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Abstract 

Studies assessing relationships between brain and cognitive changes in healthy aging have shown 

that a variety of aspects of brain structure and function explain a significant portion of the 

variability in cognitive outcomes throughout adulthood. Many studies assessing relationships 

between brain function and cognition have utilized time-averaged, or static functional 

connectivity methods to explore ways in which brain network organization may contribute to 

aspects of cognitive aging. However, recent studies in this field have suggested that time-

varying, or dynamic measures of functional connectivity, which assess changes in functional 

connectivity throughout a scan session, may play a stronger role in explaining cognitive 

outcomes in healthy young adults. Further, both static and dynamic functional connectivity 

studies suggest that there may be differences in patterns of brain-cognition relationships as a 

function of whether or not the participant is performing a task during the scan. Thus, the goals of 

the present study were threefold: (1) assess whether dynamic connectivity (neural flexibility) 

during both resting as well as task-based scans is related to participant age and cognitive 

performance in a lifespan aging sample, (2) determine whether neural flexibility moderates 

relationships between age and cognitive performance, and (3) explore differences in neural 

flexibility between rest and task. Participants in the study were 423 healthy adults between the 

ages of 20-80 who provided resting state and/or task-based (Matrix Reasoning) functional 

magnetic resonance imaging (fMRI) scan data as part of their participation in two ongoing 

studies of cognitive aging. Neural flexibility measures from both resting and task-based scans 

reflected the number of times each node changed network assignment, and were averaged both 

across the whole brain (global neural flexibility) as well as within nine somatosensory/cognitive 

networks. Results showed that neural flexibility during the task was higher in older adults, and 

that neural flexibility in Default Mode and Visual networks was negatively related to 

performance on the Matrix Reasoning task. Resting state neural flexibility was not significantly 

related to either participant age or cognitive performance. Additionally, no neural flexibility 

measures that significantly moderated relationships between participant age and cognitive 
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outcomes. Further, neural flexibility differed as a function of scan type, with resting state neural 

flexibility exhibiting significantly more variability than task-based neural flexibility. Thus, 

neural flexibility measures computed during a cognitive task may be more strongly related to 

cognitive performance across the adult lifespan, and are more sensitive to the effects of 

participant age on brain organization.     
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Introduction 

Recent work in the cognitive neuroscience of aging has explored the effects of aging on brain 

network organization and function, both at rest as well as during the performance of cognitive 

tasks. Generally, when looking at functional connectivity computed across the whole resting 

state timeseries, studies have found that older adults’ brains tend to be less segregated, less 

efficiently organized, and have weaker connectivity within networks.1–3 Findings linking these 

age-related differences in network organization at rest to age-related differences in cognitive 

performance outside the scanner have been relatively limited. They have offered some insight 

into ways in which resting brain organization/function may explain variability in cognitive 

performance, but these measure explain a fairly small amount of that variability.1,3,4 

More recent work in this field has shown that time-varying measures of functional connectivity 

may account for more, or differential, variability in behavioral outcomes.5,6 These time-varying 

measures typically capture aspects of network reorganization, or differential patterns of 

interactions between networks, that evolve and change over the course of a resting-state or task-

based functional magnetic resonance imaging (fMRI) scan. The most common method for 

measuring these time-varying patterns is to estimate measures of connectivity during a number 

of overlapping “sliding windows” in the blood oxygen level-dependent (BOLD) timeseries data. 

Essentially, network structure/integrity is estimated within each window, with outcome measures 

reflecting the degree to which these measures change from one window to the next.  

While many of these dynamic/time-varying connectivity analyses have focused on younger 

adults, some studies have extended these analyses to explore aspects of neurocognitive aging. 

Studies examining time-varying connectivity metrics in older adulthood have found that, at rest, 

older adults show different patterns of dynamic integration/segregation across multiple brain 

networks relative to younger and middle-aged adults7 and patterns of spontaneous state-

switching that may underlie differences in cognitive performance between high- and low-

performing older adults8. Additionally, one study examining dynamic aspects of functional 

connectivity during a working memory task found that older adults show reduced ability to 

reorganize and synchronize functional brain networks to aid in task performance relative to 

younger adults9. However, no studies to date have specifically compared dynamic measures of 
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connectivity across the adult lifespan both at rest as well as during a cognitive task known to be 

sensitive to age-related changes in fluid cognition. Further, results tying these patterns of 

dynamic connectivity to cognitive/task performance are limited, providing some evidence that 

these time-varying connectivity patterns may carry cognitive significance, but with many 

nuanced relationships between time-varying connectivity and cognitive performance remaining 

unanswered.  

In this vein, a few recent papers explored relationships between time-varying connectivity 

metrics and behavioral/cognitive outcomes in groups of younger adults and infants. In the first 

study utilizing a novel method10 for detecting dynamic changes in community structure over time 

in neuroimaging data, the authors collected fMRI data during 3 long motor sequence learning 

sessions spread out over 5 days11 and found that nodes showed flexibility in network 

membership both within and between experimental sessions, and that flexibility in network 

assignment during the task predicted later learning. Another study used similar methodology to 

probe relationships between flexibility observed while performing a working memory task and 

neuropsychological task performance in younger adults.12 The authors found that network 

flexibility was fairly evenly distributed across most networks during a control task condition, but 

that during more effortful task conditions, network flexibility was more prominent in 

frontoparietal and frontotemporal network nodes. Further, the degree of integration among these 

frontal networks predicted out-of-scanner neuropsychological measures of working memory and 

executive function, suggesting that the degree of flexibility in these networks during working 

memory task performance may play a role in explaining variability in performance on similar 

tasks. Finally, while these studies found promising relationships between task-based neural 

flexibility and cognitive outcomes in samples of healthy younger adults, a more recent study 

utilizing the same metric explored similar relationships using infant fMRI scans acquired during 

natural sleep (“rest”) over the course of the first 2 years of life.13 The authors found that, 

generally, neural flexibility across the whole brain increased over this time period, however 

neural flexibility remained stable in visual network nodes. Further, they found that neural 

flexibility in this visual network was negatively associated with cognitive ability at age 5/6. 

Together, these studies suggest that neural flexibility may provide meaningful information about 

neural correlates of cognitive function, both when measured during resting or task-based fMRI 

scans. However, while past studies have examined these patterns in infancy and in younger 
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adults, it is unclear how these measures may be influenced by participant age over the adult 

lifespan, and whether they may explain age-related differences in cognitive function.  

An additional consideration in these studies is whether the relationships between these measures 

and cognitive/behavioral outcomes differs when neural flexibility is measured at rest versus 

during a task. Static connectivity studies that assess aspects of network organization and function 

often find similar effects of age on connectivity when connectivity is assessed when participants 

are at rest or performing a cognitive task, but these effects may be larger or smaller than those 

observed at rest depending upon the task being performed. For example, a recent study in our 

group found that the nature of the in-scanner task had a significant effect on discovery of age 

effects on connectivity metrics, with these effects appearing to be more evident during tasks of 

fluid reasoning than during tasks of episodic memory.14 Further, in-scanner task performance 

showed a variety of relationships between fluid reasoning task performance and connectivity 

within/between networks during these tasks, suggesting that at least some variability in task 

performance was accounted for by these measures. While this study did not directly compare 

these patterns to those observed at rest, it shows that task selection can have a strong effect on 

the presence and magnitude of the effects of age on functional connectivity. Therefore, it is 

critical to explore whether dynamic functional connectivity measures show similar differences as 

a function of task performance, and whether these differences play a role in explaining 

variability in performance on the task as a function of age.  

The present study explores measures of neural flexibility in an adult lifespan sample based on 

both scans collected during rest as well as during a fluid reasoning task, Matrix Reasoning. This 

task was chosen due to its relatively long scan length as well as its demands on executive 

function, a domain found in a previous study to show relationships between network-specific 

measures of neural flexibility and cognitive outcomes. In this manuscript, we evaluated the 

following hypotheses: (1) global neural flexibility during rest and during an executive function 

task is associated with age and cognitive abilities; (2) relationships between neural flexibility and 

cognitive outcomes will be network-specific; (3) neural flexibility will moderate relationships 

between age and cognitive performance; and (4) differences in neural flexibility measured at  rest 

and during a task will be differentially associated with cognitive performance.  
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Materials and Methods 

Participants 

The participants were drawn from two ongoing studies at Columbia University Irving Medical 

Center: the Reference Ability Neural Network (RANN) study and the Cognitive Reserve (CR) 

study.15–17  In the initial telephone screening, participants who met basic inclusion criteria (i.e., 

right-handed, English speaking, no psychiatric or neurological disorders, and normal or 

corrected-to-normal vision) were further screened in person with structured medical and 

neuropsychological evaluations to ensure that they had no neurological or psychiatric conditions, 

cognitive impairment, or contraindication for MRI scanning. Global cognitive functioning was 

assessed with the Mattis Dementia Rating Scale18 on which a minimum score of 135 was 

required for retention in the study. In addition, any performance on the cognitive test battery that 

was indicative of mild cognitive impairment was grounds for exclusion. The studies were 

approved by the Internal Review Board of the College of Physicians and Surgeons of Columbia 

University. Additional details about procedures can be found in previous reports.15,16,19,20 In the 

study, 561 participants were enrolled to the study at baseline with at least one reference ability 

composite score. Among them 423 participants had usable resting (n=403) or matrix reasoning 

task fMRI (n=292) scans.  

Image Acquisition and Preprocessing  

All MR images were acquired on a 3.0T Philips Achieva Magnet. There were two 2-hour MR 

imaging sessions to accommodate the twelve fMRI tasks as well as the additional imaging 

modalities. Relevant to the current study, T1-weighted MPRAGE scan was acquired to 

determine cortical thickness, with a TE/TR of 3/6.5 ms and Flip Angle of 8°, in-plane resolution 

of 256 x256, field of view of 25.4 × 25.4 cm, and 165–180 slices in axial direction with slice-

thickness/gap of 1/0 mm. Resting-state fMRI blood oxygen level-dependent (BOLD) resting 

state scans were collected with the following parameters: TE/TR: 20/2000 ms; Flip angle: 72°; 

In-plane resolution: 112 × 112 voxels; Slice thickness/gap: 3/0 mm; Slices: 37. Task-based fMRI 

BOLD scans were collected with the following parameters: TE/TR: 20/2000 ms; Field of view: 

240mm; Flip angle: 72°; In-plane resolution: 112×112 voxels; Slice thickness/gap: 3/0 mm; 
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Slices: 41. Each participant was instructed to lie still with their eyes closed, to not think of 

anything in particular, and to not fall asleep. Additional structural scans were acquired but not 

reported in the current study. A neuroradiologist reviewed each subject's scans; any significant 

findings were conveyed to the subject's primary care physician. 

The Matrix Reasoning task included in the present analyses required participants to recognize a 

pattern from a series of pictures and identify the last missing piece of the pattern from among 

eight options. The task was designed to closely mirror traditional matrix reasoning tasks utilized 

as part of a standard neuropsychological task battery.21 Each trial began with a 24-second 

fixation cross, followed by the stimulus. If a response was made within the first 11 seconds, the 

stimulus terminated at exactly 11 seconds; if a response was made after 11 seconds, the stimulus 

was terminated immediately following the response. If no response was made, the stimulus 

terminated after 85 seconds and this trial was coded as no response. The minimum number of 

possible trials was seven, which occurred if the participant required 85 seconds per trial, or if a 

time-out occurred for every trial. The maximum number of possible trials was 18, which 

occurred if the participant required 11 or fewer seconds on each trial. There was a 35–second ISI 

between trials.  

Images were preprocessed using an in�house developed native space method.22 Briefly, the 

preprocessing pipeline included slice timing correction and motion correction (MCFLIRT) 

performed using the FSL package.23 All volumes were registered (6 df, 256 bins mutual 

information, and sinc interpolation) to the middle volume. Frame-wise displacement (FWD)24 

was calculated from the six motion parameters and root�mean�square difference (RMSD) of 

the BOLD percentage signal in the consecutive volumes. To be conservative, the RMSD 

threshold was lowered to 0.3% from the suggested 0.5%. Contaminated volumes were then 

detected by the criteria FWD�>�0.5�mm or RMSD >0.3% and replaced with new volumes 

generated by linear interpolation of adjacent volumes. Volume replacement was performed 

before temporal filtering 25. Flsmaths–bptf was used to pass motion�corrected signals through a 

bandpass filter with cut-off frequencies of 0.01 and 0.09�Hz. Finally, the processed data were 

residualized by regressing out the FWD, RMSD, left and right hemisphere white matter, and 

lateral ventricular signals 26. Using advanced normalization tools (ANTs), each T1 image was 
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registered to the 2mm MNI template, and the residualized images were warped to the 2mm MNI 

template.  

In addition to the inclusion criteria mentioned above, participants had to have data for at least 

one cognitive domain (n=523), have provided data for either resting state or Matrix Reasoning 

fMRI scans (n=462), and had to have no more than 30% motion artifact removal (scrubbing) 

from resting state and/or task-based fMRI scans (n=423). As a result, n=423 adults had either 

resting state scans or task-based fMRI (Matrix Reasoning task) after quality checks. In total, 

there were 403 resting state scans and 292 task scans (Table 1); among them, 272 adults had both 

rest and task fMRI scans (Supplementary Table 1). The scan length was either 5 (150 volumes) 

or 9.5 minutes (285 volumes) for resting state fMRI, and 14.3 minutes (430 volumes) for Matrix 

Reasoning task-based fMRI.  

Neural Flexibility Computation 

The nodes were defined using Shen268 27 atlas and the mean time series of each node was 

extracted. The sliding-window based functional connectivity metrics were computed using 

Pearson’s correlation coefficients with a window width of 30 volumes and a step size of 1 

volume. For dynamic community detection, we employed functions based on generalized 

Louvain methods with a sliding window approach as described in 13. As suggested, we repeated 

100 times to get the optimal results. At any given time point each node may have a different 

community assignment compared to those of the adjacent time points. Given the dynamic 

community detection results, we defined the neural flexibility (NF) of a node as the number of 

times that a node changed its community assignment across the sliding windows, normalized by 

the total number of possible changes. We computed global neural flexibility (GNF) as the 

average NF over 268 nodes, and network-level NF as the average NF of the nodes based on their 

membership in 9 Networks (Auditory, Cingulo-opercular, Default-mode, Dorsal-attention, 

Fronto-parietal, Silence, Sensory-motor, Ventral-attention, Visual) as defined by Power et. al.28 

and described in Shen et. al.29 
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Cognitive outcomes 

Neuropsychological Tests administered out of scanner 

Twelve measures were selected from a battery of neuropsychological tests to assess cognitive 

functioning.30  Fluid reasoning was assessed with scores on three different tests: Wechsler Adult 

Intelligence Scale (WAIS) III Block design task, WAIS III Letter–Number Sequencing test, and 

WAIS III Matrix Reasoning test. For processing speed, the Digit Symbol subtest from the 

WAIS-Revised,31 Part A of the Trail making test and the Color naming component of the 

Stroop32 test were chosen. Three episodic memory measures were based on sub-scores of the 

Selective Reminding Task 33: the long-term storage sub-score, continuous long-term retrieval, 

and the number of words recalled on the last trial. Vocabulary was assessed with scores on the 

vocabulary subtest from the WAIS III, the Wechsler Test of Adult Reading, and the American 

National Adult Reading Test 34. Domain scores were generated by z-scoring performance on 

each task relative to the full study sample, then average z-scores for tasks within each domain 

(four domain z-scores: Fluid Reasoning, Processing Speed, Episodic Memory, Vocabulary). 

Additionally, total number of correct responses on the Matrix Reasoning task was included as an 

out-of-scanner measure of Matrix Reasoning performance.  

Computerized tasks administered in the scanner  

Twelve tasks from the same 4 domains (Fluid Reasoning, Processing Speed, Episodic Memory, 

and Vocabulary) were administered in the scanner and their behavioral performance measures 

were computed using a similar method 16,19. In the present analyses, the primary focus will be on 

performance on the Matrix Reasoning in-scanner task (adapted from Salthouse et. al.21). The 

primary behavioral outcomes for this task are the number of correct trials, and the median correct 

reaction time. 

Statistical Analysis 

For demographic variables, descriptive statistics of mean, standard deviation, frequency and 

percentage were reported and compared between participants with vs. without neural flexibility 

measures during rsfMRI sessions, and with and without neural flexibility measures during matrix 

reasoning task using ANOVA.  
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We first evaluated the association between age and neural flexibility measures controlling for 

false discovery rate (FDR) using linear regression. Linear regressions tested the association 

between NF measures and the four reference ability domain scores (Fluid Reasoning, Processing 

Speed, Episodic Memory, and Vocabulary) and three matrix reasoning performance measures 

(out-of-scanner number of correct trials, in-scanner number of correct trials, in-scanner median 

correct reaction time) adjusting for age, sex and years of education. We further tested the 

interactions between NF measures and age. For all regression models, standardized regression 

coefficients, their 95% confidence intervals, and FDR corrected and uncorrected p-values were 

reported.  

In the subsample of n=272 who had both resting and task fMRI data, paired t-tests were 

performed to examine differences in NF metrics between the two conditions. We tested whether 

change in neural flexibility between resting and task fMRI is associated with cognitive measures 

using linear regression, with covariates adjusted. 

Lastly, in order to ensure that patterns of results were not exclusively driven by differences in the 

length of the resting state scan participants completed, all analyses were also performed in just 

those participants with longer resting state scans (n=291).   

Since missing values differ by outcome of interest, data were analyzed using pairwise complete 

data in all analyses. 

Data availability 

MATLAB scripts for neural flexibility computation and additional R markdown files in R 4.0.2. 

for statistical evaluations and visualizations can be found here: 

https://seonjoo.github.io/neuralflexibility_brain_submission/ 

Results 

Details regarding participant eligibility are presented in Figure 1. Demographic characteristics 

and cognitive performance in the four reference abilities and matrix reasoning tasks for 

participants included in the present analyses are reported in Table 1. We found that participants 
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who only had resting state data tended to be older (η
�

� ,=0.01), and had higher scores on NARTIQ 

(η
�

� ,=0.02) and Vocabulary (η
�

� ,=0.02) tasks (Supplementary Table 1).  

Resting State NF 

Age was positively correlated with only Auditory network NF; all other correlations between age 

and NF measures were either nonsignificant, or did not survive multiple comparisons correction 

(Table 2). Further, resting state NF measures did not significantly predict any cognitive 

outcomes included in the present study (see Table 3), and did not moderate relationships between 

age and cognitive performance (see Table 4).   

Task-Based NF 

In task-based NF analyses, age was positively correlated with global NF, as well as network-

based NF in the Auditory network, DMN, DAN, DMN, VAN, and Visual network (Table 2). 

Task-based global neural flexibility was associated with longer median correct reaction time 

(worse performance) on the matrix reasoning task. (Table 3, β=0.200, 95% CI 0.088 to 0.312, 

pfdr<0.05), controlling for age, gender and education. Network-based associations were found for 

NF computed based on nodes in the DMN (β=0.193, 95% CI 0.084 to 0.304, pfdr<0.05) and the 

Visual network (β=0.24, 95% CI 0.13 to 0.36, pfdr<0.05). Task-based NF measures (global, 

Auditory, SN, SMN) also moderated age-associated memory decline, such that age-associated 

memory decline is larger in participants with higher neural flexibility, however these interactions 

did not survive multiple comparisons correction (Table 4). 

Rest vs. Task 

In the subset of participants with both resting and task-based scans (n=272), we compared the 

neural flexibility measures between rest and task using paired t-tests. The neural flexibility 

during the task was lower in the DAN and Visual network, and higher in the Salience network 

than during rest (Table 5; Figure 2). The neural flexibility difference between resting and task 

was not associated with age, NARTIQ, or task performance (p’s>0.05). Further, neural flexibility 

in resting scans showed high variability across all networks relative to task-based neural 

flexibility (Table 5).  
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Sensitivity Analysis 

All analyses reported above were re-calculated in just those individuals with longer resting state 

scans (n=291). Primary patterns of results described above were largely replicated: (1) age was 

positively associated with task-based NF, but not resting state NF (Supplementary Table 3); (2) 

task-based NF in the visual network was positively associated with Matrix Reasoning RT 

(Supplementary Table 4); (3) NF did not moderate effects of age on cognitive outcomes 

measures (Supplementary Table 5); and (4) task-based NF differed from resting state NF in 

several networks (Supplementary Table 6). 

Discussion 

In the present study, we found that neural flexibility measured during performance of a task was 

associated with age and performance of both in- and out of-scanner cognitive tasks, but that there 

was less of an association between resting state neural flexibility and age or cognitive outcomes. 

This result may appear to be inconsistent with findings from a study by Yin and colleagues13 

who reported an association between resting state neural flexibility and cognitive performance, 

but there are key differences in study design which may account for these differing patterns of 

results. The Yin et. al. study was conducted in a sample of infants, and showed that neural 

flexibility during sleep (rest) predicted cognitive outcomes several years later. While sleep is an 

appropriate resting condition in infants, it may not be exactly analogous to an awake, eyes-open 

resting state scan in adults, thus patterns of connectivity may understandably show fundamental 

differences between these two states. Further, infancy is a period of development characterized 

by rapid neural, cognitive, and motor change, while similar changes on the other end of the 

developmental spectrum (aging) occur over a much more prolonged period of time. Thus, it is 

likely that relationships between brain function and cognitive/behavioral outcomes are 

fundamentally different based on the age of participants in the sample. Therefore, while resting 

state neural flexibility did not appear to show relationships with age (over the adult lifespan) or 

cognitive outcomes in the present sample, different patterns may emerge in samples assessing 

these relationships in different age groups or patient populations.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.22.440855doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440855
http://creativecommons.org/licenses/by-nc-nd/4.0/


That being said, other studies in adult samples have found relationships between task-based 

neural flexibility and cognitive outcomes11,12 similar to those identified in the present study. 

However, the relationships we noted were all in the opposite direction of those previously 

reported in task-based studies; higher task-based neural flexibility was associated with longer 

reaction times on the task. This may point to the network specificity of some of the observed 

effects. For example, Braun and colleagues12 specifically focused on the role of frontal neural 

flexibility, and found positive relationships between task-based neural flexibility in these task-

related regions and task performance. In the present study, the network-specific relationships 

between task-based neural flexibility and task performance were limited to the DMN and Visual 

networks. In static functional connectivity analyses, the DMN is considered to be a task-

unrelated network for tasks of executive function, and studies have found that negative 

correlations between activity in the DMN and that in task-related networks is associated with 

better task performance (i.e., Grober et. al.35). Further, the prior study referenced above that 

examined neural flexibility in infants found that resting state visual network neural flexibility 

was negatively associated with cognitive performance years later.13 Thus, while the patterns of 

relationships observed here suggest that neural flexibility is negatively related to cognition, they 

also highlight the importance of measuring neural flexibility at the network level in order to 

investigate the network specificity of these effects. Since these negative relationships between 

neural flexibility and task performance were observed in networks that may not be associated 

with the cognitive demands of an executive function task, these relationships represent networks 

whose integration with other (potentially task-related) networks is associated with poorer 

performance on the task.  

Another important consideration in the interpretation of the results obtained in the present study 

is that, unlike prior studies focusing primarily on younger adults, the present results reflect 

patterns of relationships between neural flexibility and cognitive performance across the adult 

lifespan. Therefore, these observed patterns reflect not only relationships between neural 

flexibility and cognition in younger adulthood, but relationships that persist throughout the adult 

lifespan. Thus, while these results may differ slightly from those seen in samples of younger 

adults, they illuminate important mechanisms that might underlie variability in cognitive 

outcomes as age-related brain and cognitive changes arise. Further, results from the present study 

also demonstrated that older adults tend to show higher levels of neural flexibility in several 
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networks during a fluid reasoning task. Specifically, older adults tend to show higher neural 

flexibility in somatosensory networks (auditory, somatomotor, and visual networks), suggesting 

that participant age affects measures of neural flexibility, especially those computed during a 

cognitive task. While these measures did not moderate relationships between age and cognitive 

task performance, thus are not considered to drive age-related differences in task performance, 

they may reflect differences in sensory processing as a function of age. Such differences in 

sensory processing have long been hypothesized to drive age-related differences in cognitive 

status,36,37 and while the present results cannot directly speak to the applications of this theory in 

these data, they may be suggestive of a neural mechanism by which older adults may compensate 

for sensory deficits that emerge over the lifespan.  

One additional strength of the present study was the ability to directly compare neural flexibility 

during a task as well as during rest within the same lifespan sample. Neural flexibility during the 

task was lower in the DAN and visual networks, and higher in the salience network from that 

during rest. Further, the variance in this measure during the task was much smaller than that 

during rest, a finding which is in line with previous studies finding higher levels of variability in 

dynamic connectivity during rest compared to that during a task.38–40 While variability in and of 

itself may be informative when it accounts for variability in relevant behavioral outcomes, the 

variability observed in the resting state neural flexibility data in the present study was not 

predictive of cognitive performance, and was not driven by participant age, suggesting that it 

may be less meaningful than task-based data.  

The present study, however was not without limitation. One key challenge faced in this study 

were the two different resting state scan lengths completed by participants; since resting state 

scan length can affect functional connectivity metrics, this was of concern in the present 

analyses. However, follow-up analyses in only longer resting state scans revealed a similar 

pattern of results (see Supplementary Tables 2-6), suggesting that data from the shorter resting 

state scans were not likely to be confounding results or increasing variability estimates in the 

analyses presented here. Further, when exploring group differences between participants with 

resting state vs. rest+task NF data, several demographic factors differed between these two 

samples. Given that data for the present study were drawn from two different ongoing studies, 

this difference is likely driven by the different inclusion criteria for the two studies: the RANN 
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study (contributing resting state + task-based data) included adults between the ages of 20-80; 

the CR study (only contributing resting state data) included only younger and older adults, with 

older adults being oversampled in order to better model variability in cognitive outcomes in 

aging. Further, NARTIQ and Vocabulary scores tend to be higher in older age, thus are likely 

reflective of this older sample. Therefore, differences in participant age based on task-based scan 

availability are not driven by systematic exclusion from the task-based scans, but rather based on 

different inclusion criteria for the two studies whose data are being integrated in the context of 

the present analyses. Another potential limitation of the present study is in using standardized 

network assignments for atlas nodes in neural flexibility network-based summary measures, 

rather than individualized network definitions. While networks were individually estimated as 

part of the calculation of the neural flexibility estimate, networks used to summarize the data 

were based on previously described and validated network assignments for this parcellation 

scheme based on the Power et al.28 network assignments.29 Thus, while these network summary 

measures may not necessarily be precisely reflective of each individual participant’s network 

structure, they are based on widely used network assignments that have been shown to reflect 

average network structure in healthy adults.  

Since the data here represent data from a large, healthy lifespan sample, it is likely that many of 

the results reported here could generalize to other lifespan samples of healthy adults. Further, 

since some patterns observed occurred after controlling for participant age, some of the 

relationships between neural flexibility and cognitive performance may also apply to healthy 

samples of adults of all ages. That being said, since the present sample is only comprised of 

healthy, nondemented adults, it is unknown whether the relationships between cognitive 

performance and neural flexibility would replicate in samples of adults with known cognitive 

impairment or dementia. Further research is needed in this vein to explore whether these 

measures can be used to predict cognitive performance in adults with cognitive impairment or 

dementia.   

Based on the data in the present study, neural flexibility measures may quantify some aspect of 

cognition associated with task performance. However, our results suggest that the neural 

flexibility measures obtained during rest may be less informative in capturing age-related 

changes in dynamic brain organization, and may not explain a significant amount of variability 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.22.440855doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440855
http://creativecommons.org/licenses/by-nc-nd/4.0/


in cognitive performance in an adult lifespan sample. During a task, higher neural flexibility (i.e. 

more frequent changes in network assignment) in specific networks was associated with worse 

cognitive performance, and older participants tend to have higher neural flexibility, especially in 

somatosensory networks. These network patterns suggest that flexibility in specific networks 

may be detrimental to task performance, and that generally older adults show more frequent 

changes in nodal network assignment.  
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Figure legends 
 
Figure 1 Flow chart of participant enrollment and eligibility.  
 
Figure 2 Neural flexibility differences between rest and task. 
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Table 1 Demographic Characteristics. Means (standard deviations in parentheses) or frequencies (percentage of sample 
in parentheses) are reported for each sample.  
 Overall (n=423) Resting fMRI (n=403) Task fMRI (n=292) 

Age 52.520 (17.097) 52.551 (17.025) 51.151 (17.010) 
Education 16.203 (2.335) 16.179 (2.325) 16.168 (2.367) 
Gender    
     F  237 (56.0%) 228 (56.6%) 160 (54.8%) 
     M  186 (44.0%) 175 (43.4%) 132 (45.2%) 
NARTIQ 117.111 (8.563) 117.146 (8.516) 116.310 (8.980) 
Processing Speed 0.069 (0.844) 0.070 (0.844) 0.067 (0.835) 
Fluid Reasoning 0.100 (0.808) 0.102 (0.805) 0.111 (0.824) 
Episodic Memory 0.065 (0.947) 0.059 (0.947) 0.061 (0.938) 
Vocabulary 0.054 (0.887) 0.057 (0.888) -0.022 (0.927) 
WAIS3 Matrix Reasoning Raw 
Score 17.242 (5.052) 17.267 (5.008) 17.283 (5.083) 
Median RT for correct trials 
(ms)1 21108.073 (10653.687) 21080.977 (10682.808) 21080.709 (10624.785) 
Number of correct trials1  6.327 (3.431) 6.301 (3.447) 6.470 (3.398) 
 
1In-scanner matrix reasoning task. 96 participants have missing values (94 for resting MRI, 7 for task fMRI). 
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Table 2 Correlation between NF and Age during resting state and task-based scans. 

Networks 
Resting NF 
Standardized Coefficients [95% CI] 

Task-Based NF 
Standardized Coefficients [95% CI] 

Global 0.092 [-0.006,0.190] 0.175 [0.061,0.289]**+ 

Auditory 0.116 [0.019,0.214]*+ 0.257 [0.145,0.369]***+ 

CON 0.105 [0.007,0.203]* 0.048 [-0.067,0.164] 

DMN 0.104 [0.006,0.202]* 0.139 [0.025,0.253]*+ 

DAN 0.110 [0.012,0.207]* 0.176 [0.062,0.290]**+ 

FPN 0.107 [0.009,0.204]* 0.104 [-0.011,0.219] 

SN 0.086 [-0.012,0.184] 0.083 [-0.032,0.198] 

SMN 0.107 [0.010,0.205]* 0.227 [0.115,0.340]***+ 

VAN 0.102 [0.004,0.199]* 0.141 [0.027,0.255]*+ 

Visual 0.102 [0.004,0.200]* 0.209 [0.096,0.322]***+ 

 
*p<0.050 
**p<.010 
***p<0.001 
+FDR corrected p<0.050 
Statistically significant values after FDR correction are bolded.  
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Table 3 Linear regression between cognitive outcomes and neural flexibility measures. Only significant associations 
(uncorrected p<0.050) are reported.  
Cognitive Outcomes Neural Flexibility Predictor Standardized Coefficients [95% CI] 

Processing Speed 

 Task SMN -0.107 [-0.204,-0.009]* 

Matrix Reasoning Median Reaction Time (correct trials)1 

 Task Global 0.200 [0.088,0.312]***+ 

 Task DMN 0.193 [0.081,0.304]***+ 

 Task DAN 0.157 [0.044,0.270]** 

 Task Visual 0.243 [0.132,0.355]***+ 

 Task FPN -0.103 [-0.206,-0.001]* 

 
All regressions controlled for age, gender, and education. 
*p<0.050 
**p<.010 
***p<0.001 
+FDR corrected p<0.050 
Statistically significant values after FDR correction are bolded.  
1Log-transformed. In-scanner performance.  
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Table 4 Neural flexibility moderation of cognitive aging. Only significant associations (uncorrected p<0.050) are reported.  
Cognitive Outcomes Neural Flexibility Predictor Standardized Coefficients [95% CI] 

Episodic Memory 

 Task Global -0.120 [-0.225,-0.014]* 

 Task AUD -0.128 [-0.230,-0.026]* 

 Task SN -0.141 [-0.247,-0.036]** 

 Task SMN -0.125 [-0.228,-0.023]* 

Matrix Reasoning Median Reaction Time (correct trials)1 

 Task AUD 0.131 [0.015,0.246]* 

 Task CON 0.127 [0.002,0.252]* 

 Task FPN 0.134 [0.012,0.256]* 

 
*p<0.050 
**p<.010 
***p<0.001 
+FDR corrected p<0.050 
Statistically significant values after FDR correction are bolded.  
1Log-transformed. In-scanner performance.  
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Table 5 Paired t-tests and variance tests of neural flexibility measures between resting state and task-based scans.  

Neural Flexibility Measure 
Mean Within-Subject Difference 
(Task-Rest) [95% CI] Cohen’s d 

Variance Ratio  
(Rest/Task) [95% CI] 

Global 0.002 [-0.001,0.004] 0.084 6.750 [5.317,8.569] ***+ 

Auditory -0.003 [-0.006,0.000] -0.118 2.456 [1.934,3.117] ***+ 

CON 0.002 [-0.001,0.005] 0.09 4.459 [3.512,5.660] ***+ 

DMN 0.002 [-0.001,0.005] 0.082 6.503 [5.122,8.255] ***+ 

DAN -0.010 [-0.013,-0.007] ***+ -0.392 3.542 [2.790,4.497] ***+ 

FPN 0.001 [-0.002,0.003] 0.025 4.984 [3.926,6.327] ***+ 

SN 0.004 [0.001,0.007] **+ 0.181 5.775 [4.549,7.332] ***+ 

SMN -0.001 [-0.004,0.002] -0.047 3.819 [3.009,4.849] ***+ 

VAN 0.002 [-0.001,0.005] 0.092 3.054 [2.406,3.877] ***+ 

Visual -0.014 [-0.017,-0.011] ***+ -0.549 3.738 [2.944,4.745] ***+ 

 
*p<0.050 
**p<.010 
***p<0.001 
+FDR corrected p<0.050 
Statistically significant values after FDR correction are bolded.  
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