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Abstract: 

We explore the link between  on-going neuronal activity at primary motor cortex (M1) and

face movement in awake mice. By combining custom-made behavioral sequencing analysis

and fast volumetric Ca2+-imaging, we simultaneously tracked M1 population activity during

many different facial motor  sequences. We show that  a facial area of M1 displays distinct

trajectories  of neuronal  population  dynamics  across  different  spontaneous  facial  motor

sequences, suggesting an underlying population dynamics code.

Significance statement: 

How our brain controls a seemingly limitless diversity of body movements remains largely

unknown.  Recent  research  brings  new  light  into  this  subject by  showing  that  neuronal

populations at the primary motor cortex display different dynamics during forelimb reaching

movements  versus  grasping,  which  suggests  that  different  motor  sequences  could  be

associated with distinct motor cortex population dynamics. To explore this possibility, we

designed  an  experimental  paradigm  for  simultaneously  tracking  the  activity  of  neuronal

populations in motor cortex across many different motor sequences. Our results support the

concept that distinct population dynamics encode different  motor  sequences, bringing new

insight into the role of  motor cortex in sculpting behavior  while opening new avenues for

future research.
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Introduction: 

Facial motor control involves descending projections from the primary motor cortex (M1) to

the brain stem, through the cortico-bulbar tract, where the facial nerve bilaterally projects to

the muscles of the face and neck. Cortical and motor activity involving this tract is highly

dynamic  and  becomes  more  structured  as  a  consequence  of  associative  learning  (1).

Associative learning paradigms have extensively contributed to determining the role of M1 in

learning new motor skills involving the limbs (cortico-spinal tract) and dexterous movements

(2–6). However, relatively little is known about the role of M1 activity outside the context of

associative learning and limb movement. Outstanding previous work shows that M1 activity

can represent muscle movements (7) and can also encode certain parameters of motor actions

such as velocity or direction (8). Both muscle and non-muscle related activity can be detected

at  M1,  which  together  with  its  complex  network  feedback  and  dynamics  makes

understanding the functional link between M1 activity and motor behavior non-trivial, even

during a single, standardized task (9, 10). Recent research evidences that populations of M1

neurons  display  markedly  different  dynamics  in  reaching versus grasping  tasks  (11),

suggesting that  distinct trajectories  of M1 population dynamics could arise during different

motor  sequences. Based on this, we hypothesize that  distinct motor actions are encoded by

different trajectories  of M1 population dynamics. Testing this hypothesis,  however, comes

with  the  challenge  of  recording  M1  population  activity  during  multiple  different  motor

sequences. To  address this  we  used a  bespoke, fast  volumetric  2-photon  Ca2+ imaging

approach based on temporal focusing (sTeFo 2P) (12) to simultaneously sample the activity

of  M1  neuronal  populations  across  multiple,  spontaneous  facial  motor  sequences.  We

defined,  detected  and  distinguished these spontaneous facial  motor  sequences from video

recordings  through  a  custom  algorithm  based  on  behavioral  sequencing  (13).  The
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combination of these methods revealed that distinct trajectories of population dynamics arise

at  a  facial  area of M1 during many different  spontaneous facial  motor  sequences.  These

distinct trajectories of M1 population dynamics are comprised of transitions between very

different population states, and were exclusively observed during specific spontaneous facial

motor sequences. Altogether, this supports the concept of a M1 population dynamics code for

spontaneous facial motor sequences.

Results:

Spontaneous  mouse  behaviors  have  been  effectively  defined,  quantified  and  studied  as

sequences of simple behavioral modules that can be systematically detected through image

analysis  approaches  (13).  Currently  available  tools are  either  designed for  tracking  body

posture  (13,  14) or  require  a  priori knowledge  of  specific  relevant  features  for  manual

training  of  custom  software  based  on  machine  learning  (15).  One  prominent algorithm

provides effective unsupervised  facial  movement  tracking  functionality,  producing  a

multidimensional readout (‘motion masks’)  representing certain facial features that change

jointly during on-going face behavior (16). However, without previous knowledge of which

facial features are relevant for different facial motor sequences, this multidimensional readout

must be comprehensively interpreted into a representation of face motor actions, which can

be challenging or lead to information loss if dimensionality reduction is used. We in contrast

developed  an  automated  classification  algorithm  to  extract behavioral  modules  from  2-

dimensional (2D) videos of the face of head fixed mice  (acquired at 60 fps.), and analyzed

sequences of these modules  to  define,  detect  and distinguish motor  sequences  as an uni-

dimensional readout (Fig. 1a, b). This algorithm relies on the frame by frame categorization

of the face conformation via hierarchical clustering of the spatial features in each video frame
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(Fig. 1b). We vectorize the face conformation displayed in each frame through a histogram of

oriented gradients (HOG) transformation (17) and categorize the corresponding HOGs, based

on their pairwise similarity. To estimate the number of behavioral modules (different  face

conformations) present  in  a  video  recording,  we segmented the  smoothed  t-distributed

stochastic neighbor embedding  (tSNE) projection of the HOGs with a watershed transform

(14) (see Methods for details). We used this segmentation to split the hierarchical clustering

dendrogram of the HOGs into an equal number of branches (clusters). Each cluster of similar

face  conformations  represents  one  of  the  aforementioned  behavioral  modules  (‘face

categories’).  The frame-by-frame sequence of  face categories  then defines  specific  motor

sequences (Fig. 1b, c, Methods). 

In  all  our  recordings  we  observed  a  single face  category  that  occurred  most frequently,

covering ~50% of the recording time.  We interpreted  this  as the inactive  or  resting face

conformation. We then delimited motor sequences of different durations as sequences of face

categories between resting periods (Fig. 1b, c). In order to explore the datasets for repeated,

stereotyped  behaviors  we  evaluated  the  pairwise  Damerau-Levenshtein  (DL)  distance  to

estimate the similarity between the detected  motor  sequences  across their different lengths.

Only an average of 6% from them showed higher similarity than chance level, suggesting that

repetitive or stereotyped motor actions were very infrequent in our recordings. We interpreted

the remaining ~44% of recorded motor sequences as different spontaneous motor actions.
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Figure 1: Videographic facial  motor  sequence interrogation in head fixed awake mice. a)  Conceptual

diagram of  our approach. b) Schematic of the behavioral sequencing algorithm (also see Methods). c) Top:

Behavioral  sequence obtained from  a representative face video (11 experiments,  7 mice).  Middle:  Example

motor sequences and their corresponding standard deviation projections. Bottom: Deviation in gray value from

the resting face conformation in identified face categories (indicated by colored dot), highlighting the specific

features of each face category.

We interrogated M1 population dynamics using sTeFo 2P (12) and simultaneously recorded

at 4Hz the activity of,  on average,  1000 neurons,  while tracking facial activity using our

algorithm (fig  2a-c).  The murine M1 areas associated  with face movements are widespread

and intermingled with other  motor areas  (18).  In consequence, we focused on a  M1 area

associated  with snout movements,  since these include behaviorally relevant motor outputs

such as whisking, sniffing, and mouth movements. We deconvolved spike probabilities from

the recorded Ca2+ signals (fig  2d)  to study neuronal population  states and their transitions

(population dynamics) during the execution of motor sequences and resting periods (fig 2e).

Population dynamics traced diverse trajectories during resting periods and motor sequences,

which we visualized in principal component space (Fig.  2f). To compare the trajectories  of

population dynamics without dimensionality  reduction,  we evaluated the pairwise discrete

Frechet distance (FD) as a measure of dissimilarity. Most of the trajectories  of population

dynamics observed during different motor sequences had lower than chance level FD from

the ones recorded during resting states, suggesting that population dynamics at the particular

M1 volume  imaged  (superficial  ~450µm3)  might not be linked to these motor sequences.

Nevertheless, we systematically observed up to 11 distinct motor sequences associated with

markedly  different trajectories  of  M1  population  dynamics.  These  trajectories displayed

higher than chance level FD to all other recorded trajectories, even to those observed during
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resting periods  (Fig.  2g), suggesting a specific association between distinct M1 population

dynamics and different spontaneous facial motor sequences. 

If  different  motor sequences are indeed  associated with distinct population dynamics, then

these sequences should also be detected through an independent analysis of  M1 population

dynamics.  We therefore  evaluated  the  behavioral  sequences  delimited  by  epochs  of  high

Euclidean  distance  between  consecutive  M1  population  states  (Fig.  2h).  83%  of  the

previously detected spontaneous motor sequences (associated to specific trajectories of M1

dynamics) were represented in the motor sequences delimited by high Euclidean distance

epochs in population dynamics. This further supports the association between M1 population

dynamics and spontaneous facial motor sequences. Finally, we observed similar results when

monitoring the face side ipsilateral or contralateral to the brain hemisphere that was imaged,

consistent with bilateral cortico-bulbar control of face movements.
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Figure  2:  M1  population  dynamics  during  spontaneous  face  motor  sequences. a)  Schematic  of  the

experimental  setup.  b)  Volume  rendering  of  the  jRGECO1a  signal  from a  representative  data  set  (n  =  8

experiments/4 mice). c) Raster plot of the z-scored jRGECO1a signal extracted from all neurons in the dataset

shown in (b). d)  Face motor sequence with an exemplary subset of associated dF/F0 traces (blue) and their

corresponding  spike  probability  traces  (black).  e)  Recorded  M1  population  states  transitioned  during  the

corresponding  representative  face  motor  sequences,  extracted  from  the  dataset  shown  in  (b).  f)  Standard

deviation  projections  of  the  gray  values  in  the  frames  spanning  the  resting  period  and  three  face motor

sequences shown in (e), with their corresponding M1 population activity trajectories plotted in low-dimensional

principal component space. g) Representative pairwise Frechet distance matrix for trajectories of M1 population

dynamics recorded  during different  face  motor  sequences (black  bar)  or  resting periods (white  bar).  Black

arrowheads mark trajectories of M1 dynamics with higher than chance level FD to all others (7 in total).  h) Top:

Euclidean distance between consecutive population state vectors, showing epochs of higher than chance level

distance.  Middle/Bottom:  Corresponding  motor  sequences  delimited  by  some  example  epochs  with  the

matching sequences delimited by the behavioral sequencing analysis from panel (f).

Discussion:

Interrogating  and interpreting  face movements in animal models in an unbiased fashion is

challenging, especially when the relevant facial features involved are not fully characterized

or are hard to predict beforehand.  To overcome this, we developed a  bespoke behavioral

sequencing  algorithm to examine spontaneous facial  motor  sequences.  By combining this

approach  with simultaneous,  volumetric sampling  of  neuronal population  activity,  we

characterized M1 population dynamics associated with spontaneous face motor sequences.

We found a specific association between distinct trajectories of M1 population dynamics and

spontaneous  face  motor  sequences.  These  findings  support  the  concept  of a  population

dynamics code for motor actions, at least for the case of spontaneous face motor sequences.

Based on our observations, we hypothesize that the structure of this code would consist of

switching population dynamics between a fixed point  attractor  for the resting period and

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.15.431209doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431209
http://creativecommons.org/licenses/by-nc-nd/4.0/


diverse  subspaces  or  manifolds  as  flow  fields  for  population  dynamics  to  trace  distinct

trajectories  during  different  motor  sequences (Fig.  2f).  Network  connectivity  within  the

population would determine the subspace or manifold recruited during a motor sequence.

Future  research  will determine  if  these  subspaces  and  manifolds  are  generally  low

dimensional and overlapping, following the concept of ‘neural modes’ proposed by Gallego

and colleagues for the stereotyped, low dimensional behaviors typically used in motor control

studies  (19).  On the other hand, characterizing how contextual inputs (e.g. sensory) switch

the population away from and back to resting point attractor  dynamics (‘start’  and ‘stop’

signals) is another inspiring future research direction. Altogether, our results and approach

bring new insights about the motor control of spontaneous face movement and open new

possibilities to study motor systems in health and disease, across conditions such as facial

palsy,  oro-facial  chorea  and  tic  disorders  like  Tourette’s,  and  outside  the  context  of  the

cortico-spinal tract and associative learning tasks.
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Materials and Methods: 

Animals and ethics statement:

This  work  complies  with  the  European  Communities  Council  Directive  (2010/63/EU)  to

minimize animal pain and discomfort. Experimental procedures were approved by EMBL’s

committee for animal welfare and institutional animal care and use (IACUC), under protocol

number RP170001. 8-16 week old C57Bl6/j mice from the EMBL Heidelberg core colonies

were used for experiments, housed in groups of 1-5 in makrolon type 2L cages on ventilated

racks at room temperature and 50% humidity with a 12 hr light cycle. Food and water was

available ad libitum.

Surgeries:

7-8 week old  mice  of  either  sex were  used  for  cranial  window surgeries.  Animals  were

anesthetized  with  a  mixture  of  40 µl  fentanyl  (1 mg/ml;  Janssen),  160 µl  midazolam (5

mg/ml; Hameln) and 60 µl medetomidin (1 mg/ml; Pfizer), dosed in 3.1 µl/g body weight and

injected i.p.. After loss of pain reflexes, the fur over the scalp was removed with hair removal

cream, eye ointment was applied (Bepanthen, Bayer) and 1% xylocain (AstraZeneca) was

injected under the scalp as preincisional local anesthesia. The mouse was then placed in a

stereotaxic  apparatus  (David  Kopf  Instruments,  model  963)  equipped with  a  heating  pad

(37°C) to preserve body temperature. The dorsal cranium was exposed by removing the scalp

and periosteum with fine forceps and scissors to prepare the mouse for M1 ablation or cranial

window implantation surgeries. For post surgical care, mice received pain relief (Metacam,

15
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Boehringer  Ingelheim)  and  antibiotic  (Baytril,  Bayer)  s.c.  injections  (0.1  and  0.5  mg/ml

respectively, dosed 10μl/g body weight).

- Stereotaxic viral vector delivery and cranial window implantation:

For  Ca2+ indicator  expression  at  M1,  recombinant  AAV  vectors  (rAAVs,  serotype  1)

encoding jRGECO1a under the control of the synapsin promoter (Addgene #100854-AAV1)

was  stereotaxically  delivered  as  follows.  After  the  dorsal  cranium was  exposed,  a  4mm

diameter circular craniectomy was made over M1 using a dental drill (Microtorque, Harvard

Apparatus), centered at 1.75 mm anterior and 0.5mm lateral to Bregma. Damage to the dura

and bleeding was carefully avoided. rAAV injections were performed at the center of the

craniectomy using glass pipettes lowered to depths of 300, 400 and 500 μm, at a rate of ~4ul/

hr  using  a  syringe.  ~300nl  were  injected  per  spot.  After  injection,  the  craniectomy  was

covered by a round 4mm coverslip (~170μm thick, disinfected with 70% ethanol) with a drop

of saline between the glass and the dura. The cranial window was sealed with dental acrylic

(Hager Werken Cyano Fast and Paladur acrylic powder) and a head fixation bar was also

cemented. The surgical wound was also closed with dental acrylic. Mice were single housed

after  cranial  window implantation  and had a  recovery  period  of  at  least  4  weeks before

imaging, for Ca2+ indicator expression and for the inflammation associated with this surgery

to resolve (20).

Videographic Behavioral sequencing:
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We developed a custom library, written in MATLAB code, to perform behavioral sequencing

from  2D videography  data  (https://github.com/prevedel-embl/FaceCat).  The  videographic

data  was  obtained  by  imaging  one  side  of  the  mouse  face  with  an  IR  sensitive  camera

equipped with a CMOS OV2710 sensor, IR LEDs for illumination, a 3.6 mm M12 objective

(ELP, USBFHD05MT-KL36IR), using a sampling rate  of 30 fps at  720p resolution.  The

library is designed to run without major input by the user, using non-supervised classification

algorithms  to  extract  movement  bouts  from ongoing spontaneous  behavior  of  head-fixed

mice.

First, the starting frame of every video is opened in an interactive window that allows the

user  to  specify  the area  of  the image  to  analyze.  HOGs of  these  areas are  calculated  as

described elsewhere (17). Subsequently the pairwise distances between all HOG vectors are

calculated using the cosine distance metric. Unsupervised hierarchical clustering is applied to

the resulting distance matrix. To obtain the number of clusters that are present in the data we

use a density-based approach following (14). Briefly, the HOG vectors are mapped into two

dimensions using t-SNE. A Gaussian kernel is then convolved in both dimensions with the

resulting point cloud to obtain a probability density map. Next, a watershed transformation is

employed to delineate local maxima in the probability density map. The number of maxima is

used  as  the  estimate  of  the  number  of  clusters  present  in  the  data  and  passed  to  the

hierarchical clustering of the distance matrix. The result is a vector containing one numerical
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label for every frame of the initial video (classification vector). We defined this classification

vector as our behavioral sequence for further analyses.

In vivo Ca2+-imaging of M1 populations:

We built a dedicated two-photon microscope based on scanned temporal focusing (sTeFo)

which enabled  fast volumetric in vivo Ca2+ imaging of large M1 neuronal populations. The

technical details and working principle is extensively described elsewhere (12), however for

our study we utilized  a higher repetition laser (10 MHz, FemtoTrain, Spectra Physics) and

operated the microscope with the following parameters:  The scanning laser power was kept

below 191 mW after the objective to avoid  excessive  heating of brain tissue  (12). Field of

views of 470 μm2 were imaged at 128 px2 resolution and spaced in 15 μm z steps in the axial

direction to cover 585 μm in depth (39 z steps) at a volume rate of 3.99 Hz. Frames acquired

during objective flyback were discarded. Typically we could detect Ca2+ signals with good

signal-to-noise up to a depth of 500 μm from the pial surface. Mice were briefly (< 1 min)

anesthetized with 5% isoflurane in O2 for quick head fixation at a custom built stage, with

their bodies inside a 5 cm acrylic tube, under our custom two-photon microscope. After head

fixation mice fully recovered from the isoflurane anesthesia in less than a minute, showing a

clear  blinking  reflex,  whisking  and  sniffing  behaviors  and  normal  body  posture  and

movements. Nevertheless, we waited at least 5 minutes before starting experiments to ensure

full  recovery  from the  brief  anesthesia.  Prior  to  Ca2+-imaging  experiments  in  the  awake

condition, a pilot group of mice were habituated to the head fixed condition in daily 20 min
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sessions for 3 days.  We note, however, that we did not observe a marked contrast in the

behavior of habituated versus unhabituated mice under the microscope during these relatively

short 20 min sessions. Thus, imaging sessions typically lasted 20 min, after which the mouse

was returned to its home cage. Typically mice were imaged a total of 4 times (sessions), once

a week.

Ca2+-imaging analysis:

Volumetric imaging data was visualized and rendered using FIJI (21). Motion correction of in

vivo awake recordings was performed using NoRMCorre (22) on each imaging plane in the

volumetric datasets. jRGECO1a signal was extracted,  filtered and neuropil corrected from

each individual imaging plane using CaImAn  (23). Spike probability was estimated using

MLSpike (24).

Statistical analyses:

All analyses were performed using MATLAB functions and custom scripts. Dimensionality

reduction  through  PCA,  for  data  visualization  purposes  only,  was  performed  on  motor

behavior and resting period associated population states altogether such that their trajectories

could be visualized in the same PC space.  Discrete Frechet distance  (FD) was calculated

using  the  algorithm  outlined  by Zachary  Danziger (2021,  Discrete  Frechet  Distance

(https://www.mathworks.com/matlabcentral/fileexchange/31922-discrete-frechet-distance).

For  determining  chance  level DL  distance  and  FD  we  performed  10.000  iterations  of
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resampling  with  restitution  from  the  recorded  DL distances  or the  FDs  recorded  dirong

resting  periods respectively.  Chance  levels  were  defined as  the  1%  quantile  from  the

randomized DL distance distribution and the 99% quantile of the randomized FD distribution.

For hypothesis testing, a p value < 0.05 was considered significant.
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