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Abstract 

The blood-brain barrier represents a significant challenge for the treatment of high-grade gliomas, 
and our understanding of drug transport across this critical biointerface remains limited. To advance 
preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro 
models with realistic blood-brain barrier vasculature. Here, we report a vascularized human 
glioblastoma (GBM) model in a microfluidic device that accurately recapitulates brain tumor 
vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the 
transport of targeted nanotherapeutics across the blood-brain barrier and into GBM cells. Using 
modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-
targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our 
in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the 
ability of the platform to model in vivo blood-brain barrier transport. We investigated the therapeutic 
potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy 
of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our 
vascularized GBM model represents a significant biomaterials advance, enabling in-depth 
investigation of brain tumor vasculature and accelerating the development of targeted 
nanotherapeutics. 

Significance Statement 

The blood-brain barrier represents a major therapeutic challenge for the treatment of glioblastoma, 
and there is an unmet need for in vitro models that recapitulate human biology and are predictive 
of in vivo response. Here we present a new microfluidic model of vascularized glioblastoma 
featuring a tumor spheroid in direct contact with self-assembled vascular networks comprised of 
human endothelial cells, astrocytes, and pericytes. This model was designed to accelerate the 
development of targeted nanotherapeutics, and enabled rigorous assessment of a panel of surface-
functionalized nanoparticles designed to exploit a receptor overexpressed in tumor-associated 
vasculature. Trafficking and efficacy data in the in vitro model compared favorably to parallel in vivo 
data, highlighting the utility of the vascularized glioblastoma model for therapeutic development.  

 
Main Text 
 
Introduction 
 
High-grade gliomas are the most common primary malignant brain tumors in adults (1). These 
include grade IV astrocytomas, commonly known as glioblastoma multiforme (GBM), which 
account for more than 50% of all primary brain cancers and have dismal prognoses with a five-year 
survival rate of less than 5% (2). Due to their infiltrative growth into the healthy brain tissue, surgery 
often fails to eradicate all tumor cells (3). While chemotherapy and radiation modestly improve 5 
median survival (4), most patients ultimately succumb to their tumors. This is primarily due to the 
presence of a highly selective and regulated endothelium between blood and brain parenchyma 
known as the blood-brain barrier (BBB) (5), which limits the entry of therapeutics into the brain 
tissue where tumors are located. The BBB, characterized by a unique cellular architecture of 
endothelial cells (ECs), pericytes (PCs), and astrocytes (ACs) (6, 7), displays upregulated 10 
expression of junctional proteins and reduced paracellular and transcellular transports compared 
to other endothelia (8). While this barrier protects the brain from toxins and pathogens, it also 
severely restricts the transport of many therapeutics, as evidenced by the low cerebrospinal fluid-
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to-plasma ratio of most chemotherapeutic agents (9). There is thus an important need to develop 
new delivery strategies to cross the BBB and target tumors, enabling sufficient drug exposure (10). 15 
 
Despite rigorous research efforts to develop effective therapies for high-grade gliomas, the majority 
of trialed therapeutics have failed to improve outcomes in the clinic even though the agents in 
question are effective against tumor cells in preclinical models (11). This highlights the inability of 
current preclinical models to accurately predict the performance of therapeutics in human patients. 20 
To address these limitations, we developed an in vitro microfluidic model of vascularized GBM 
tumors embedded in a realistic human BBB vasculature. This BBB-GBM platform features brain 
microvascular networks (MVNs) in close contact with a GBM spheroid, recapitulating the infiltrative 
properties of gliomas observed in the clinic (12) and those of the brain tumor vasculature, with low 
permeability, small vessel diameter, and increased expression of relevant junctional and receptor 25 
proteins (7). This platform is well suited for quantifying vascular permeability of therapeutics and 
simultaneously investigating modes of transport across the BBB and into GBM tumor cells.  
 
There is strong rationale for developing therapeutic nanoparticles (NPs) for GBM and other brain 
tumors, as they can be used to deliver a diverse range of therapeutic agents, and with appropriate 30 
functionalization, can be designed to exploit active transport mechanisms across the BBB (13, 14). 
Liposomal nanoparticles have been employed in the oncology clinic to improve drug half-life and 
decrease systemic toxicity (15), but to date, no nanomedicines have been approved for therapeutic 
indications in brain tumors. We hypothesize that a realistic BBB-GBM model composed entirely of 
human cells can accelerate preclinical development of therapeutic NPs. Using our BBB-GBM 35 
model, we investigated the trafficking of layer-by-layer nanoparticles (LbL-NPs) and ultimately 
designed a new GBM-targeted NP. The LbL approach leverages electrostatic assembly to generate 
modular NP libraries with highly controlled architecture. We have used LbL-NPs to deliver a range 
of therapeutic cargos in pre-clinical tumor models (16, 17) and have recently demonstrated that 
liposomes functionalized with BBB penetrating ligands improved drug delivery across the BBB to 40 
GBM tumors (18). Consistent with clinical data (19), we observed that the low density lipoprotein 
receptor-related protein 1 (LRP1) was up-regulated in the vasculature near GBM spheroids in the 
BBB-GBM model and leveraged this information to design and iteratively test a library of NPs. We 
show that the incorporation of angiopep-2 (AP2) peptide moieties on the surface of LbL-NPs leads 
to increased BBB permeability near GBM tumors through LRP1-mediated transcytosis. With 45 
intravital imaging, we compared the vascular permeabilities of dextran and LbL-NPs in the BBB-
GBM platform to those in mouse brain capillaries and validated the predictive potential of our in 
vitro model. Finally, we show the capability of the BBB-GBM platform to screen therapeutic NPs 
and predict in vivo efficacy, demonstrating improved efficacy of cisplatin when encapsulated in 
GBM- targeting LbL-NPs both in vitro and in vivo. 50 
 
Results 
 
A vascularized glioblastoma model for the quantification of vascular permeability 
To recapitulate the GBM microenvironment and evaluate the transport of therapeutics across the 55 
BBB, we developed an in vitro BBB-GBM model in a microfluidic device. This platform features a 
tumor spheroid (GBM spheroid) composed of cells from a patient-derived xenograft (PDX) 
glioblastoma cell line co-cultured with pericytes, that is embedded in a BBB vascular system in 
which induced pluripotent stem cell-derived endothelial cells (iPS-ECs), pericytes (PCs), and 
astrocytes (ACs) self-assemble into perfusable vascular networks (20) (Fig. 1A). We chose to use 60 
the GBM22 cell line from the Mayo Clinic Brain Tumor PDX National Resource (21) for these initial 
studies because it is well-characterized and has been used extensively in preclinical studies as an 
orthotopic xenograft (22, 23). GBM spheroids grew in close contact with their surrounding 
vasculature, resulting in a vascularized GBM model after 7 days of culture. The spheroids grew 
rapidly in the microfluidic devices and were found to co-opt the surrounding BBB vasculature, 65 
similar to what is observed in high-grade glioma patients and in animal models of GBM (24, 25) 
(Fig. S1). Vascular co-option, a process in which tumor cells hijack existing blood vessels, was 
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validated by the similar vessel density measurements in both proximal and distal regions to the 
GBM spheroid (26) (Fig. S1).  
 70 
Despite a commonly held belief that the BBB is disrupted in human glioblastoma, analyses from 
patient samples have shown that vessels near high-grade gliomas often exhibit the same integrity 
and density as vessels found in the healthy brain tissue, depending on their level of infiltration and 
location within the tumor (27, 28). Particularly, it has been shown that for developing or residual 
glioma tumors with smaller sizes, the BBB remains intact, and the tumor mass is sustained by 75 
normal brain vessels (29). To evaluate our platform in this context, we assessed paracellular 
permeability to dextran by measuring changes in intensity following fluorescent dextran injection in 
the vasculature via confocal microscopy . Three regions of interest (ROI) were compared: (i) 
vessels in devices without GBM tumor (no GBM spheroid), (ii) vessels far away (> 2,500 µm) from 
the GBM tumor (far from GBM), and (iii) vessels in close proximity to the GBM tumor where co-80 
option is observed (near GBM) (Fig. 1B). We measured no differences in vascular permeability in 
these three regions, suggesting that tight junctions remain intact even in locations where GBM co-
option is evident (Fig. 1C). These findings are striking in comparison with analogous measurements 
performed by our group using vascularized ovarian or lung tumor models, where vessel 
permeability was found to be 3-fold larger near the tumor (26). The undisrupted BBB near GBM 85 
tumors in this platform attests to the ability of GBM cells to invade and co-opt the vasculature 
without modifying its properties. This is also demonstrated by unaltered tight and adherens junction 
protein expressions at endothelial borders in regions of vascular co-option when compared to 
healthy BBB vessels without GBM tumors (Fig. S1). These results indicate that our BBB-GBM 
platform is realistic in modeling glioblastoma vasculature, particularly in early tumor development 90 
or in recurrent tumor progression following resection where developing tumors are sustained by 
normal BBB vessels.  
 
The unaltered paracellular permeability of BBB vessels near developing GBM tumors suggests that 
enhanced localized transport across the BBB via disrupted endothelial junctions is unlikely. Delivery 95 
of therapeutics through ligand-based transcellular transport thus offers an avenue for targeted 
trafficking of therapeutics near GBMs. LRP1, a transport receptor involved in various cellular 
processes at the BBB, including lipid and lipoprotein metabolism and protease degradation (30), 
has been shown to be upregulated in GBMs and their surrounding vasculature (31). As a result, 
there is interest in the design of therapeutics employing LRP1-mediated transport to cross the BBB 100 
and specifically target GBM (32–34). We investigated LRP1 expression in the BBB-GBM model 
and found that the presence of GBM spheroids increases LRP1 expression in vessels both near 
and far from the spheroid, compared to control devices without tumor (Fig. 1D-E, S1). LRP1 
expression was also evidenced within GBM tumor cells. These results guide our subsequent 
nanoparticle design for enhanced targeted delivery across the BBB near GBM tumors. 105 
 
Targeted nanoparticles cross BBB vessels near GBM tumors via LRP1-mediated transport 
We next employed the layer-by-layer (LbL) method to develop a NP with enhanced trafficking to 
GBM cells through tumor-associated vasculature. LbL-NPs consist of a charged nanoparticle core 
and polyelectrolyte multilayer shell; for this study we started with a liposomal NP core and  layered 110 
with poly-(L-arginine) and propargyl-modified poly-(L-aspartic acid) (pPLD) as previously described 
to generate a click-compatible LbL-NP (35). We chose to use a propargyl modification extent of 
12% in order to preserve the inherent “stealth” benefits from the anionic, hydrated PLD coating (36) 
while also incorporating sufficient amounts of targeting ligand. The surface of the NP was 
functionalized with angiopep-2 (AP2), a peptide designed to target the BBB via interaction with the 115 
LRP1 receptor over-expressed in GBM vessels (37) (Fig. 1D-E), generating NPs with favorable 
size and surface potential for drug delivery applications (Table S1).  
 
We first investigated the NP-cell association of fluorescently-labeled (Cyanine5) bare (Bare NPs), 
and LbL NPs with an outer surface of pPLD (pPLD NPs) or pPLD functionalized with AP2 (AP2 120 
NPs) (Fig. 2A) with the four cell types in the BBB-GBM model (iPS-ECs, PCs, ACs, and GBM22) 
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using flow cytometry. AP2 NPs exhibited the highest NP-associated fluorescence in all cell lines 
compared to bare or pPLD NPs and NP internalization in GBM cells was confirmed by microscopy 
(Fig. S2). The AP2 NP trend was amplified in iPS-ECs, which have high native LRP1 expression 
and are the first cell type encountered by NPs when crossing the BBB model. We next investigated 125 
the ability of NPs to associate with GBM spheroids in the absence of vascular networks to ensure 
NPs can deliver encapsulated cargo to the cell of interest. Incubation with the different NP 
formulations showed increased accumulation of AP2 NPs in GBM spheroids compared to bare NPs 
(Fig. 2B-C).  
 130 
NP trafficking was assessed by quantifying vascular permeability as previously done for various 
therapeutic molecules (38, 39) (Fig. 1C). Of the three NP formulations, AP2 NPs exhibited a 
significant increase in permeability near the GBM tumor compared to BBB vessels without tumors 
(Fig. 2D-E, S3). This trend was not only observed with liposomal NPs but also held true with 
polystyrene NP cores (Fig. S3), indicating that these effects are most likely stemming from the LbL 135 
surface functionalization with AP2 . In control BBB microvessels (without tumors), bare NPs had 
slightly higher permeability than pPLD or AP2 NPs (Fig. S3), which we hypothesize to result from 
two factors. First, the addition of peptides in place of charged groups on the surface may hinder 
nonspecific transport in a setting with low expression of the targeted receptor. In addition, we 
identified a size threshold for NP transport across the in vitro BBB, and layered functionalized NPs 140 
are slightly larger than bare liposome NPs (z-average diameter of 106.2nm for bare NPs, 164.8nm 
for pPLD NPs, 163.5nm for AP2 NPs; Table S1). To further investigate this size threshold, we 
chose to use commercially available carboxylated polystyrene NP cores because they are highly 
uniform in size and amenable to LbL assembly. Testing a range of sizes revealed that non-
functionalized NPs  ≥100 nm in diameter cannot cross the in vitro BBB (Fig. S3). However, the 145 
same 100nm-diameter polystyrene NPs with negligible permeability showed a significant increase 
in permeability near the GBM tumor after LbL surface functionalization with AP2 (Fig. S3). Although 
polystyrene and liposomal NPs of comparable sizes exhibit similar permeability changes following 
LbL surface functionalization with AP2, the two NP cores have vastly different physiochemical 
properties and cross the in vitro BBB at different orders of magnitude (permeability of polystyrene 150 
NPs ~ 10-9 cm/s compared to ~ 10-8 cm/s for liposomal NPs). This finding is consistent with literature 
associating the high stiffness of polystyrene nanoparticles (Young’s modulus on the order of ~109 
Pa versus ~106 Pa for liposomes (40, 41)), with decreased cell internalization due to less efficient 
internalization mechanisms for stiffer nanomaterials (42–44). In addition, liposomal NP cores are 
more translationally relevant as they can be used to encapsulate a range of therapeutics for the 155 
treatment of GBM tumors. 
 
Having demonstrated increased LRP1 expression in tumor-associated vasculature and increased 
AP2 NP permeability near GBM spheroids, we hypothesized that AP2 NPs cross the BBB via 
transcytosis (45), and more specifically via LRP1-mediated transport. An active mode of transport 160 
was validated in the in vitro BBB vessels by reducing temperatures from 37 °C to 21 °C to prevent 
vesicle detachment from the cell membrane and transitioning across the cytoplasm to transport 
NPs from the luminal to abluminal side of the vessels (39). Indeed, permeability of AP2 NPs was 
reduced at 21 °C, in line with our hypothesis that AP2 NPs cross the BBB via receptor-mediated 
transcytosis (Fig. 2F-G). As expected, in vitro BBB permeability to 40 kDa dextran, which is 165 
expected to cross the endothelium via paracellular transport, was not affected by temperature 
changes (Fig. S3), confirming that reduced temperatures do not affect the functional properties of 
the endothelium and its paracellular permeability. The bare and pPLD NP formulations also 
exhibited small, yet not significant, decreases in permeability, suggesting that NPs of this size, 
regardless of their functionalization, cross the BBB at least in part via vesicular transport (46, 47). 170 
These observations are intriguing, and consistent with recently reported findings that the majority 
of NP transport across the tumor-associated endothelium occurs via active processes (48). 
Permeability of AP2 NPs was decreased following LRP1 neutralization compared to IgG control in 
regions near and far from the GBM spheroid, validating AP2 NP shuttling via the LRP1 receptor in 
the BBB-GBM model (Fig. 2H). These results highlight the testing capabilities of the BBB-GBM 175 
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model, where NP formulations can be assayed with high spatio-temporal resolution, to identify their 
transport properties into tumors. 
 
The in vitro BBB model accurately predicts in vivo permeability  
To evaluate the ability of the BBB-GBM platform to mimic the more complex in vivo environment, 180 
we quantified permeability of dextran and functionalized NPs in mouse capillaries via intravital 
imaging. Following NP and dextran intravenous administration in animals, time-lapse images were 
acquired through a cranial window to quantify vascular permeability, as performed in the in vitro 
devices (Fig. 3A, S4, Movie S1). Both dextran and NP signals were clearly observed in mouse 
cortical capillaries with comparable sizes to in vitro BBB vessels  (Fig. 3B, S4, Table S2). Dextran 185 
permeability values obtained with the imaging and analysis techniques described here were 
approximately one order of magnitude smaller than measurements performed by other groups in 
mouse or rat brain capillaries (49, 50) (Table S3). Remarkably, values obtained in mouse BBB 
vessels were highly consistent with those obtained in the BBB microvascular device for both 10 
and 40 kDa dextran (Fig. 3C, S4). Similarly, NP permeabilities corresponded closely to values from 190 
the in vitro BBB model without tumors (Fig. 3D). In addition to having comparable morphological 
properties (Table S2), the consistent permeability measurements in vitro and in vivo highlight the 
ability of the in vitro BBB model to recapitulate functional aspects of the in vivo BBB. Of note, 
permeability studies in mouse BBB capillaries (without tumors) were performed at depths less than 
150 µm below the dura, where imaging resolution is optimal. Performing comparable 195 
measurements in vessels near GBM tumors in vivo would require superficial tumor implantation 
which is technically challenging and less clinically relevant than an orthotopic model in the deeper 
regions of the brain, as tumors are likely to extravasate and establish outside the confines of the 
BBB (51). 
 200 
Therapeutic NPs effectively target tumors in the BBB-GBM model and in vivo  
In addition to studying transport, the BBB-GBM model offers the rare opportunity to assess 
therapeutic efficacy of new agents in the highly relevant setting of microscopic tumor burden. The 
extent of surgical resection is an important prognostic factor in that achieving a gross total resection 
portends improved survival for GBM patients, but most tumors recur due to microscopic tumor 205 
deposits near the resection cavity (52, 53). To assess the therapeutic potential of LbL-NPs for GBM 
and the preclinical value of the BBB-GBM model, we next encapsulated the DNA-damaging agent 
cisplatin (CDDP) in the liposome core of the NPs (Fig. S5). We hypothesized that a selective mode 
of delivery of CDDP to GBM tumors would lead to improved efficacy and reduced toxicity in the 
healthy surrounding brain tissue and blood vessels. CDDP was chosen in this study for its 210 
nonspecific mechanism of action and its poor BBB penetration (< 0.04 CSF-blood ratio (9)), to 
evaluate the influence of drug delivery. The BBB-GBM model was instilled with 6 µM of free CDDP, 
CDDP loaded into bare NPs (bare CDDP NPs, formulated at 7.9 weight% with respect to lipid) or 
CDDP loaded into AP2 NPs (AP2 CDDP NPs, 4.6 weight%, Table S1). Cisplatin dosing was based 
on previously determined in vitro IC50 values for GBM22 cells (Fig. S5) and was continued daily for 215 
4 days via perfusion in BBB microvessels. At the end of the dosing period, all spheroids treated 
with CDDP containing formulations decreased in size significantly compared to the untreated 
control, with differences evident as early as 24 hours following initial treatment (Fig. 4A-B).  
 
We next assessed trafficking of CDDP-loaded NPs across the BBB and into the tumor space by 220 
quantifying NP association with the GBM spheroid over the course of treatment. Bare CDDP NPs 
initially exhibited higher association with GBM tumors compared to AP2 CDDP NPs; however, this 
trend was reversed by day 4 of treatment (Fig. 4C). Although all CDDP formulations resulted in 
tumor growth inhibition, we hypothesized that improved accumulation of AP2 CDDP NPs in GBM 
cells with repeated dosing may enhance the therapeutic index of the drug and result in reduced 225 
cytotoxicity in the local BBB vessels. This was evaluated using the Sytox™ nucleic acid stain to 
label dead cells in three regions of interest (far, near, and inside GBM spheroids), following 
treatment with free CDDP, bare CDDP NPs, or AP2 CDDP NPs. Treatment with AP2 CDDP NPs 
resulted in the largest increase in Sytox signal inside GBM tumors relative to untreated devices 
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(Fig. 4D-E). Near and far from GBM tumors, Sytox signal was minimally increased with all CDDP 230 
formulations compared to untreated devices, except for free CDDP which resulted in significant 
increases in Sytox. Following treatment with the CDDP formulations, regions of the BBB-GBM 
devices were extracted for quantitative reverse transcription polymerase chain reaction (qRT-
PCR). Annexin V, Caspase 3 and Caspase 7 transcripts were all elevated in GBM tumors collected 
from devices treated with AP2 CDDP NPs compared to the other CDDP formulations (Fig. 4F). 235 
There were no major differences in the expression of cell death genes far from the tumor for the 
different CDDP formulations. Taken together, we show that morphologic size of GBM spheroids is 
significantly decreased by treatment with CDDP regardless of formulation, but encapsulating CDDP 
within LbL-NPs with AP2 surface functionalization results in increased and thus more targeted cell 
death in GBM spheroids without excess damage to the healthy surrounding BBB vasculature, as 240 
evidence by comparable Sytox signal far from the tumor across all CDDP formulations. 
 
To test the ability of the BBB-GBM device to predict in vivo response, we employed the same CDDP 
NP formulations in an orthotopic xenograft model generated using the same patient-derived GBM 
cells used in the BBB-GBM device. To mirror the time frame of the in vitro studies, we quantified 245 
tumor volume before and after a short dosing period using magnetic resonance imaging (MRI) (Fig. 
5A). CDDP formulations were dosed via tail vein every 3 days at a dose of 0.75mg/kg CDDP. This 
dose was chosen as the highest attainable dose based on limits of passive encapsulation and 
injection volume, and accounting for conversion from mouse to human (54), is notably lower than 
the dose employed in GBM clinical trials (55) (2.3mg/m2/dose compared to 30mg/m2/dose in clinical 250 
trial). Despite this limitation, we observed a slower growth trajectory in tumors of animals treated 
with AP2 CDDP NPs compared to those of animals treated with equivalent CDDP doses in free 
form (p=0.047) (Fig. 5B), consistent with the improved accumulation of AP2 CDDP NPs in tumors 
in vitro. Levels of cleaved caspase-3 (CC-3) were also increased in tumor tissue after treatment 
with AP2 CDDP NPs compared to empty liposome control (p=0.0019) (Fig. 5C-D), consistent with 255 
increased DNA damage identified in the in vitro BBB-GBM device. 
 
Taken together, we show that encapsulation of CDDP in an LbL-NP with AP2 surface 
functionalization leads to improved efficacy in vitro using a BBB-GBM device and in vivo using an 
analogous orthotopic xenograft model. These findings highlight the impact of LbL surface 260 
functionalization in nanomedicine and contribute to the existing body of literature supporting AP2 
as a promising targeting BBB moiety. Importantly, the in vitro human BBB-GBM model allowed us 
to rigorously interrogate the trafficking and therapeutic effects of multiple NP formulations in a 
realistic setting predictive of in vivo effects. The high spatio-temporal resolution of our in vitro BBB-
GBM model and its use in dissecting and investigating modes of transport at the BBB make it a 265 
valuable pre-clinical testing platform to speed the development of brain tumor-directed therapies. 
 
Discussion  
 
In this study, we present a new in vitro model of the GBM tumor microenvironment that features 270 
perfusable human BBB microvessels coming in direct contact with tumor cells. This innovative 
design provides a robust platform to study the trafficking of tumor-directed therapies across the 
BBB. With recent advances in in vitro technologies and a push for personalized patient models, 
there has been increased interest in the design of preclinical human GBM assays (56, 57). While 
existing platforms can recapitulate the many features of GBM tumors, most lack perfusable 275 
vasculature (58, 59) or feature tube-like vessels of large diameters that do not come in direct 
contact with GBM cells (60, 61). Recently, organoid cultures of patient-derived glioma stem cells 
have been employed to better recapitulate GBM-vascular interactions, however the self-assembled 
vessels in these cultures are typically not perfusable which limits their use in the context of drug 
delivery across the BBB and into tumors (62). Here, we address these limitations by incorporating 280 
a GBM tumor spheroid into perfusable self-assembled vascular networks composed of iPS-ECs, 
PCs, and ACs. We have previously demonstrated that these vasculatures recapitulate several 
properties of the human BBB, including relevant morphology and cellular architecture, low values 
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of permeability, and expression of junction and transport proteins (20, 63). In the BBB-GBM model, 
spheroids proliferate and infiltrate the surrounding vasculature, resulting in a physiologically 285 
relevant model of vascularized GBM tumors co-opting their adjacent vessels as observed in patient 
brain tumors (64, 24).  
 
Our system has a number of potential applications for the study of the BBB-GBM interface, ranging 
from fundamental biology to experimental therapeutics. Here, we report one compelling application: 290 
the design, optimization, and evaluation of a targeted therapeutic nanoparticle. Leveraging 
increased expression of LRP1 on blood vessels in proximity to GBM spheroids, we synthesized 
LbL-NPs with AP2 on the surface and investigated their trafficking across the BBB and into GBM 
spheroids. Compared to conventional NP design and optimization which generally involves two 
dimensional assays in one or a few immortalized cell lines (65), we were able to evaluate NP 295 
trafficking rapidly and quantitatively in a three-dimensional environment that accurately 
recapitulates human GBM. We also probed the mechanisms of functionalized NP trafficking with 
high spatio-temporal resolution and confirmed that our AP2-NPs cross the vasculature via an active 
process mediated by the LRP1 receptor. 
 300 
To evaluate the clinical translatability of our in vitro model, we performed analogous permeability 
assays in the murine brain using via intravital imaging and confirmed that our model accurately 
recapitulates the in vivo setting. To our knowledge, direct comparisons of in vitro and in vivo BBB 
permeabilities using the same measurement technique have not been previously reported. More 
importantly, the majority of animal permeability measurements are performed at low resolution (49, 305 
50, 66), which can impact the resulting permeability measurements (39). Our approach 
circumvented these challenges using three-dimensional volumes containing several 
interconnected BBB capillaries, resulting in permeability values that matched those of the in vitro 
model with great accuracy. These findings support the continued development of in vitro BBB 
models for translational applications.  310 
 
In addition to its ability to predict permeability in vivo, another important feature of our BBB-GBM 
platform is its ability to model clinical scenarios with significant treatment challenges, such as 
residual microscopic tumor deposits after surgery. Even after a gross total resection, highly 
proliferative and invasive residual tumor cells are often found beyond the margins of resected 315 
gliomas, leading to tumor recurrence (67). Given dismal prognosis of recurrent GBM, developing 
effective treatments for recurrent tumors is of the utmost importance. Our BBB-GBM model, with 
its barrier properties mimicking the human BBB, provides a new tool to design and evaluate 
alternative therapeutics targeting residual or recurrent tumors, surrounded by an intact BBB. One 
of the key advantages of our model is the ability to assess changes in BBB microvasculature –both 320 
biologic and functional—in the presence of a patient-derived xenograft tumor spheroid, paving the 
way for a wide range of basic and translational investigations future work.  
 
We utilized the BBB-GBM model to develop a panel of LbL-NPs and test their trafficking and 
therapeutic effects, along with untargeted liposomes and polymeric nanoparticles. By 325 
functionalizing the surface of cisplatin NPs with AP2, we showed improved NP accumulation and 
increased apoptosis in the GBM spheroid with minimal damage to surrounding healthy blood 
vessels, highlighting the potential for rationally designed nanotherapeutics to exert a selective 
therapeutic effect based on differential trafficking in tumor-associated vasculature. We 
complemented these studies with analogous investigations in an orthoptic intracranial murine tumor 330 
model to determine whether these results correlate with nanoparticle efficacy on a larger scale and 
observed slower tumor growth in mice treated with AP2 CDDP NPs despite sub-clinical dosing. 
However, we hypothesize that the rapid growth and large tumor size at the study endpoint mitigated 
our ability to detect differential therapeutic effects which may be more evident in a microscopic 
tumor setting. This is a common limitation of in vivo GBM studies and is further motivation to 335 
develop a predictive in vitro model for testing of future, more potent therapies. 
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With increasing interest in the development of personalized medicine platforms for the testing of 
therapies, we anticipate that our BBB-GBM model may be able to address this need in the future if 
paired with patient cells isolated at the time of surgery. Such a model could enable rapid drug 340 
screening with both clinical and investigational therapies. Another application of our model may be 
to address tumor heterogeneity in a systematic manner. Whereas we employed our vascularized 
GBM model with one PDX tumor model and tested a panel of functionalized nanoparticles, our 
platform could be similarly employed to compare biologic and functional differences in the 
vasculature of multiple glioma models.  345 
 
Our BBB-GBM platform provides a new resource for the scientific community studying GBM and 
other challenging brain tumors, particularly in the context of drug delivery with targeted NPs. 
Ultimately, realistic in vitro vascularized GBM models can advance our understanding of tumor-
blood vessel biology and accelerate the development of brain-penetrant therapeutics. 350 
 
Materials and Methods 
 
Study design 
The main objective of this study was to develop a vascularized GBM model and employ it to 355 
investigate the trafficking of LbL NPs. All in vitro studies utilized at least four devices per group. We 
validated the results of this study using intravital microscopy in non-tumor bearing mice (n=3-5 per 
group) and in an orthotopic xenograft mouse model (n=5-7 mice per group). 
 
For all experiments, devices and animals were allocated randomly across different groups. For 360 
tumor burden quantification by MRI, all image analyses were performed in a blinded fashion. All 
animal experiments in this study were approved by the Institutional Animal Care and Use 
Committee (IACUC) for Massachusetts Institute of Technology and were performed in accordance 
with the approved guidelines for animal experimentation from the Committee on Animal Care. 
 365 
Cell culture and treatments 
Human iPS-ECs (Fujifilm Cellular Dynamics, 11713), human brain PCs and ACs ( ScienCell), were 
cultured as described previously (20, 63). The high-grade glioma patient-derived xenograft (PDX) 
line glioblastoma 22 (GBM22) originated in the Sarkaria lab, Mayo Clinic and cell line identity was 
confirmed by short tandem repeat (STR) testing. 370 
 
Tumor spheroid formation 
GBM22 and brain PCs were co-cultured in a low-adhesion 96-well plate (PrimeSurface 96M plate, 
Sbio) at a ratio of 4:5 to recapitulate tumor-stromal cell ratios commonly observed in solid tumors 
(68) and ensure the spheroids remain compact in the low-adhesion plates. Spheroids formed over 375 
several days by self-aggregation and were cultured for 6-7 days prior to seeding in the microfluidic 
devices as previously described (20, 63).  
 
Device fabrication and microvascular network (MVN) formation 
The 3-dimensional microfluidic devices employed in this study were fabricated using soft 380 
lithography as previously described (64, 69) with dimensions outlined in detail elsewhere (70). 
Briefly, a larger device with a width of 3 mm for the central gel channel and height of 500 µm was 
employed to ensure that spheroids can occupy the center of the channel with sufficient space for 
the formation of surrounding MVNs. To recapitulate the in vivo organization of glioma tumors 
surrounded by brain capillaries, spheroids were carefully removed from the 96-well plate and mixed 385 
with iPS-ECs, PCs, and ACs in fibrinogen at the ratios needed to generate the tri-culture BBB 
MVNs. An equal amount of thrombin was added and mixed with all the cells and spheroid prior to 
injecting into the devices for fibrin polymerization (69).  
 
Tumor growth, vessel coverage, and vessel density measurements 390 
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Tumor growth in the devices was measured daily between days 0 (seeding) and 7 by quantifying 
GFP signal of the GBM spheroids using an Eclipse Ti episcope (Nikon) and the Fiji distribution of 
ImageJ (NIH) (71). Vessel density was computed as previously described (26) using confocal 
microscopy (FV-1200, Olympus) and staining for CD31 (ab3245, Abcam) at predetermined regions 
of interest (ROIs): tumor center, proximal, and distal. These results were compared to prior results 395 
from our group using human umbilical vein endothelial cell (HUVEC) MVNs and ovarian (Skov3) 
spheroids or A549 (lung) spheroids (26). Additional details are in the supplemental methods. 
 
Immunostaining and image analysis 
Devices were fixed, permeabilized, blocked prior to staining. Protein visualization was achieved by 400 
staining the fixed devices with anti-CD31 (ab3245, Abcam), anti-LRP1 (sc-57351, Santa Cruz 
Biotechnology), and anti-ZO-1 (61-7300, ThermoFisher Scientific) at 1:200 in PBS, overnight at 4C 
on a shaker. Secondary antibodies were used at 1:200 in PBS (568 goat anti-rabbit A-11011, or 
633 goat anti-mouse A-21052, Invitrogen) and DAPI (D1306, Invitrogen) at 1:1000. Additional 
staining details are in the supplemental methods. Images were acquired with a confocal laser 405 
scanning microscope (FV-1200, Olympus).  
 
For in vivo samples, brains were formalin fixed and paraffin embedded before staining with cleaved 
caspase-3 (CC3 Rabbit Mab, 1:800  #9664L [D175]  Cell Signaling Technology) and  rabbit polymer 
secondary (Biocare Medical # RMR 622L). Quantification of CC3 staining was performed in QuPath 410 
v0.2.3 (Queen’s University, Belfast, Northern Ireland) using QuPath’s build-in ‘Positive cell 
detection’ (72) with three regions of interest of the same size manually placed per tumor section. 
 
Protein expression analysis 
Expression analysis of LRP1 was performed using a Proteinsimple automatic western assay as 415 
previously described (73) (74) (74)after fixation with PFA. Devices was separated from the glass 
coverslip using a razor blade, and different regions of the MVNs in fibrin gel were collected: 4 ROIs 
in the control MVNs without GBM spheroids, and in the MVNs with GBM spheroids, 2 ROIs near 
and 2 ROIs far from the spheroid.; n=5-6 devices were employed for each condition. Samples were 
incubated in lysis buffer comprising 10mL of 1X buffer (9803S, Cell Signaling Technologies), 1 µL 420 
Benzonase Nuclease (E8263, Millipore Sigma), one tablet of protease inhibitor cocktail 
(11836170001, Millipore Sigma), and stored at -80 °C. LRP1 signal (sc-57351, Santa Cruz 
Biotechnology) was normalized to CD31 (ab32457, Abcam) or β-actin (926-42210, Li-Cor) using 
Compass software v5.0. The output of this automatic western assay is not a standard blot but rather 
a chemiluminescence spectrum; representative uncropped raw data for LRP1 signal in one device 425 
is included in Figure S1. 
 
Generation and characterization of layer-by-layer nanoparticles with and without cisplatin 
Fluorescent liposomes were generated using thin film hydration followed by extrusion as previously 
described (75), with additional details in the supplemental materials and methods.  430 
 
For cisplatin-loaded liposomes, the film was rehydrated with a highly concentrated 8mg/ml solution 
of cisplatin (CDDP) in milliQ water at 80°C prior to extrusion. Next, liposomes were fluorescently 
labeled through NHS-coupling of sulfo-cyanine5 NHS ester dye (Lumiprobe, Hunt Valley MD) to 
DSPE headgroups according to the manufacturer instructions.  Excess dye and/or drug was 435 
removed via KrosFlo II tangential flow filtration (TFF) system (Repligen, Waltham, MA). See 
supplemental method for cisplatin quantification techniques.  
 
Fluorescent polystyrene cores with carboxylated surfaces were purchased from Invitrogen with 
diameters of 0.02 µm, 0.1 µm, and 0.5 µm. Layering was achieved by sequentially adding 440 
oppositely charged polyelectrolytes as previously described (76) with further details in the 
supplemental methods. Angiopep-2 was custom synthesized by the Biopolymers and Proteomic 
Core Facility at MIT with the sequence (K*)TFFYGGSRGKRNNFKTEEY, in which K* denotes 
modification of the N-terminus with lysine-azide. Copper-based click chemistry was used to 
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conjugate the azide-modified Angiopep-2 to the propargyl-modified PLD as previously described 445 
(35), and copper was removed via tangential flow filtration. 
 
The hydrodynamic size, polydispersity index, and surface potential (zeta) were monitored 
throughout synthesis and prior to downstream experiments using dynamic light scattering and laser 
doppler anemometry (Malvern ZS90 Particle Analyzer, λ= 633 nm, material/dispersant RI 450 
1.590/1.330; Malvern, Westborough, MA). Negative staining transmission electron microscopy 
(2100 Field Emission Electron Microscope, JEOL, Peabody MA) with 1% phosphotungstic acid in 
water was utilized to further characterize cisplatin-loaded liposomes and confirm the dynamic light 
scattering data.  
 455 
NP association with cells in 2-dimensional culture or isolated 3-dimensional spheroids  
NP association in cell lines was quantified using flow cytometry (FACS LSR II with HTS sampler, 
BD Biosciences, San Jose CA) after incubation with NPs at a final concentration of 10µg/ml lipid in 
media for 24 h. After washing with PBS to remove unassociated NPs, cell suspensions were 
analyzed for Cy5 fluorescence using a 640nm laser and 670/30 filter. Structured illumination 460 
microscopy with image deconvolution was performed after the same NP incubation period and 
washing steps as for flow cytometry to determine the intracellular localization in GBM22 cells as 
previously described (77) using an Inverted X71 microscope (Olympus, Center Valley, PA). 
 
NP association in spheroids (without MVNs) was quantified by incubating the spheroids with 80 µL 465 
of 30ucg/ml (wrt lipid concentration) NP suspension (bare, pPLD, or AP2 NPs) for 12 minutes. Day 
13 was chosen to ensure that the spheroids in 3-dimensions without MVNs were assessed at the 
same time as spheroids in the MVNs. Following NP incubation, spheroids were washed with PBS 
and placed on a glass coverslip for 3-dimensional imaging with a confocal microscope (FV-1200, 
Olympus). NP intensity into the spheroids of ~ 600 µm in diameter was quantified by averaging the 470 
intensity per location of four diametrical lines in the spheroid using the “Plot Profile” function of 
ImageJ. 
 
In vitro permeability assay in the BBB-GBM model 
To prevent dye leakage from the side channels, a monolayer of iPS-ECs was added to both media 475 
channels of the microfluidic device on day 4 following cell seeding (38). Permeability was measured 
between days 6 and 8 in the MVNs with and without tumor spheroids. The MVN permeabilities to 
10 and 40 kDa dextran, polystyrene NPs (bare, pPLD, and AP2), as well as liposome NPs (bare, 
pPLD, and AP2) were quantified following perfusion of 80 µL suspensions as previously described 
(38). Bare polystyrene NPs of different sizes were also employed to assess size-dependent 480 
transport across the in vitro BBB MVNs. Briefly, devices were imaged via confocal microscopy (FV-
1200, Olympus) at 12-minute intervals in an environmental chamber maintained at 37C and 5% 
CO2. Following automatic thresholding and segmentation using the Fiji distribution of ImageJ, z-
stack images were employed to generate a 3-dimensional mask of the microvasculature(38) (38). 
Analysis of NP or dextran transport across the BBB (with and without tumor spheroids) was 485 
performed as previously described (38). 
 
Cisplatin NP treatment in vitro and cell death quantification 
Cisplatin (CDDP) NPs were made fresh and cisplatin concentrations in each NP formulation were 
quantified prior to each experiment. BBB-GBM devices were treated daily with 6 µM free CDDP or 490 
CDDP NPs per day. Tumor size was measured over time as described above. Fluorescently-
labeled CDDP NPs with cyanine5 were used to quantify CDDP NP uptake in GBM tumors. To 
evaluate cell death, devices were incubated with 5 µM of Sytox Orange (Catalog # S11368, 
ThermoFisher Scientific) and DAPI for 1 h, applying a hydrostatic pressure drop across the gel 
channel (69). Confocal microscope images (FV-1200) were automatically thresholded and 495 
segmented using the Fiji distribution of ImageJ, z-stack images were employed to generate a 3-
dimensional mask of the GBM tumors to quantify Sytox signal inside and near the tumor(38) (38). 
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Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) 
Gene expression was quantified via real-time qRT-PCR for BBB-GBM devices treated with free 500 
CDDP, bare CDDP NPs, or AP2 CDDP NPs using an RNeasy Mini Kit (74104, Qiagen) and the 
7900HT Fast Real-Time PCR System using the TaqMan Fast Advanced Master Mix (4444556, 
Thermo Fisher Scientific) as previously described (63). Additional details are in the supplemental 
methods.  
 505 
Intravital imaging and mouse permeability assay 
For intravital imaging, NCR/nude mice (Taconic, Rensselaer, NY) were injected with fluorescent, 
functionalized liposomal NPs (100µL via tail vein at a concentration of 0.5mg/ml lipid in 5% 
dextrose), then anesthetized according IACUC-approved protocol. Immediately prior to cranial 
window surgery, mice were dosed with fluorescent dextran of varying molecular weights (100µL 510 
via retro-orbital injection at a concentration of 2mg/ml dextran). To create the cranial window, the 
skull was exposed and a high-speed hand drill (Dremel) was used to thin the skull until the dura 
mater was exposed over the right frontal cortex. Multiphoton imaging was performed on an 
Olympus FV-1000MPE multiphoton microscope (Olympus) using a 25X, N.A. 1.05 objective. 
Excitation was achieved using a femtosecond pulse laser at 840 nm, and emitted fluorescence was 515 
collected by PMTs with emission filters of 425/30 nm for Collagen 1, 525/45 nm for FITC-labeled 
dextran and 672/30 nm for Cy5 NPs. Collagen 1 was excited by second harmonic generation and 
emits as polarized light at half the excitation wavelength. The collagen 1 signal was used to identify 
the dura such that the vessels imaged were within the cortex (50-100µm below the dura, Image 
S4). Images were acquired every 1-2 minutes for 10-20 minutes for analysis, as described below. 520 
Mice were maintained under anesthesia for the duration of the imaging and then humanely 
euthanized. 
 
Acquired images from intravital imaging were then thresholded and segmented using the Fiji 
distribution of ImageJ just as in the in vitro permeability workflow described above. Vessels below 525 
the dura and arteries were considered to ensure that these represent BBB capillaries in the mouse 
brain. The microvasculature filled with dextran (dextran channel) was employed to generate a 3-
dimensional mask of the BBB mouse vessels (see Fig. 3A and Fig. S6). This mask was employed 
to analyze both dextran and nanoparticle transport since dextran filled the entire vasculature and 
resulted in the most accurate mask of the 3-dimensional vessels. After masking, analysis of NP or 530 
dextran transport was performed as previously described (38).  
 
Vessel dimensions  
Acquired images from in vitro and in vivo samples perfused with fluorescent dextran were analyzed 
for vessel dimensions. Z-stack images were thresholded and segmented and the built-in 535 
skeletonize function of Fiji was used to measure vessel dimensions as previously described (70).  
 
Tumor implantation and nanoparticle treatment  
For tumor implantation, we utilized a modified version of the intracranial xenograft protocol 
developed in the lab of Dr. Jann Sarkaria (78). In brief, NCR/nude mice (Taconic, Rensselaer, NY) 540 
were anesthetized with ketamine and xylazine and placed in a stereotactic head frame (Stoelting, 
Wood Dale, IL). Using sterile technique, the skull was exposed and a small burr hold was made at 
coordinates 1mm lateral and 2mm posterior to Bregma. A total of 200,000 cells were injected 3mm 
below the dura using a 33G 5ul Neuros syringe (Hamilton Company, Reno, NV) and Stoelting 
quintessential stereotaxic injector at a rate of 1ul/minute. Twelve days after tumor implantation, 545 
mice with confirmed intracranial tumors by MRI were randomized and treated with three doses of 
CDDP-containing NPs or free drug (0.75mg CDDP/kg/dose). Control mice received empty control 
nanoparticles with equivalent lipid to CDDP NP. All solutions were suspended in 5% dextrose and 
dosed via tail vein at 100uL/injection.  
 550 
MRI methods and tumor volume quantification 
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Magnetic Resonance Imaging (MRI) was performed on a former Varian/Agilent 7T MRI operated 
by Bruker AV4 NeoBioSpec70-20USR console, equipped with a Bruker QSN075/040 RF coil. Mice 
were anesthetized with isoflurane throughout according to approved IACUC protocol. Data were 
collected and reconstructed within Bruker Paravision PV360 v2.0. T2 Weighted images were 555 
obtained using TurboRARE sequence with the following parameters: axial orientation, 
TR/TE=3000/25 ms, 256x256 matrix, field of view (FOV)=20x20mm2, interleaved number of 
slices=32, no gap and slice thickness=0.5mm, number of averages=4, RARE factor 8. Images were 
converted to DICOM format. 
 560 
MRI images were analyzed using the Fiji distribution of ImageJ using a published method for 
diameter based measurement (79). Using the native images obtained in the coronal plane, the z-
slice with maximum craniocaudal (dcc) and lateral (dl) dimensions was determined, and these 
diameters recorded. An axial reconstruction was then generated using the built-in ‘Reslice’ function 
in Fiji with output spacing of 0.5mm (z-slice distance), creating a 40 slice axial image. Using axial 565 
images, the slice with maximal anteroposterior diameter (dap) determined. The diameter-based 
volume (V) was then computed using the ellipsoid formula (V = dcc × dl × dap × Π / 6). On MRI 
imaging, some mice were noted to have small subcutaneous collections consistent with tumor cell 
extravasation from the burr hole. In these cases, tumors were only considered evaluable if there 
was a clear and distinct intracranial component and were excluded from all analyses otherwise. 570 
 
Statistical analysis 
All data are plotted as mean ± standard deviation (SD), unless indicated otherwise. Statistical 
significance was assessed using student’s t-tests when comparing two conditions/groups, one-way 
analysis of variance (ANOVA) with Tukey’s honestly significant difference (HSD) post-hoc test 575 
when comparing > 2 groups, or Kruskal-Wallis multiple comparison test (when applicable) with the 
software Prism® (GraphPad). For non-homogeneity of variances as determined via Levene’s test, 
Brown-Forsythe and Welch ANOVA with Dunnett’s T3 post-hoc test was performed with the 
software Prism®. Results were represented as follows: n.s. stands for not significant, * denotes p 
< 0.05, ** denotes p < 0.01, *** denotes p < 0.001, and **** denotes p < 0.0001. In all in vitro 580 
experiments, 6-8 devices per condition were employed unless otherwise indicated. In all in vivo 
mice experiments, 3-7 mice per condition were used unless otherwise indicated. 
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Figures and Tables 
 

Figure 1. Generation and characterization of a glioblastoma blood-brain barrier 
microvascular network model (BBB-GBM model).  (A) Schematic of BBB-GBM formation in a 
microfluidic device, scale bar=100 µm (left image) and 500 µm (right image). (B) Regions of interest 
(ROIs) identified spatially within the BBB-GBM model, with far from GBM ROIs identified to be at 
least 2500 µm away from the GBM spheroid. (C) Permeability to 40kDa dextran in the vascular 
networks across different ROI locations, each point represents n=1 device. (D) Expression of low 
density lipoprotein receptor-related protein 1 (LRP1) across different ROI locations, as assessed 
via immunofluorescence staining, each point represents n=1 device. (E) Representative 
micrographs of LRP1 staining quantified in (D); scale bars=100 µm. In all graphs, bars represent 
mean ± standard deviation (SD), n.s. denotes not significant, and * p < 0.05. Statistical analyses 
are described in the Methods section. 
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Figure 2. Functionalized LbL-NPs cross BBB microvascular networks near GBM spheroids 
via LRP1-mediated transport.  (A) Layer-by-layer assembly of angiopep-2 nanoparticles (AP2-
NPs). (B) Fold change in mean fluorescence intensity (MFI) of NPs in GBM spheroids without 
vascular networks, normalized to bare NP; points represents n=1 spheroid. (C)  Representative 
GBM spheroids after 12 min NP incubation as quantified in (B); scale bars = 100 µm. (D)  NP 
permeability in networks with no GBM spheroid (no), and in regions near and far from a GBM 
spheroid, normalized to the no spheroid device; points represent n = 1 ROI; n = 6 devices/condition 
were considered. (E)  Representative images of NPs in the BBB microvessels at t = 0 min following 
NP perfusion; time-lapse images over 12 min were used to determine permeabilities in (D); scale 
bars =100 µm. (F) BBB vessel permeabilities to the 3 NP formulations in networks without GBM 
spheroids at 37 and 21 °C. Points represent n = 1 ROI; n = 4 devices per condition were considered. 
(G)  Representative images of AP2 NPs at t = 0 and t = 12 min as quantified in (F); scale bars are 
50 µm. (H)  BBB vessel permeabilities to AP2 NPs at 37 °C following incubation for 30 min with 
anti-LRP1 or IgG control antibodies. Points represent n = 1 ROI; for antibody conditions n = 4 
devices were considered; n = 6 non-treated devices. Throughout, bars represent mean ± SD; n.s. 
denotes not significant, * p < 0.05, and ** p < 0.01. Statistical analyses are described in the Methods 
section. 
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Figure 3. In vivo BBB permeability assessed by intravital microscopy is consistent with the 
in vitro BBB model. (A) Workflow of intravital imaging in which fluorescent NPs and dextran are 
dosed systemically and time-lapse imaging is performed in intact brain capillaries. (B) 
Representative images of 40 kDa dextran and NP formulations perfused in mouse BBB capillaries; 
scale bars = 20 µm. (C)  BBB permeabilities to fluorescently labeled dextran (10 and 40 kDa) in 
mouse BBB capillaries and in vitro BBB microvessels (no tumors). Points represents n = 1 device; 
n = 2 mice were considered for 10kDa dextran and n = 10 mice for 40 kDa dextran. (D) BBB 
permeabilities to the 3 NP formulations in mouse BBB capillaries and in vitro BBB microvessels (no 
tumors). Points represent n = 1 ROI; n = 6 independent devices per condition were considered; n 
= 3-5 mice were considered per condition. Bars represent mean ± SD; n.s. denotes not significant. 
Statistical analyses are described in the Methods section. 
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Figure 4. Encapsulation in LbL-NPs improves efficacy and targeted delivery of cisplatin in 
BBB-GBM.  (A) GBM spheroid size in BBB-GBM model following treatment with free cisplatin 
(CDDP), CDDP encapsulated in bare NPs (Bare CDDP NP), or CDDP encapsulated in AP2 NPs 
(AP2 CDDP NP), compared to untreated devices. Points represent mean ± SD of n=6 devices. (B) 
Representative fluorescent micrographs quantified in (A). Scale bars = 200 µm. (C) Change in 
mean fluorescence intensity (MFI) of NP signal in GBM tumors in the BBB-GBM device over time, 
following treatment with fluorescently tagged bare- or AP2-CDDP NPs. Points represent n = 1 
device. (D) MFI of Sytox signal per area (normalized by DAPI) in the 3 ROI locations considered in 
BBB-GBM devices after treatment with free CDDP, bare CDDP NPs, or AP2 CDDP NPs, and 
compared to control devices without treatment. Points represent n = 1 device. (E)  Representative 
fluorescent micrographs quantified in (D). Scale bars = 500µm (F) Heatmap of cell death gene 
expression levels in 2 ROIs of the devices (inside the GBM tumor and far from the tumor) as 
quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bars 
represent mean ± SD; n.s. denotes not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p 
< 0.0001 Statistical analyses are described in the Methods section. 
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Figure 5. BBB-GBM device predicts differential effects of cisplatin NP formulations in an 
orthotopic in vivo model.  (A) Timeline of in vivo study with orthotopic GBM tumors using 
magnetic resonance imaging (MRI) to monitor response to therapeutic NPs. Scale bars = 4 mm. 
(B)  Waterfall plot for change in tumor volume after treatment on the y-axis, where each bar 
represents one mouse, dotted line is the median tumor volume change for the AP2 NP group. (C)  
Quantification of cleaved caspase-3 (CC-3) staining in tumor tissue. Each dot represents n = 1 
mouse. (D) Representative immunohistochemistry micrographs with hematoxylin and eosin (H&E) 
staining (for context) and CC3 as quantified in c; arrowheads denote CC-3 positive cells. Scale 
bars = 50 µm except for top row where scale bars = 1 mm. Bars represent mean ± standard 
deviation (S.D.), n.s. denotes not significant, * p < 0.05, ** p < 0.01. Statistical analyses are 
described in the Methods section. 
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