCT 

SNAI1 ACCCCAATCGGAAGCCTAAC AGCCTTTCCCACTGTCCTCA 

ZEB1 ACACCTTTGCATACAGAACCC TGGTGATGCTGAAAGAGACG 

L1CAM TATGGCCTTGTCTGGGATCT CCGGAACATCCTCTCCTTAAAC 
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Table S2: GSEA Enrichment using Common Parental control 

 

Pathway Total Expected Hits P.Value FDR 

TNF signaling pathway 110 4.32 22 1.85E-10 5.90E-08 

Transcriptional misregulation in cancer 186 7.31 25 5.75E-08 6.09E-06 

Pathways in cancer 530 20.8 46 2.16E-07 1.49E-05 

NF-kappa B signaling pathway 100 3.93 17 2.80E-07 1.49E-05 

MAPK signaling pathway 295 11.6 31 4.50E-07 2.04E-05 

IL-17 signaling pathway 93 3.65 16 5.34E-07 2.12E-05 

Cellular senescence 160 6.29 19 1.49E-05 0.000431 

Cell cycle 124 4.87 16 2.53E-05 0.000618 

Proteoglycans in cancer 201 7.9 21 3.80E-05 0.000864 

ErbB signaling pathway 85 3.34 12 0.000109 0.00217 

HIF-1 signaling pathway 100 3.93 13 0.000135 0.00238 

MicroRNAs in cancer 299 11.7 25 0.000277 0.0044 

Ras signaling pathway 232 9.12 21 0.000296 0.00449 

Renal cell carcinoma 69 2.71 10 0.000328 0.0046 

Breast cancer 147 5.78 15 0.000631 0.00789 

Neurotrophin signaling pathway 119 4.68 13 0.000758 0.0086 

mRNA surveillance pathway 91 3.58 11 0.000823 0.00902 

Endocrine resistance 98 3.85 11 0.00153 0.0157 

Rap1 signaling pathway 206 8.09 17 0.00299 0.0265 

Signaling pathways regulating pluripotency of stem cells 139 5.46 13 0.00313 0.0269 

Adipocytokine signaling pathway 69 2.71 8 0.00538 0.0392 

PI3K-Akt signaling pathway 354 13.9 24 0.00622 0.043 

mTOR signaling pathway 153 6.01 13 0.00706 0.0468 

Endometrial cancer 58 2.28 7 0.00727 0.0472 

Toll-like receptor signaling pathway 104 4.09 10 0.00752 0.0478 

Estrogen signaling pathway 138 5.42 12 0.00793 0.0495 

DNA replication 36 1.41 5 0.0126 0.0726 

FoxO signaling pathway 132 5.19 11 0.0146 0.0798 

Chemokine signaling pathway 190 7.47 14 0.0173 0.0934 

Hippo signaling pathway 154 6.05 12 0.0179 0.095 

Ubiquitin mediated proteolysis 137 5.38 11 0.0188 0.0962 

Insulin signaling pathway 137 5.38 11 0.0188 0.0962 

RIG-I-like receptor signaling pathway 70 2.75 7 0.0195 0.0983 

VEGF signaling pathway 59 2.32 6 0.0275 0.123 

GnRH signaling pathway 93 3.65 8 0.0293 0.126 

EGFR tyrosine kinase inhibitor resistance 79 3.1 7 0.035 0.145 

Notch signaling pathway 48 1.89 5 0.0391 0.155 

Regulation of actin cytoskeleton 214 8.41 14 0.0421 0.162 

Sphingolipid signaling pathway 119 4.68 9 0.0442 0.167 
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Table S3: Network Nodes for Upregulated Genes 

 

Label Degree Betweenness 

MYC 33 10770.83 

VIM 21 8801.36 

JUN 20 4565.89 

CD81 12 2763.57 

NFKB1 11 3404.58 

CEBPB 11 2720.31 

HLA-B 11 1559.45 

CEP250 10 3821.21 

EIF2C2 9 1944.19 

AKT1 9 1803.39 

TRIM28 8 5062.14 

KRT15 8 4475.12 

HSPA1A 8 3307.4 

HDGF 8 1026.54 

ATF3 8 578.79 

ALYREF 7 2487.61 

TNFRSF1B 7 1643.67 

GRK5 7 1301.2 

IKBKB 7 985.72 

WHSC1 7 717.73 

E2F1 6 2220.32 

RUNX2 6 1382.34 

LYN 6 1007.3 

DDIT3 6 383.16 

PKN1 5 2489.89 

SIAH2 5 1718 

TUBGCP2 5 1066.83 

PA2G4 5 1063.38 

MAGOH 5 867.98 

HMGA1 5 746.71 

TNFAIP3 5 566.61 

LMO2 4 3364 

GIT1 4 1781.4 

CD44 4 1750.85 

AXIN1 4 1698.78 

MAP3K3 4 1240.57 

TUBB6 4 1046.24 

TFDP1 4 991.16 

ADRBK1 4 989 

DVL1 4 909.98 

BCL3 4 868.49 
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CHFR 4 776.94 

EFEMP2 4 744 

EIF4A1 4 691.52 

RPS20 4 689.72 

MAFG 4 656.85 

CTBP1 4 576.44 

GADD45A 4 522.24 

ATAD3A 4 503.62 

PPL 4 497 

TRAF3 4 428.25 

KLF6 4 359.3 

SUV39H1 4 263.78 

TRAF1 4 235.38 

HDAC9 4 163.43 

FOSL1 4 138.44 
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Table S4: Network Nodes for Downregulated Genes, Degrees ≥ 4 

 

Label Degree Betweenness 

APP 54 10795.12 

GABARAPL1 16 4204.78 

MAP1LC3B 10 2373.27 

DSP 9 2625.18 

PDGFRB 7 3346.36 

EPS8 7 2278.61 

NRIP1 6 1326.19 

ATF2 6 1067.35 

ZDHHC17 6 905 

JUP 6 291.67 

ITGB3 5 4459.89 

ANXA2 5 4018.08 

TENC1 5 1930 

ERBB3 4 1918.36 

PIAS1 4 1469.71 

SREBF2 4 1445.41 

ID2 4 1251 

RAB3GAP1 4 903 

NR1H3 4 737.63 

FASN 4 644.66 

ITGB4 4 561.5 

IFIT1 4 450 

IFIT2 4 450 

TMEM173 4 365 

STX11 4 364.5 

SMAD9 4 330.89 

MAPK3 4 255.67 

PKP2 4 220.16 

DSC2 4 58.41 
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