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Abstract 
 
Purpose: Identification of somatic mutations with high precision is one of the major 

challenges in prediction of high-risk liver-cancer patients.  In the past number of mutation 

calling techniques have been developed that include MuTect2, MuSE, Varscan2, and 

SomaticSniper. In this study an attempt has been made to benchmark potential of these 

techniques in predicting prognostic biomarkers for liver cancer.  

 

Methods: In this study, we extracted somatic mutations in liver-cancer patients using VCF 

and MAF files from the cancer genome atlas. In terms of size, the MAF files are 42 times 

smaller than VCF files and containing only high-quality somatic mutations. Secondly, 

machine learning based models have been developed for predicting high-risk cancer patients 

using mutations obtain from different techniques. The performance of different techniques 

and data files have been compared based on their potential to discriminate high and low risk 

liver-cancer patients. Further, univariate survival analysis revealed the prognostic role of 

highly mutated genes. 

 

Results: Based on correlation analysis, we selected 80 genes negatively associated with the 

overall survival of the liver cancer patients. Single-gene based analysis showed that MuTect2 

technique based MAF file has achieved maximum HRLAMC3 9.25 with p-value 1.78E-06. 

Finally, we developed various prediction models using selected genes for each technique, and 

the results indicate that MuTect2 technique based VCF files outperform all other methods 

with maximum AUROC of 0.72 and HR 4.50 (p-value 3.83E-15).  

 

Conclusion: Based on overall analysis, VCF file generated using MuTect2 technique 

performs better among other mutation calling techniques to explore the prognostic potential 

of mutations in liver cancer. We hope that our findings will provide a useful and 

comprehensive comparison of various mutation calling techniques for the prognostic analysis 

of cancer patients. 

 

Keywords: Mutation calling techniques; Prognosis; Liver cancer; Survival analysis; Machine 

learning; Regression 
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Introduction  

According to the world health organization, cancer is a life-threatening disease and the first 

leading cause of death worldwide in 2019. Global cancer statistics estimate that in 2020, 19.3 

million new cases and 10.0 million deaths have been occurred due to cancer (Sung et al., 

2021). Cancer is extremely heterogeneous; therefore, the same treatment strategy is not 

effective for individuals with similar types of cancer. Till now, there is no universal treatment 

available for all types of malignancies. Currently, several targeted therapies are available for 

cancer treatment, which majorly focus on the detection of mutations at the genetic level 

(Gerlinger et al., 2012). In the last few years, several therapies have been designed based on 

the mutated genes for the cancer treatment. For instance, B-Raf Proto-Oncogene, 

Serine/Threonine Kinase (BRAF) inhibitors (Sorafenib) is identified to treat melanoma 

patients with V600E mutation in the BRAF gene (Flaherty et al., 2010; Taylor, 1987). 

However, drugs like afatinib and erlotinib are used to target the mutation in the EGFR in non-

small-cell liver cancer (Hirsch et al., 2017; Lynch et al., 2004). Moreover, BRCA1/BRCA2 

gene mutations in ovarian cancer patients have been treated by poly (ADP-ribose) 

polymerase (PARP) inhibitor, i.e., olaparib (Audeh et al., 2010). Of note, research on the 

mutations associated with the genes in cancer patients is essential for identifying the correct 

mechanism of the disease. Due to the advancements in next-generation sequencing, such as 

whole-genome, whole-exome, and mutation calling techniques, the detection of more than 

98% mutations associated with the disease using sequencing data is possible (LaDuca et al., 

2017; Lelieveld et al., 2015). The easy availability and low cost of next-generation 

sequencing techniques enable researchers to perform experiments on large cohorts of cancer 

patients (Hartley et al., 2018).  

The genetic variants are mainly categorised into single nucleotide variant (SNV), 

insertion/deletion (indel), and structural variants (SV, which incorporates copy number 

alterations, duplications, and translocations). In recent years, a huge number of somatic 

mutation calling algorithms (for example, Mutect2, Varscan2, SomaticSniper, MuSE, 

Strelka2, etc.) have been developed to identify mutations at the genetic level using 

sequencing data (Alioto et al., 2015; Cibulskis et al., 2013; do Valle et al., 2016; Fan et al., 

2016; Kim et al., 2018; Koboldt et al., 2012; Larson et al., 2012). Mutect2 calls somatic 

mutation such as single nucleotide alterations and indels using the local assembly of 

haplotypes. SomaticSniper pipeline detects somatic SNVs using Bayesian algorithm to 

compare the genotype likelihoods in the tumor and normal samples. However, Varscan2 
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mutation calling algorithm uses exomes, whole-genome sequencing data to capture germline 

variants, somatic mutations and copy number variants in tumor-normal data. Moreover, 

MuSE developed a Markov Substitution model for Evolution, to identify novel mutations in 

the large-scale tumor sequencing data.  

Liver cancer is one of the deadliest disease which is the seventh most common cancer among 

the 36 cancers reported by Global Cancer Statistics 2020 (Sung et al., 2021). Ample 

treatment methods were developed in the past, but still the survival rate of liver cancer 

patients is very low, leading to high-mortality rate (Revathidevi & Munirajan, 2019). Being 

the most comprehensive resource for the cancer related research, TCGA provides two types 

of file formats for mutation data such as Variant Call Format (VCF) and Mutation Annotation 

Format (MAF). VCF files are the raw mutation files that store and report the genomic 

sequence variations that directly came out of the various automated variant calling pipelines. 

On the other hand, MAF files are the processed version of the VCF files, which are curated 

by removing the false positives or by recovering the known calls that the automated pipelines 

may have missed. VCF files report mutations irrespective of their importance, but MAF files 

describe only the most affected ones by removing the low-quality mutations. In GDC portal, 

both type of files are available generated using the four major mutation calling techniques 

named as MuTect2, MuSE, Varscan2, and SomaticSniper. Despite number of techniques are 

available, it is difficult to understand which method and file is better to explore the role of 

mutations in cancer. 

In the current study, we have systematically evaluated the four mutation calling tools which 

are widely used in TCGA, to identify highly mutated genes associated with high-risk liver 

cancer patients. For this, we have collected VCF and MAF files of 418 liver cancer patients 

for all the mutation calling techniques. The gene-based annotations were identified using 

highly accurate and widely used methods ANNOVAR (Wang et al., 2010) and Maftools 

(Mayakonda et al., 2018). Correlation and survival analysis is performed to identify mutated 

genes that can impact the survival of liver cancer patients. Finally, several prediction 

algorithms have been developed for the top genes. The inferences of our study can give a 

valuable reference and guidance to the researchers to choose a reliable somatic mutation 

algorithm to determine the mutation-associated genes having a significant impact on the 

survival of the cancer patients. 

 

Material and Methods 
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Dataset Collection 

We obtained liver cancer (TCGA-LICH and TCGA-CHOL) mutation data from Genome 

Data Commons (GDC) data portal. Precisely, we collected the controlled access VCF of liver 

cancer patients under the approval of dbGap (Project No. 17674) according to the GDC 

protocols (Grossman et al., 2016). In addition to that, we have also downloaded the MAF 

files of TCGA liver cancer patients. In TCGA, four different techniques are used for mutation 

calling, i.e., MuSE, Mutect2, Varscan2, and SomaticSniper. In this study, we have utilized 

VCF and MAF files of 418 liver cancer samples generated from four different mutation 

calling methods. Moreover, the clinical data like age, gender, tumor stage, overall survival 

(OS) time, and vital status were collected using TCGA assembler 2 (Wei et al., 2018). 

 

Mutation Annotations 

We used the ANNOVAR software package 

(https://annovar.openbioinformatics.org/en/latest/) for functional annotations of genetic 

variant mutations. First, we convert VCF files into ANNOVAR genetic variants file; using 

“convert2annovar.pl” script; the processed file contains five major columns chromosome 

number, start position, end position, reference nucleotide, and altered nucleotides. It provides 

three major type of annotations (i.e., Gene-based annotations, Region-based annotations and 

Filter-based annotations). In this work, we used Gene-based annotations, in which we 

obtained mutations/gene/sample. In this way, we get per-gene mutations for each sample for 

the four different mutation calling techniques. After that, we count number of mutations per 

gene for each liver cancer patient with the help of in-house python script 

(gene_to_matrix.py). Similarly, for MAF files we counted the number of 

mutations/gene/sample. Finally, we generated matrices for each mutation calling technique 

from VCF and MAF files, in which number of mutations per gene per sample were reported. 

 

Correlation Analysis 

To understand the impact of number of genetic mutations on overall survival (OS) of liver 

cancer patients, we have implemented correlation test. After that, we removed the genes with 

the non-significant p-value i.e., >0.05, and ranked the remaining genes on the bases of 

correlation coefficients. We choose top-5 and bottom-5 genes from each technique for VCF 

and MAF files for further analysis. 

 

Survival Analysis 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.473127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473127
http://creativecommons.org/licenses/by/4.0/


 6 

In this study, we have performed survival analysis by the ‘survival’ package in R (V.3.5.1) 

using cox proportional hazard (Cox PH) model. We perform univariate survival, in order to 

understand the impact of per gene mutations on the survival of liver cancer patients. The log-

rank test was used to estimate the significant survival distributions between high-risk and 

low-risk groups in terms of the p-value. Kaplan-Meier (KM) survival curves were used for 

the graphical representation of high-risk and low-risk groups (Goel et al., 2010). 

 

Machine learning Techniques   

Classification Models  

In this study, we have implemented various machine learning techniques for the classification 

of high-risk and low-risk samples based on the number of mutations in the chosen genes. 

Classification algorithms includes Decision tree (DT), Support Vector Classifier (SVC), 

Random Forest (RF), XGBoost (XGB), Gaussian Naive Bayes (GNB), Logistic Regression 

(LR), and k-nearest neighbors (KNNs) using Scikit learn (Pedregosa et al., 2012). 

 

Regression Models  

Further, we implemented several regressors to develop regression models for overall survival 

time prediction in liver cancer patients. These techniques were developed using python-

library scikit-learn and includes Random Forest (RF), Ridge, Lasso, Decision Tree (DT), 

Elastic Net (ENR), Logistic Regression (LR), and Support Vector Regression 

(SVR)(Pedregosa et al., 2012). 

 

Performance Evaluation  

 

Cross-Validation Technique 

To avoid over-optimization in the machine learning models, we have used standard five-fold 

cross-validation technique (Kaur et al., 2019; Patiyal et al., 2020). In case of classification, 

the complete dataset was divided into 80:20 ratio the 5-CV performed on the 80% training 

dataset. In this method, the training dataset split-up into five equal sets. However, four sets 

used for training and remaining set used for the testing purpose. The similar task was 

repeated for at least five times, so that every set can be used in training and testing. Finally, 

the performance or outcome computed by taking the mean of all five dataset. The similar 

process was repeated for the cross validation of regression models. In this the complete 

dataset used for the five-fold cross validation. 
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Performance Measure Parameters 

To evaluate the performance of classification models, we have used standard parameters. We 

have calculated threshold-dependent such as sensitivity (Sens), specificity (Spec), accuracy 

(Acc), F1-score, and MCC, and independent parameters like Area Under the Receiver 

Operating Characteristic (AUROC). These parameters were calculated using the following 

equations (1-3).  
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PT =True Positive, PF =False Positive, NT =True Negative, NF =False Negative 

 

Similarly, to evaluate the regression models, we have used parameters such as mean absolute 

error (MAE), root mean-square error (RMSE), correlation coefficient (R), and p-value, to 

evaluate the performance of regression models as previously used in different studies (Bhalla 

et al., 2019; Dhall et al., 2020; Schemper, 1993).  

 

Results 

In this study, we have used 418 TCGA liver cancer patients somatic point mutation data 

(VCF files and MAF files) and OS data. The mutation data taken from four different 

mutation calling techniques i.e., MuSE, Mutect2, Varscan2 and SomaticSniper. ANNOVAR 

software and in-house scripts were used to extract the number of mutations/gene/sample from 

the VCF and MAF files. The total number of genes and mutations extracted from different 

techniques is shown in Table 1. Where, in VCF files Mutect2 and SomaticSniper report 

highest number of genes and mutation counts i.e., more than 25000 genes and 5 million 

mutations. On the other hand, in MAF files the reported number of genes and mutations is 

comparatively less for each technique. 
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Table 1: Total number of genes and mutations for each gene extracted from VCF and 

MAF files using different mutation calling technique 

File Type Technique Number of Genes Number of Mutations 

VCF 

MuTect2 25366 5237093 

MuSE 19425 379368 

Varscan2 19422 576231 

SomaticSniper 25785 5003969 

MAF 

MuTect2 16474 59741 

MuSE 15712 51184 

Varscan2 15950 54877 

SomaticSniper 14979 44102 

    

Further, in order to understand the distribution of genes in each technique, we developed 

upset plot as shown in Figure 1. For the visualization of intersecting genes set we have 

created UpSet plot (Lex et al., 2014). According to the plots, in VCF file 18758 genes were 

common in all the four techniques, where 182, 5, 2, and 630 genes are uniquely reported by 

MuTect2, MuSE, Varscan2, and SomaticSniper technique, respectively. Similarly, in case of 

MAF files 14585 genes were shared by all the techniques, while 461 genes are unique in file 

by MuTect2 technique, 73 by MuSE, 115 by Varscan2, and 41 unique genes were reported 

by SomaticSniper technique. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.473127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473127
http://creativecommons.org/licenses/by/4.0/


 
Figure 1: Upset-plot for distribution of genes in four techniques. a) From VCF files b) From MAF 

files 

 

Comparison of Different MAF files 

To compare different mutation calling techniques, we have taken processed and annotated 

MAF files from TCGA. We utilized the Maftools package to comprehensively analyse the 

somatic variants extracted from MuSE, Mutect2, Varscan2, and SomaticSniper mutation 

calling technique. From the analysis, we observed few changes in the mutation calling 

techniques for the same cohort of samples. For example, MuSE and SomaticSniper MAF 

files (Figure 2A, 2B) only report SNPs on the other side Varscan2, and MuTect2 (Figure 2C, 

2D) represent  SNPs, INS, and DEL under the variant type. 
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Figure 2: Visualization of mutation summary (variants classification, type and SNVs) for MuTect2, 

MuSE, Varscan2 and SomaticSniper MAF files 

 

In Varscan2 and MuTect2, the variant classification distribution represents nine types of 

mutations/variations such as Missense_Mutation, Nonsense_Mutation, Splice_Site, 

Translational_Start_Site, Frame_Shift_Ins, Frame_Shift_Del, In_Frame_Ins, In_Frame_Del,  

and Nonstop_Mutations, while MuSE and SomaticSniper MAF files consist 

Missense_Mutation, Nonsense_Mutation, Splice_Site, Translational_Start_Site, 

Nonstop_Mutations. The SNV class visualizes the single-nucleotide variants in the TCGA 

cohort, we observed that all the methods present diverse distribution of SNV as shown in 

(Figure 2). Oncoplots generated by the Maftools visualization module illustrating the somatic 

landscape of the cancer patients for Varscan2, MuTect2, MuSE and SomaticSniper MAF 

files. In Figure 3, we display the topmost mutated genes with their mutation percentage 

(>=5%) in total number of samples. From the results we observed that, TP53 is highly 

mutated gene and have almost 20% or >20% mutations among different techniques. 
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Figure 3: Oncoplot visualization of mutation frequency of top-most mutated genes. The rows 

represented the genes with % mutations, and columns display the samples. (a) Illustrates 

the oncoplot of  MuTect2 technique and indicates that 89.18% of samples having mutated 

genes (b) Illustrates the oncoplot of  MuSE technique and shows that 80.29% of samples 

having mutated genes (c) Presents the oncoplot of  Varscan2 approach and shows that 

88.43% of samples having mutated genes (d) Illustrates the oncoplot of  SomaticSniper 

technique and indicates that 75.73% of samples having alerted/mutated genes 

 

Correlation Analysis  

By implementing the correlation test we ranked the genes and choose top-10 genes having 

significant negative-correlation values which lead to 80 genes in total. The procedure is 

repeated for all the four techniques from MAF and VCF files of liver cancer patients. The 

complete correlation analysis is provided in Supplementary Table S1. 

 

Prognostic Biomarkers for High-Risk Prediction 

Single gene 
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Univariate survival analysis was performed using cox-proportional hazard model. We have 

calculated the HR and p-value for ten genes from each technique for VCF files. 

SomaticSniper technique has achieved the maximum HR value in single gene based analysis 

with HRCLDN20 = 7.06 and p-value 6.62E-07, followed by Varscan2 with HRFAM160A2 = 6.81 

and p-value 4.01E-05, followed by MuTect2 based VCF file with HRSNHG10 = 5.49 and p-

value 3.94E-06, and Muse technique has achieved the HRCLMP of 3.01 with p-value 1.67E-05 

as shown in Table 2. 

 

Table 2: Hazards ratio for top-10 genes from VCF files derived using MuTect2, MuSE, 

Varscan2, and SomaticSniper technique 

MuTect2 MuSE 

Gene HR P-value 95% CI C-index Gene HR P-value 95% CI C-index 

SNHG10 5.49 3.94E-06 2.66 - 11.31 0.53 CLMP 3.01 1.67E-05 1.82 - 4.97 0.54 

WIZ 2.69 9.71E-07 1.81 - 4.00 0.56 BIRC6 2.80 4.46E-04 1.58 - 4.99 0.54 

MGAT4EP 2.49 4.46E-04 1.50 - 4.15 0.54 
LINC02210-
CRHR1 

2.03 6.42E-03 1.22 - 3.39 0.53 

LINC00304 2.39 7.40E-05 1.55 - 3.67 0.55 DHX8 2.00 2.90E-02 1.07 - 3.74 0.52 

CACNG7 1.93 5.72E-04 1.33 -  2.81 0.56 LINC00972 1.91 9.31E-03 1.17 - 3.10 0.54 

OR52B6 1.83 1.12E-03 1.27 - 2.63 0.56 PAX7 1.90 8.29E-04 1.30 - 2.76 0.56 

TYK2 1.80 2.21E-03 1.24 - 2.63 0.56 TAS1R2 1.61 2.63E-02 1.06 - 2.44 0.53 

PIGO 1.79 1.66E-02 1.11 - 2.88 0.52 SNTG1 1.53 3.37E-02 1.03 - 2.27 0.54 

S100A12 1.71 1.10E-02 1.13 - 2.59 0.54 CNTN5 1.34 2.25E-01 0.83 - 2.16 0.51 

DNAJC9-AS1 1.08 6.51E-01 0.77 - 1.51 0.52 ZNF521 1.26 2.63E-01 0.84 - 1.91 0.52 

  

Varscan2 SomaticSniper 

Gene HR P-value 95% CI  C-index Gene HR P-value 95% CI C-index 

FAM160A2 6.81 4.01E-05 2.73 - 17.02  0.52 CLDN20 7.06 6.62E-07 3.27 - 15.2 0.53 

LOC100420587 5.45 1.31E-07 2.90 - 10.22 0.54 NR2C2AP 5.17 3.16E-05 2.38 - 11.2 0.52 

SPDYA 3.08 7.70E-04 1.60 - 5.94 0.53 ATG9B 3.34 2.59E-04 1.75 - 6.37 0.53 

BRSK2 2.55 1.01E-03 1.46 - 4.46 0.54 HAUS5 2.79 2.22E-05 1.74 - 4.48 0.55 

ADGRF4 2.21 1.23E-02 1.19 - 4.10 0.53 LOC100287329 2.58 8.23E-04 1.48 - 4.49 0.53 

LINC00972 2.11 2.18E-03 1.31 - 3.41 0.55 P4HTM 2.18 2.43E-02 1.11 - 4.31 0.52 

TM4SF18 2.07 1.40E-02 1.16 - 3.70 0.53 OR6C76 2.12 1.18E-03 1.35 - 3.35 0.54 

OR5AS1 1.86 1.43E-02 1.13 - 3.06 0.54 CLK2 1.94 3.58E-02 1.05 - 3.61 0.52 

PDE11A 1.72 2.74E-03 1.21 - 2.46 0.55 FAM187B 1.64 1.51E-02 1.10 - 2.43 0.55 

LOC101929073 1.29 2.98E-01 0.80 - 2.11 0.52 NOMO3 1.34 1.45E-01 0.90 - 1.98 0.52 

HR: Hazard ratio; 95% CI: 95% Confidence Interval; C-index: Concordance index 

 

Similar analysis was done for MAF files from each technique and HR values were calculated. 

As exhibited in Table 3, Mutect2 technique based MAF file has achieved the maximum 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2021. ; https://doi.org/10.1101/2021.12.17.473127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473127
http://creativecommons.org/licenses/by/4.0/


 13

HRLAMC3 = 9.25 with p-value 1.78E-06, followed by Varscan2 with HRSYDE1  8.46 and 3.71E-

05, followed by MuSE technique with HRITGB8 8.30 and p-value 5.69E-07, then followed by 

SomaticSniper with HRCAD 5.56 and p-value 8.10E-04. 

 

Table 3: Hazards ratio for top-10 genes from MAF files derived using MuTect2, MuSE, 

Varscan2, and SomaticSniper technique 

MuTect2 MuSE 

Gene HR P-value 95% CI C-index Gene HR P-value 95% CI C-index 

LAMC3 9.25 1.78E-06 3.71 - 23.05 0.52 ITGB8 8.37 5.69E-07 3.64 - 19.24 0.52 

EVC2 4.30 8.66E-05 2.08 - 8.91 0.53 TBX3 8.10 6.06E-05 2.91 - 22.53 0.52 

NYNRIN 3.94 1.22E-03 1.72 - 9.05 0.52 SIPA1L3 4.90 5.54E-05 2.26 - 10.61 0.52 

KIAA2026 3.85 1.49E-03 1.68 - 8.86 0.52 CAD 4.45 3.58E-03 1.63 - 12.14 0.52 

SUPT20H 3.41 7.53E-03 1.39 - 8.40 0.51 EVC2 4.16 2.97E-04 1.92 - 9.01  0.52 

BRINP2 2.83 2.43E-02 1.14 - 6.98 0.52 ARHGEF11 3.17 2.37E-02 1.17 - 8.64 0.51 

LRP1B 1.93 7.81E-03 1.19 - 3.14 0.54 BRINP2 2.80 2.56E-02 1.13 - 6.92  0.52 

TP53 1.48 3.60E-02 1.03 - 2.14 0.55 PCDH15 1.72 1.20E-01 0.87 - 3.39 0.51 

TG 1.46 4.53E-01 0.54 - 3.97 0.51 TG 1.46 4.55E-01 0.54 - 3.97 0.51 

PCDH15 1.43 3.30E-01 0.70 - 2.93 0.51 CSMD3 1.24 4.54E-01 0.71 - 2.15 0.51 

  

Varscan2 SomaticSniper 

Gene HR P-value 95% CI C-index Gene HR P-value 95% CI C-index 

SYDE1 8.46 3.71E-05 3.07 - 23.35 0.52 CAD 5.56 8.10E-04 2.04 - 15.17 0.52 

ALPP 4.33 1.44E-03 1.76 - 10.66 0.52 TOP2A 4.63 2.73E-03 1.70 - 12.62 0.52 

KIAA2026 3.85 1.49E-03 1.68 - 8.86 0.52 KIAA2026 4.01 2.62E-03 1.62 - 9.93 0.52 

CAD 3.32 1.91E-02 1.22 - 9.04 0.51 EVC2 4.00 1.04E-03 1.75 - 9.17 0.52 

BRINP2 2.83 2.43E-02 1.14 - 6.98 0.52 KTN1 2.56 1.09E-01 0.81 - 8.10 0.51 

TP53 1.60 9.85E-03 1.12 - 2.30 0.56 EPHA3 2.25 1.67E-01 0.71 - 7.13 0.51 

PCDH15 1.48 2.81E-01 0.72 - 3.05 0.51 KIF26B 2.03 1.66E-01 0.74 - 5.55 0.51 

TG 1.46 4.53E-01 0.54 - 3.97 0.51 PCDH15 1.76 1.78E-01 0.77 - 4.02 0.51 

PLCB1 1.25 7.00E-01 0.40 - 3.96 0.50 TP53 1.63 1.20E-02 1.11 - 2.38 0.55 

XIRP2 1.11 7.55E-01 0.58 - 2.12 0.51 TG 1.18 8.17E-01 0.29 - 4.79 0.50 

HR: Hazard ratio; 95% CI: 95% Confidence Interval; C-index: Concordance index 

 

Multiple Gene 

In order to explore the effect of mutations in all the selected genes altogether, we have 

predicted the survival time to estimate the high-risk group in liver cancer patients. Using the 

predicted OS time, HR and p-value is computed with cox proportional hazard models for 

each technique corresponds to each file type. We achieved highest HR 4.50 with highly 

significant p-value 3.83E-15 for the VCF files generated using the MuTect2 technique 
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(Figure 4A). However, in case of MAF files MuSE technique performed best among other 

techniques with HR 2.47 and p-value 9.64E-07 (Figure 4B). Additionally, KM survival plots 

clearly represents the segregation of high- and low-risk groups; the comparison of different 

mutation calling techniques based on two file formats is shown in Figure 4.  

 

Figure 4: Kaplan Meier survival curves for the risk estimation of liver cancer patients 

based on the combined effect of mutation (A) survival plots for the VCF files (B) 

survival plots for the MAF files 

 

Prediction of Overall Survival of Patients 

To predict the overall survival for liver cancer patients, we have used number of mutations in 

the top-10 genes as the input feature and developed regression models for VCF and MAF 

files for each technique, using seven different regressors such as, Linear (LR), Lasso (LAS), 

Ridge (RID), Elastic Net (ENT), Decision Tree (DTR), Random Forest (RFR), and Support 

Vector (SVR). Table 5 exhibits the performance of best performing regressor in each file 

type. Performance of all the regressors for each file type and technique is reported in 

Supplementary Table S2. In case of MuTect2 technique, the OS predicted using VCF files 

have MAE 12.52 and significant correlation of 0.57 between the true and predicted OS; 

whereas in MAF file the MAE is 16.47 with R 0.37. Whereas, MuSE technique has achieved 

the minimum MAE of 13.88 and 16.89 along with R of 0.51 and 0.34, for VCF and MAF file 
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respectively. In files generated using Varscan2 technique, for VCF file the minimum MAE is 

14.57 with R 0.48, whereas for MAF file it is 16.53 with R 0.36. VCF and MAF file 

generated using SomaticSniper technique reported minimum MAE of 15.76 (R=0.40) and 

16.72 (R=0.33), respectively. As shown in Table 5, for VCF as well as MAF files, MuTect2 

technique outperformed the other techniques in terms of MAE, RMSE and R-value. 
 

Table 5: Performance of best regressors on top-10 genes from VCF and MAF files 

extracted using all techniques 

Technique File Type MAE RMSE R p-value 

MuTect2 
VCF 12.52 19.58 0.57 7.00E-37 
MAF 16.47 22.16 0.37 1.31E-14 

MuSE 
VCF 13.88 20.38 0.51 1.38E-29 
MAF 16.89 22.48 0.34 1.68E-12 

Varscan2 
VCF 14.57 20.78 0.48 4.77E-26 
MAF 16.53 22.26 0.36 9.11E-14 

SomaticSniper 
VCF 15.76 21.82 0.40 3.31E-17 
MAF 16.72 22.26 0.33 8.46E-12 

MAE: Mean Absolute Error; RMSE: Root Mean Square Error; HR: Hazard Ratio; R: Correlation Coefficient 

 

Discrimination of Low- and High-Risk patients 

Initially, the dataset was divided into two groups, i.e., the high-risk and low-risk group. 

Samples with OS time less than the median OS time were designated to the high-risk group, 

whereas the remaining were assigned to the low-risk group. To assess the ability of the 

number of mutations/gene/samples to classify the patients into the high and low-risk groups, 

classification models were developed on top 10 genes for each technique and file type, using 

seven different classifiers such as RF, LR, XGB, DT, KNN, GNB, and SVC. The 

performance of all the classifiers for every model generated on each technique for both the 

files are reported in Supplementary Table S3.   

Number of mutations reported through each technique were used to develop models to 

predict the high- and low-risk group. In case of VCF file derived using Mutect2, SVC-based 

model achieved AUROC of 0.72 and 0.69 in training and validation data, respectively as 

shown in Table 6. Similarly, ET-based model developed on genes from MAF files extracted 

using MuTect2 technique performed with AUROC of 0.57 and 0.67 on training and 

validation dataset, respectively. For MuSE technique, GNB-based model developed on genes 

from VCF files achieved AUROC of 0.66 and 0.68 on training and validation data whereas, 

ET-based model developed on genes from MAF files achieved 0.60 and 0.51 AUROC on 

training and validation dataset, respectively. For the genes obtained from the Varscan2 
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technique, SVC-based model with genes from VCF file performed best with AUROC 0.68 

and 0.64 on the training and validation dataset, with the minimum difference in sensitivity 

and specificity, whereas for MAF files, LR-based model achieved AUROC of 0.63 and 0.63 

on training and validation dataset. For SomaticSniper technique, LR-based model developed 

on genes from VCF files achieved AUROC of 0.63 and 0.65 on training and validation data 

whereas, LR-based model developed on genes from MAF files achieved 0.60 and 0.64 

AUROC on training and validation dataset, respectively. For VCF as well as MAF files, 

MuTect2 technique performed best among other techniques in terms of difference between 

sensitivity and specificity as well as AUROC. 

 

Table 6: Performance of best classifiers on top-10 genes from VCF and MAF files 

extracted using all techniques 

Technique File Type Dataset MLT Sensitivity Specificity Accuracy AUROC F1 Kappa MCC 

MuTect2 

VCF 
Training 

SVC 
70.06 71.86 71.26 0.72 0.71 0.41 0.42 

Validation 69.05 66.67 67.86 0.69 0.68 0.36 0.36 

MAF 
Training 

ET 
58.03 52.76 55.39 0.57 0.57 0.11 0.11 

Validation 60.98 63.42 62.20 0.67 0.62 0.24 0.24 

MuSE 

VCF 
Training 

GNB 
63.47 64.07 63.77 0.66 0.64 0.28 0.28 

Validation 71.43 52.38 61.91 0.68 0.65 0.24 0.24 

MAF 
Training 

ET 
58.03 53.42 55.73 0.60 0.57 0.11 0.12 

Validation 30.00 75.61 53.09 0.51 0.39 0.06 0.06 

Varscan2 

VCF 
Training 

SVC 
62.28 70.66 66.47 0.68 0.65 0.33 0.33 

Validation 71.43 61.91 66.67 0.64 0.68 0.33 0.34 

MAF 
Training 

LR 
57.41 63.80 60.62 0.63 0.59 0.21 0.21 

Validation 48.78 78.05 63.42 0.63 0.57 0.27 0.28 

SomaticSniper 

VCF 
Training 

LR 
60.48 61.08 60.78 0.63 0.61 0.22 0.22 

Validation 52.38 76.19 64.29 0.65 0.60 0.29 0.29 

MAF 
Training 

LR 
54.94 61.49 58.20 0.60 0.57 0.16 0.17 

Validation 45.00 80.49 62.96 0.64 0.55 0.26 0.27 

MLT: Machine Learning Technique; LR: Logistic Regression; ET: ExtraTree; DT: Decision Tree; XGB: eXtreme Gradient Boosting; RF: 

Random Forest 

 

Discussion  

Liver cancer is a global problem and occurs after severe liver diseases (for example) (Ref). 

Chronic liver diseases are associated with cancer development and prompt progressive 

mutations at the genomic level (Ref). Previous studies report that liver cancer is associated 

with poor prognosis and a high mortality rate amongst the most frequent cancer types [Ref]. 

Nowadays, several mutation calling techniques are available to identify the mutation 
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landscape in tumor/normal patients. Hitherto, there is not an appropriate comparison of 

mutation detection methods for the predictive and prognostic analysis. In this study, we 

examine the performance of four widely used mutation calling techniques such as MuTect2, 

MuSE, Varscan2, and SomaticSniper using TCGA liver cancer cohort. We have applied 

various techniques in order to compare all the methods for predicting and analysing 

prognostic biomarkers in liver cancer patients. First, we have used VCF and MAF files 

generated by the different mutation calling methods. We have used the most popular methods 

(ANNOVAR and Maftools) to identify the gene-associated mutations in liver cancer samples. 

Further, we observed that the VCF files of Mutect2 and SomaticSniper report highest number 

of mutated genes and cover over 5 million mutations. Whereas, MAF files reports 

comparatively less mutated genes for each technique as shown in Table 1.  

Then, we performed correlation analysis in order to check the impact of mutations on the 

survival of liver cancer patients. On performing the univariate survival analysis on VCF files, 

we observed that LncRNA SNGH10, CLMP, FAM160A2 and CLDN20 achieved the highest 

HR value in MuTect2, MuSE, Varscan2 and SomaticSniper technique respectively. As 

shown by Lan et al. LncRNA SNGH10 is an oncogenic lncRNA in liver cancer patients and 

reduces the survival of the patients (Lan et al., 2019). It’s down-regulation is also associated 

with the poor survival non-small cell lung cancer with HR 2.09 with p-value 0.02 (Liang et 

al., 2020). Our study also corresponds with the previous studies and exhibits that the 

mutations in SNGH10 gene is associated with poor outcome in liver cancer patients with HR 

5.49 and p-value < 0.001. Whereas, the differential expression of CLMP gene is associated 

with the progression of cancers of the breast cancer (Nilchian et al., 2019). Yang et al. also 

reported the significance of CLDN20 gene in the survival of breast cancer patients with HR 

1.38 and p-value 0.047  (Yang et al., 2021). However, our analysis reveal the role of CLMP 

and CLDN20 gene in the survival of liver cancer patients. Further, in case of MAF files, the 

univariate survival analysis reveals that SYDE1, LAMC3, ITGB8, CAD, EVC2, NYNRIN, 

BRSK2, TP53 genes significantly reduces the overall survival. As shown by the recent study 

that SYDE1 act as an oncogene and overexpressed in glioma patients makes it an important 

diagnostic and prognostic biomarker (Han et al., 2021). Moreover, the down-regulation of 

LAMC3 is correlated with the poor prognosis and metastasis in the ovarian cancer patients 

(Lei et al., 2021). A study also reveals that mutations associated with LAMC3 genes may 

cause PNH (a rare disorder of clonal stem cell in foetus), which may leads high mortality rate 

infection and premature birth (De Angelis et al., 2021; Qian et al., 2021). We also observed 

that mutations associated with LAMC3 significantly reduces the survival of patients with HR 
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= 9.25 and p-value<0.001. In addition, ITGB8 is shown to be highly upregulated in high-

grade ovarian cancer patients, which leads to shorter OS with significant HR 1.42 (He et al., 

2018). Paul et.al, also reveals that EVC2 gene is highly mutated in breast cancer patients and 

dysregulates pathways like (mTOR, CDK/RB, cAMP/PKA, WNT, etc) (Paul et al., 2020). 

Our study show that mutations associated with EVC2 genes reduces the overall survival of 

patients with HR = 4.3 and p-value<0.001. Researchers have shown that the overexpression 

of BRSK2 gene correlated with the patients survival and prognosis in pancreatic cancer (W. 

Lou Dr. , 2009). Of Note, several studies reports that TP53 is the highly mutated gene among 

most of the human cancers and affects the survival of cancer patients (Monti et al., 2020; 

Olivier et al., 2010; Petitjean et al., 2007; Rosenberg et al., 2020; Ungerleider et al., 2018). In 

current study, we also found that TP53 is the highly mutated gene among the liver cancer 

patients and covers almost 20% mutations. Correlation and survival analysis shown that 

mutation associated with TP53 significantly reduces the overall survival with HR = 1.63 and 

p-value < 0.001 among liver cancer patients. While considering the combined effect of 

selected genes in each file, MuTect2 technique outperformed all the other techniques in VCF 

file with HR 4.50 (p-value<0.001), whereas MuSE technique outperformed other mutation 

calling methods with HR 2.47 (p-value<0.001) in case of MAF files (Table 4).   

Furthermore, to compare the different mutation calling techniques we develop various 

survival prediction and classification models using the top-10 genes respective to each file 

type (Table 5, 6). The predicted survival time employed for the stratification of high-risk and 

low-risk groups. Models based on ten selected genes from VCF file of MuTect2 technique 

performed best among the other techniques in stratification of patients in high- and low- risk 

group, as well as in OS time prediction. Our findings suggest that the VCF file generated 

using MuTect2 mutation calling technique provides the comprehensive information which 

can be used for the risk-estimation of liver cancer cohort. Furthermore, this needs to be 

confirmed on the other cancer cohorts to explore the prognostic potential of mutations. 
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