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Abstract

An organism’s level of arousal strongly affects task performance. Yet, what level of arousal
is optimal for performance depends on task difficulty. For easy tasks, performance is best
at higher arousal levels, whereas arousal levels show an inverted-U-shaped relationship with
performance for difficult tasks, with best performance at medium arousal levels. This interaction
between arousal and task difficulty is known as the Yerkes-Dodson effect (1908) and is thought
to reflect sensory decision-making in the locus coeruleus and associated widespread release of
noradrenaline. Yet, this account does not explain why perceptual performance decays with high
levels of arousal in difficult, but not in simple tasks. Recent studies suggest that arousal may
also affect performance by modulating sensory processes. Here, we augment a deep convolutional
neural network (DCNN) with a global gain mechanism to mimic the effects of arousal on sensory
processing. This allowed us to reproduce the Yerkes-Dodson effect in the model’s performance.
Investigating our network furthermore revealed that for easy tasks, early network features
contained most task-relevant information during high global gain states, resulting in model
performance on easy tasks being best at high global gain states. In contrast, later layers featured
most information at medium global gain states and were essential for performance on challenging
tasks. Our results therefore establish a novel account of the Yerkes-Dodson effect, where the
interaction between arousal state and task difficulty directly results from an interaction between
arousal states and hierarchical sensory processing.

Significance statement

Over a hundred years ago, it was first observed that the effect of arousal on performance depends
on task difficulty: the Yerkes-Dodson effect. Difficult tasks are best solved at intermediate
arousal levels, whereas easy tasks benefit from a high arousal state. Current theories on how
arousal affects neural processing cannot explain this effect of task difficulty. Here, we implement
a key effect of arousal on cortical processing, a change in gain, in a computational model of visual
processing capable of object recognition. Across a series of experiments, we find that our model
can reproduce the Yerkes-Dodson effect behaviorally and that this effect can be explained by
where in the processing hierarchy different arousal states optimize sensory information encoding.
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Introduction

Cognitive performance is not stable but varies over time and across situations. Arousal state,
the overall level of activation of the nervous system, is thought to be a key determinant of
variability in cognitive performance (1). As an example, consider a student taking the same
difficult test in two situations: in the first situation, it is a practice test. The student is calm.
In the second situation, it is the final exam. The student is very nervous. The difference
between these situations is that in the latter, the student might be overly aroused, leading him
to perform more poorly on the test. Indeed, a large body of work indicates that arousal level is
an important determinant of task performance and perceptual decision-making across species
(2,3,4,5,6,7,8,9). Yet, arousal state does not affect performance on any task in the same way
(10, for a review, see 11). Specifically, while performance on easy tasks improves with arousal
level, performance on difficult tasks exhibits an inverted U-shape relationship with arousal
level, with performance peaking at intermediate arousal levels. Thus, optimal performance
occurs at different arousal states as a function of task difficulty, a phenomenon known as
the Yerkes-Dodson effect (see Figure 2A for a schematic). At the neural level, the inverted
U-shape relationship has been associated with the functioning of the locus coeruleus (LC), the
central release site of noradrenaline (Figure 1A). The phasic noradrenergic response (upon target
detection) in particular also follows an inverted U-shape in its responsivity across LC baseline
firing levels. Based on this observation, Aston-Jones and Cohen (2005) have suggested that this
change in responsivity brings about the inverted U-shape in performance. Yet, this influential
view does not address why arousal levels differentially impact performance on relatively easy
versus difficult tasks. Indeed, the heterogeneity in findings of recent studies suggests a more
complex interplay between arousal state, perceptual performance and other factors such as task
difficulty: While some studies report enhanced perceptual performance with increasing baseline
arousal levels (5, 8), others find performance increases with decreasing baseline arousal levels
(12) or observe a curvilinear relationship between performance and arousal (2, 3). Possibly,
differences in arousal states explored and in task difficulty across studies can account for this
diversity in findings. Yet, systematically characterizing the relationship between arousal level
and task difficulty is hard to achieve experimentally, in part because it is difficult to cover the
full range of possible arousal states and task difficulties within one experimental setting. While
this might explain the diversity in findings, it also highlights the need for a suitable modelling
framework that can encompass factors such as task difficulty.

Deep convolutional neural networks (DCNN) allow us to address this gap in knowledge. In
particular, these networks optimized for object recognition not only parallel human performance
on some object recognition tasks (17), but they also feature processing characteristics that bear
a remarkable resemblance to the visual ventral stream in primates (18, 19, 20, 21, 22, 23). Both
of these characteristics make them an attractive modelling framework for testing computational
hypotheses about the link between neural processing and behavior (24, 25). Notably, recent
studies show that heightened arousal increases the signal-to-noise ratio (SNR) of sensory neurons
(2, 4, 26, 27), both by decreasing variability in spontaneous activity and by increasing neuronal
responsivity or gain (2, 3, 26, 27, 28), with consequences for perceptual performance (2, 3).
Furthermore, stimulus-unrelated neural activity in early visual cortices is closely related to
arousal (29). This raises the intriguing possibility that arousal may affect task performance
by modulating the processing of sensory features that perceptual decisions are grounded in.
Here, we use DCNNs to test this notion and systematically investigate how a wide range of
arousal states modulates sensory processing and perceptual decision-making for tasks of varying
difficulty.

In line with the early findings of Yerkes and Dodson (10) and others, we recover the same
interaction between arousal state and task difficulty with our DCNN model. That is, also in our
model, easier tasks were best solved at high global gain states, whereas difficult tasks were best
solved at medium global gain states. This relationship was specific to perceptual difficulty and
absent for other types of difficulty (e.g., in response complexity). Moreover, we found that how
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Figure 1. Global gain as a model for cortical arousal. (A) Schematic illustration of the
projections of the locus coeruleus following (13, 14). The locus coeruleus is located in the pons
of the brain stem and features efferent projections throughout the brain. Note that subcortical
projections have been omitted here for clarity. The grey shaded areas depict the early visual
cortex and the visual ventral stream that we sought to model in this work. (B) Illustration of
the DCNN architecture and the locations of the activation functions where global gain, our
implementation of cortical arousal, was manipulated (blue framed rectangles). A DCNN takes
images as an input and produces a prediction as an output. Importantly, the global gain of the
model can be altered with a single parameter that is applied to all activation functions. This
takes inspiration from the widespread noradrenergic projections reported for the locus coeruleus
(e.g.,(13)) and their effects on sensory processing (e.g.,(15)). (C) Changes in global gain resulted
in a multiplicative scaling of the activation function. Higher gain levels (dark blue) resulted in
higher values compared to the baseline (blue), which corresponds to a gain of 1, and reduced
gain levels (light blue) lead to lower activation values. The example picture in B is licensed
under CC BY-SA 2.0 and was adapted from Flickr (16).

global gain states affected performance on a given task could be explained by their effects on
information encoding across the processing hierarchy. High global gain states enhanced encoding
of information in early network features that easy tasks capitalized more on, while intermediate
global gain states enhanced encoding of information that was more important for performance
on difficult tasks higher in the processing hierarchy. These findings critically inform current
debate as to how arousal impacts perceptual decision-making.

Results

We augmented a DCNN with a global gain mechanism to investigate how arousal state changes
in sensory areas may affect performance and relate to the Yerkes-Dodson effect more specifically.
To this end, we used a ResNet18-architecture (30) with a biologically inspired activation function
(31, 32, see Figure 1C for an illustration). The global gain mechanism targeted all activation
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functions in the network simultaneously. For every activation function, a change in global gain
resulted in a change of response gain (§ global gain, see Figure 1). All networks were trained in a
neutral gain state of 1, which corresponds to a standard DCNN without global gain modulation.
Subsequently, these trained weights were evaluated across a range of global gain states (without
any further training). Using this model allowed us to control global gain state so as to isolate
the mechanisms underlying the interaction between arousal state and task difficulty as captured
by the Yerkes-Dodson effect.

A DCNN with global gain replicates the Yerkes-Dodson effect in per-
formance

A hallmark of the effect of arousal state on performance is the interaction between task difficulty
and arousal state, the Yerkes-Dodson effect (see Figure 2A for an illustration). In our first
set of analyses, we show that our DCNN with a global gain mechanism can replicate this
effect. That is, we show that easy and difficult tasks require different global gain values for
optimal performance across a range of performance measures, with easy tasks yielding the best
performance at high global gain states, and difficult tasks performing best at intermediate global
gain states.

To study the Yerkes-Dodson effect, one needs to effectively manipulate task difficulty. Task
difficulty is commonly manipulated by changing stimulus strength or complexity in perceptual
decision-making tasks, for instance, by altering the signal-to-noise ratio of a pure tone embedded
in a sequence of noise (3) or by phase-scrambling black and white images (8). In a similar
vein, we adopt a task, in which the model has to decide whether an image is real or an average
image, created by averaging over a variable number of images, taken from a pool of images
consisting half of real and half of average images. Task difficulty was manipulated by varying
the number of images that were averaged for making the average images. This makes that an
average image consisting of few images (e.g., 1.25 images) was relatively similar to and therefore
hard to distinguish from a real image and vice versa, an average image consisting of many
images was relatively dissimilar and hence easier to distinguish (see Figure 2B for example
stimuli). We chose to use averaging as our difficulty manipulation reasoning that it would
result in difficult images closer to the training images of the DCNN;, thereby increasing the task
difficulty. Comparing performance at a neutral gain state (i.e., global gain is 1) in Figure 2C
shows that our manipulation of perceptual difficulty was effective in producing performance
differences. For every level of perceptual difficulty, we trained a separate output layer, while
keeping the rest of the model weights unchanged. After training, we tested the model on a new
set of images across a wide range of global gain states. This allowed us to get high-resolution
estimates of the performance-gain profile for every level of perceptual difficulty.

Based on the Yerkes-Dodson effect, we expected to see changing performance-gain profiles
across task difficulties and in particular, a shift in the arousal state that is linked to the
best performance (see Figure 2A for our hypothesis). Strikingly, we indeed reproduce the
Yerkes-Dodson effect with our global gain manipulation, as reflected in a right-ward shift in
the performance-gain profile with a decrease in task difficulty (Figure 2C) that translates to a
U-shaped relationship between gain and performance for difficult tasks, but a linear relationship
for easier tasks when a more limited range of arousal is taken into account (see below, Figure
2D). Identifying the global gain level associated with peak performance for every task difficulty
(Figure 2E), further reveals that there is a quasi-linear negative relationship between task
difficulty and the global gain state associated with the best performance, with easy tasks being
performed best at high gain states and difficult tasks being performed best at medium gain
states. To further dissociate which aspects in the model’s performance were changed by the
global gain mechanism, we also analyzed performance with regard to changes in sensitivity and
bias, two measures from signal detection theory (SDT). Whereas sensitivity refers to the ability
to distinguish a signal from noise, bias describes the propensity to answer irrespective of the
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Figure 2. Incorporating global gain in a DCNN reproduces the Yerkes-Dodson
effect. (A) Left: Schematic of the Yerkes-Dodson effect, showing performance-gain profiles
for difficult and easy tasks. While difficult tasks (orange) typically follow an inverted U-shape
relationship between arousal state and performance, easier tasks have been associated with an
increasing relationship between arousal state and performance. The dots on the performance-gain
profiles denote the peak performance. Right: The Yerkes-Dodson effect can be also expressed
as a difference in arousal state linked to the peak performance across task difficulty conditions.
From this perspective, easy tasks are linked to high arousal states and difficult tasks to medium
arousal states for the best performance. (B) Illustration of the network’s task. The network
was tasked to distinguish between real and average images. To manipulate perceptual difficulty,
these average images consisted of an increasing number of images per average image. During
training, we fine-tuned an output node for every perceptual difficulty level without applying
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any global gain changes. This allowed us to dissociate between the network’s trained ability
and the effects of global gain. For every perceptual difficulty level, we fine-tuned ten network
instances. During testing, we presented the fine-tuned networks repeatedly with the same
dataset (new set of test images), while adjusting the global gain parameter. This resulted in a
binary accuracy result for every global gain value for each of the model instances. Here, we show
example images from the real image condition and from the average image condition for three
levels of difficulty: difficult (average of 1.25 images), medium (average of 3 images) and easy
(average of 20 images). (C) Binary accuracy for all levels of perceptual difficulty as a function
of global gain state. The shaded areas represent the 95% confidence interval (CI) across the ten
network instances. (D) As in (C) but for the three levels of difficulty (easy, medium, difficult)
and a limited global gain range. It can clearly be seen that as expected, the easy perceptual
difficulty condition shows a monotonically increasing relationship between gain and performance,
while the difficult perceptual difficulty condition shows an inverted U-shape relationship between
gain and performance. Our gain manipulation thus reproduced the Yerkes-Dodson effect in
DCNN performance. (E) Global gain level linked to peak performance per difficulty condition in
C. As predicted by the Yerkes-Dodson effect, peak performance was associated with reductions
in global gain level with increasing task difficulty. The error bars correspond to 95% CI across
instances. If multiple gain states were linked to the best performance, the median was used to
summarize them. The dashed line corresponds to the neutral gain state from training, during
which no global gain changes are applied. (F) As in (E) but now global gain states linked to
the performance for sensitivity and bias. Hit and false alarm rates, sensitivity and bias values
for all perceptual difficulties and global gain states can be found in Figure S1. The example
pictures in B are licensed under CC BY-NC-SA 2.0 and were adapted from Flickr (33, 34, 35).

signal. In turn, accurate performance is defined by high values in sensitivity and a bias close
or equal to zero. Following this definition, we identified the global gain state linked to the
best performance for both of these measures. As with accuracy, we observe for both sensitivity
and bias that the best performance for easy tasks is observed at high gain states, whereas for
difficult tasks it is obtained at medium gain states close to the neutral gain (Figure 2F). These
findings show that global gain did not merely result in a change in the networks responsivity
or bias, but rather also changed its sensitivity, or its ability to distinguish between real and
average images across different task difficulties.

It is hard to assess a wide range of arousal states experimentally, not only because of
experimental constraints, but also because organisms are very unlikely to visit these extreme
arousal states due to homeostatic constraints (hypo- and hyperarousal). Thus, the experimental
data so far available likely stem from a much narrower range of arousal states than we explored
here. Indeed, it has been argued that some studies might have observed a linear increase in
performance as a function of arousal state, because they only sampled from the left-side of
the inverted U-shape (e.g. 36, 37). Mimicking a limited global gain range with our results
(Figure 2D) reveals a qualitative correspondence to the experimental data observed for arousal
state manipulations across a set of task difficulties (10) and shows how plausibly an increasing
relationship between arousal state and performance would emerge for easy tasks, if only low
and medium arousal states are experimentally sampled. For our data, inspecting a wider range
of arousal states clarifies that, in fact, all performance gain profiles could be readily described
as an inverted U (see Figure 2C). This finding can explain how a diverse set of curvilinear
relationship can be identified experimentally if the highest arousal states are not accessible.

To summarize these findings, we have replicated the behavioral signatures associated with
the Yerkes-Dodson effect, across a set of three performance measures. Further, our data offer
an explanation for the diversity in experimental findings showing how these could result from
sampling a limited range of arousal states covered here by our global gain manipulation.
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Figure 3. Assessing the Yerkes-Dodson effect for another kind of task difficulty:
response complexity. (A) Example images from the two visual search datasets curated from
the COCO database (38). (B) Illustration of how task difficulty was increased by increasing the
number of answer options for the street dataset. Easy tasks consisted of only two categories to be
distinguished, while difficult tasks entailed choosing from 8 answer options. Different easy tasks
were obtained by subsampling from the 8 possible target categories. Task difficulty increased
with the number of categories that had to be distinguished. (C) Performance-gain profiles across
the three task difficulty conditions for both datasets. The global gain level associated with peak
performance was unaffected by task difficulty (number of answer options). Performance was
assessed with the area under the curve metric of the receiver operating characteristic curve. The
lines represent the mean performance across 20 trained networks for the conditions with 2 and 4
answer options. The shaded areas depict the 95% CI across model instances. The dashed dark
grey line depicts chance performance. (D) Global gain state associated with the best model
performance was similar for every task difficulty level for both datasets. The dashed light grey
line depicts the neutral model, at which no global gain is applied. The example pictures in A
are licensed under CC BY 2.0 and were adapted from Flickr (39, 40, 41, 42).

Yerkes-Dodson effect is absent for other factors of task difficulty

Our results so far show that the Yerkes-Dodson effect can be replicated in our model with a
manipulation of perceptual difficulty. Yet, in other studies, the Yerkes-Dodson effect is linked to
task difficulty more broadly (43). In turn, an obvious question to ask is whether our observations
also hold for other manipulations of task difficulty. With task difficulty manipulations, we here
simply refer to changes to the task that result in performance changes at a neutral global gain
state (i.e., 1, without applying any global gain changes). In our next analysis, we show that
another task difficulty manipulation, response complexity, does not reproduce a shift towards
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higher gain states with decreases in task difficulty, suggesting the Yerkes-Dodson effect to be
specific for perceptual difficulty in our model.

To introduce a new task difficulty manipulation, we altered the number of answer options
available to the model (Figure 3B), while keeping all other factors constant such as perceptual
difficulty. We applied this manipulation in the context of two different object recognition
datasets. Both datasets were curated to be challenging visual search tasks by reducing the
amount of informative background differences across categories (for further information, see
32). As can be seen in Figure 3C, this manipulation resulted in differences for the baseline
networks (with global gain set to 1), as indexed by AUC, thus showing that the manipulation
was effective. This was true for both datasets that we applied this manipulation to (food and
street scene images; Figure 3A). If this manipulation also produces an interaction between task
difficulty and global gain state, one expects the global gain states associated with the best
model performance to differ between the conditions with different numbers of answer options.
Figure 3D shows that this is not the case, instead for both data sets, peak performance occurs
at the same, medium global gain state independent of the number of answer options. Thus,
manipulating the number of answer options for the network merely scaled the gain-performance
profile up- or downwards without qualitatively shifting the optimal gain state.

These results also corroborate our findings on perceptual difficulty. Since both datasets
were curated to be challenging visual search tasks, they required the analysis of complex visual
features. Based on this, one would expect an inverted U-shaped gain profile (as was observed in
Figure 2 for perceptually difficult tasks), which we indeed observed across all six conditions
(both datasets, all answer options).

In sum, these findings complement our understanding of the Yerkes-Dodson effect in our
model in two ways. First, we observed that it is specific to perceptual difficulty. Second, we
have shown that visual search in natural scenes is associated to an inverted U-shape across
global gain states.

Global gain differentially affects task information across the model
hierarchy

The above analyses described how the model’s performance, that is, its output, was shaped by
changes in global gain states across two tasks. In our next set of analyses, we leveraged the full
observability of our model to address how sensory processing may give rise to the Yerkes-Dodson
effect. To this end, we first characterized the different stages of processing with regard to this
interaction between global gain state and perceptual difficulty. In particular, we tracked how
task-relevant information throughout the network hierarchy was affected by these factors, using
a decoding analysis. In brief, this analysis showed that with an increase in model depth there
was a shift from higher to medium global gain states for representing the most task-relevant
information.

To quantify the presence of task-relevant information across model depth (ResNet block; see
Figure 1C), we used a linear decoder. Specifically, we adopted logistic regression and predicted
whether a model input had been a real or an average image based on the block’s activations
on a held-out test set (see methods). Our results show that this can be done almost perfectly
for the easier tasks across all model blocks and global gain states (see Figure 4A for examples).
Furthermore, it became clear that task difficulty as well as global gain state modulated decoding
accuracy across all model blocks (see Figure S2A). In contrast, mean activations did not contain
such modulations of task difficulty and were only driven by changes in global gain resulting in
an overall increase in activation (see Figure S2B).

To understand how the decoding-gain profiles may be linked to the shift in optimal per-
formance across task difficulty more directly, we identified the peak global gain state linked
to the best decoding performance (see Figure 4B). This analysis indicated that, here as well,
easy task information tended to be best decodable at high gain states, whereas difficult task
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Figure 4. Global gain differentially affects the representational quality along the
model hierarchy. (A) Mean linear decoding accuracy recorded after the last activation function
in a given ResNet block across five repetitions and shown as a function of perceptual difficulty
and global gain (for an overview of all blocks, see Figure S2A). The shaded areas depict the
95% CI across repetitions. (B) Analogous to the behavioral analysis, we here identified the
global gain state linked to the best decoding accuracy. Since the easiest task (20 images/average
image) was solved almost at ceiling across all evaluated blocks and irrespective of global gain
state, the peak estimation was unreliable, and we thus excluded it from this analysis (see Figure
S2A). (C) Model blocks feature most decodable task-relevant information at different global gain
states across the hierarchy. The decoding peak refers to the median global gain values linked to
the best decoding accuracy across repetitions. To obtain an estimate across task conditions,
we averaged across perceptual difficulties. As in figure 2D-F and 3C, the dotted line refers to
the neutral gain states and the error bars describe the 95% CI. The top part of the figure is a
schematic of the DCNN architecture shown in Figure 1 in more detail. (D) The global gain level
associated with peak decoding for each model block and perceptual difficulty level separately.
This panel shows that easy task information tended to be best decodable at high gain states
in early network blocks, whereas difficult task information was best decoded at medium gain
states and later model blocks.
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information was best decoded at medium gain states for most blocks (see Figure 4D), thereby
capturing a key property of the performance data (Figure 2E). Furthermore, comparing across
blocks shows that the global gain state associated with peak decoding was higher for early
blocks than later blocks, which exhibited peak decoding at more medium global gain states
(Figure 4C). In addition to these general trends, inspecting the global gain states linked to peak
decoding performance across task difficulties also indicated an interaction with model depth:
Whereas easy tasks showed a negative linear link between model block and peak gain state, this
relationship flattened out with increasing perceptual difficulty (see Figure 4D). These findings
suggests that later network blocks contained most task-relevant information at medium global
gain states, while early network blocks best represented task information at high gain states, in
particular for easier tasks.

Taken together, these findings indicate that different stages of hierarchical processing were
linked to different optimal global gain states for encoding task-relevant information. While
global gain states facilitated sensory encoding in early network blocks at high gain states, late
network blocks contained most task-relevant sensory information at medium gain states.

Task difficulty differentially engages model features across the model
hierarchy

In the last analysis, we have shown that also decodable information is associated with different
optimal global gain states across perceptual difficulties. Crucially, this link varied along the
model hierarchy. This observation begs the question whether this linearly decodable information
is actually used during network performance and how this factor might interact with perceptual
difficulty more directly. To address this, we devised a manipulation that allowed us to selectively
reduce the contribution of each model block. In particular, we took advantage of the architecture
of our model that has two main branches, one for maintaining and one for processing information
(see Figure 5A). By interfering with the information in the processing branch, we were able to
inspect the performance-gain profiles with and without the contribution of a given block. In
brief, we find that indeed early network blocks are the main driver behind performance being
optimal during high global gain states for easy tasks. Furthermore, this analysis makes it evident
that the difficult tasks particularly rely on late network features for performance, which biases
them towards medium global gain states in contrast to easy tasks.

To selectively control the contribution of a model block to the overall performance, we
developed the spatial scrambling method (see Figure 5A). This approach selectively perturbs
the information for a given block. As a result, this model block’s features cannot effectively
contribute to performance anymore and thus the remaining unaffected blocks will drive the
model’s performance (see methods for an in-depth description of spatial scrambling). We
leveraged this principle to dissect the network’s performance and this helped us understand how
the features along the model hierarchy differentially contributed to performance of easy and
difficult tasks. Specifically, we either increasingly added spatial scrambling from the top to the
bottom of the network, thereby making the network more and more reliant on the early blocks
or we applied it from the bottom to the top of the network, so that late network features drove
performance (see Figure 5A).

Our results so far suggest that high global gain states optimize sensory processing in early
blocks. Therefore, we expected that increasingly disrupting late network function (Late to early)
and giving more weight to earlier blocks, would lead to a right-ward shift in the performance
gain profiles, that is, higher gain states being linked to the best performance. Figure 5B shows
that this expectation was met for both perceptually difficult and easy tasks. In particular,
we observe that greater reliance on processing in early network leads to peak performance at
higher global gain states (see Figure 5C, Late to early). Notably, this results in very high
global gain states compared to the baseline network (grey lines and dots in Figure 5B and C).
Across both conditions, we see that peak performance shifted to the highest global gain states
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Figure 5. Task difficulty differentially engages model features across the hierar-
chy, leading to differences in optimal global gain state in performance. (A) Spatial
scrambling was used to control the contribution of the different model blocks to performance.
Spatial scrambling spatially randomizes the activations within a predefined proportion of feature
maps in a given model block. This manipulation was either applied starting from late blocks
and then progressing to early model blocks or it was first applied to early blocks and then
it progressed to later network blocks. Crucially, after a block is scrambled its informative
contribution to the model’s performance is strongly reduced (see Methods for an explanation).
(B) Starting at later blocks and successively scrambling earlier blocks reveals a pronounced
right-ward shift in the performance-gain profiles for both task difficulties. The grey line depicts
the performance-gain profile for the baseline network (without any spatial scrambling). Shaded
areas show the 95% confidence intervals across repetitions. (C) Determining the global gain
states linked to the best performance across different scrambling states of the model shows that
in particular the scrambling of later blocks leads to a shift towards higher global gain states
for the best performance. (D) In contrast, first scrambling early blocks had little effect on the
global gain state linked to peak performance. This only changed for the difficult task once late
blocks were scrambled, which resulted in peak performance being again associated to higher
global gain states (as in C). This indicates that while these later network blocks are deployed
during recognition, the model operates best overall at medium gain states, since later network
blocks operate best at medium global gain states.

if almost all late network features were scrambled. This finding suggests that higher global
gain states facilitate network performance by enhancing feature content in early network blocks.
As perceptually easy tasks relied more on sensory processing in early network features than
perceptually difficult tasks, scrambling late network features had less of an effect on performance
on easy tasks.

In contrast to easy tasks, the network’s performance on difficult tasks was best at medium
global gain states. As we found optimal decoding of task-relevant information in later blocks
at medium global gain states for difficult tasks (Figure 4), we expected that first scrambling
early blocks would not affect the relationship between gain and performance on difficult tasks
until scrambling also included later blocks. To test this, we next increasingly scrambled the
network blocks increasingly from early to late blocks (see Figure 5C, Early to late). Indeed, the
global gain state associated with the best performance remained relatively stable and visibly
lower compared to the early-to-late condition for both task difficulty levels (see Figure S3 for
performance-gain profiles). Only once also the very last network features were affected, there
was a notable increase towards higher gain states for peak performance on the difficult task. This
pattern of results suggests that sensory processing in later network blocks is more critical for
solving perceptually difficult tasks and that medium global gain states facilitate later processing
and hence performance on difficult tasks. In contrast, easy tasks rely more on sensory processing
in early blocks, which operate best at higher global gain states.

Taken together, these findings indicate that the effects of arousal states on sensory processing
can explain at least in part the effects of arousal state on perceptual performance as a function
of task difficulty, commonly referred to as the Yerkes-Dodson effect. More concretely, global
gain level may differentially affect computational features across model depth, which, depending
on the level of global gain and task difficulty, benefits performance on some tasks, but impairs
performance on other tasks.

Discussion

Since the pioneering work by Yerkes and Dodson (10), a large body of research has demonstrated
the prominent role of arousal, not just in sleep and wakefulness, but in task-related neural
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processing and performance (e.g. 4, 11, 13, 29, 44). Yet, precisely how arousal states affect task
performance, and specifically, why high arousal states impair performance on difficult, but not
easy tasks, as reflected in the Yerkes-Dodson effect, is still unclear. We here capitalized on recent
insights from neuroscience to model the Yerkes-Dodson relationship, exploiting the unique ability
of DCNN modelling to systematically simulate the full range of possible arousal states while
performing a task. Traditionally viewed to reflect the outcome of perceptual decision-making in
the locus coeruleus (13), we here show that we cannot only reproduce the Yerkes-Dodson effect
in our model by augmenting it with a global gain mechanism, but also that sensory effects of
arousal states are sufficient to account for the Yerkes-Dodson effect. Specifically, investigating
the inner workings of our model, we show that different global gain states optimize sensory
encoding of task-relevant information at different stages of hierarchical processing thereby in
particular affecting performance on tasks that more critically rely those stages of processing.
That is, high global gain states facilitated early model processing, thereby specifically enhancing
performance on perceptually easy tasks, while intermediate global gain states facilitated late
model processing, specifically enhancing performance on perceptually difficult tasks. Altogether,
we provide a new perspective on the long-standing question as to how arousal can facilitate
and impair task performance by highlighting the complex interaction between arousal and
hierarchical sensory processing.

DCNNs as promising avenue for modelling the effects of cortical arousal

To our knowledge, this is the first large-scale simulation of the effect of arousal state on visual
processing. While other computational accounts have described the effects of gain in small-scale
models (45, 46), these could not address factors such as perceptual task difficulty. Here we
critically extend this work by directly linking global gain to effects on perceptual performance
using natural images and a task that varied parametrically in perceptual difficulty. As any
model, our model omits some crucial details such as the temporal signature of these effects
typically used to delineate phasic from tonic arousal effects in pupillometry (for a discussion,
see 47) or oscillatory signatures linked to synchronized and desynchronized states (48). Yet, our
findings provide a starting point for understanding the complex interaction between an unspecific
neuromodulator such as noradrenaline and sensory processing. As apparent from our results,
working with such a model both affords an in-depth investigation of model processing (Figure 4)
and more importantly, allows for directed causal manipulation (Figure 5). Our study highlights
how this approach can advance our understanding, both by accounting for perceptual complexity
and by leveraging computational mechanisms observed in neural data. Furthermore, our model
also introduces state changes into the DCNN modelling framework, thereby contributing to the
effort to develop computational models approximating the computations in the ventral visual
stream and beyond (49). While current efforts are mainly directed at describing trial-averaged
performance (50) and neural data (22), this approach may overlook both the computational
mechanisms and effects of interindividual state changes (1, 13, 48, 51). For instance, our
results reveal how changes in global gain effectively reconfigure computational features and
thereby dramatically change model performance. This reweighting of computational features as
a function of global gain state may be a strategy that could also subserve visual processing in
the brain, benefitting some visual tasks and while hampering others, as we have shown here.

Link between the model’s global gain states and biological arousal states

We could investigate the effect of arousal state across a wide range of arousal states allowing
us to carefully describe the performance-gain profiles associated with different task difficulties.
While not all gain values examined here are biologically plausible, it was our goal to also describe
the tails of the distributions that are usually not accessible experimentally. A biological system
bound to homeostasis likely never visits such extreme arousal states. The decay in performance
on easy tasks observed for the highest gain states is therefore likely not commonly observed in
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biological systems and in practice may more resemble a continuous increase as has been also
suggested by others (36, 37). Moreover, importantly, using our parametric perceptual task, we
did find that the performance-gain profiles observed as a function of perceptual difficulty in fact
lie on a continuum (see Figure 2). Thus, one may expect to find a shift in peak performance
while varying arousal and perceptual difficulty. Importantly, our data also suggests that most
variation across levels of task difficulty is expected to be observed at high arousal states. Future
behavioral studies adopting a continuous perceptual difficulty manipulation across a wide range
of arousal states will be key in testing our predictions.

DCNNs with global gain reproduce key behavioral signatures linked to arousal
states

In addition to the Yerkes-Dodson effect, our model also replicates a number of other recent
findings from studies that assessed arousal state by measuring pupil size before or during
stimulus processing (15, 27). In line with our model, across many studies, the highest perceptual
sensitivity has repeatedly been linked to medium arousal states for both visual and auditory
tasks in mice and humans (2, 3, 37). All of these tasks were challenging and linked to the
characteristic inverted U-shape across sensitivities. Crucially, this connects our model to a larger
framework in which arousal regulates the efficiency of information processing (4, 5, 13, 52).

DCNNs as a model for visual processing and perceptual difficulty

We here found that the Yerkes-Dodson effect in our model was specific to a manipulation of
perceptual difficulty and was insensitive to another manipulation of task difficulty (i.e., number
of answer options). At first sight, this finding may seem in contrast to a wide range of studies
describing links between the Yerkes-Dodson effect and a range of other cognitive factors (e.g.
43). Yet, we do not wish to suggest that our model can serve as a model for the brain as a whole,
since DCNNs largely capture processing in the visual ventral stream (18, 19, 20, 21, 22, 23).
Thus, our study should be interpreted as a minimal model for reproducing the Yerkes-Dodson
effect, and we cannot exclude that other task factors, which mainly engage other cortical areas,
would not produce or contribute to a similar pattern of results. Rather, our findings are a proof
of principle of the complex interactions arising from the combination of global neuro-modulatory
signals such as noradrenaline and hierarchical sensory processing.

Indeed, another indication for the fact that our model may have specifically captured more
initial stages of perceptual decision-making is suggested by our observation of a continuous
decrease in criterion with increasing global gain for all task difficulty levels, related to continuous
increases in both hit and false alarm rates with increasing gain (Figure S1). This finding contrasts
with a study by McGinley et al. (3) in mice that found a decrease in hit rate during high arousal
states and correspondingly, a U-shaped link between the mice’s criterion and arousal state.
Our model does not reproduce this decrease in hit rate during high arousal states, suggesting
that it may not well capture all stages of perceptual decision-making. Being a model for visual
processing, it is not designed to mimic processes linked to other aspects of decision-making,
such as flexibly criterion setting or behavioral strategy (e.g. 51, 53). Notably, a dissociation
between perceptual and other aspects of decision-making is supported by a number of recent
studies, which attribute a reduction in choice bias to phasic arousal and computations in the
brain stem arousal systems and prefrontal cortices (9, 54, 55). Nonetheless, our model provides
a promising starting point for also modelling these more complex aspects of decision-making.

Concluding remarks

To conclude, our results suggest that DCNNs with a global gain mechanism can serve as a
computational model of the sensory effects of cortical arousal. We here showcased how such a
model can capture the behavioral signatures linked to arousal states across species as well as
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provide mechanistic insights, thereby providing a new account of the Yerkes-Dodson effect. Our
results also illustrate the value of neuroscience-inspired computer vision algorithms in the study
of brain-behavior relationships by revealing the complex interplay between global gain effects
and hierarchical sensory processing.

Methods & Materials

Overview

We modelled cortical arousal by augmenting a DCNN with a global gain mechanism (see Model)
and tested it on two tasks (see Tasks). In addition, we also investigated effects on processing by
both assessing the model’s decodable task information and its activations (see Block information
& activations) and disrupting its processing (see Model disruption — Spatial Scrambling).

Model

As a base architecture for our DCNN, we adopted a first generation ResNet18 (30) that was
trained with a sigmoidal-like activation function (31) on the ImageNet database (56) and
achieved a top-1 accuracy of 64.04% on the validation set. Commonly, DCNNs use a rectified
linear unit (ReLU) as activation function and due to the use of this alternative activation
function, performance was slightly lower than models trained with ReLU (typically around ca.
69%). We chose here to use a sigmoidal-like transfer function instead because it better captures
the saturating property of biological neurons at extreme values, a characteristic we deemed to
be central for studying the effects of gain across a wide range of gain levels, including very high
gain levels (57, see Figure 1A).

Global gain mechanism

Arousal has been shown to increase firing rates in early visual cortex in response to sensory
stimulation, that is, to increase sensory gain (e.g. 26). These increases in gain are thought to be
a result of a global release of noradrenaline, making them spatially unspecific (4, 13, 14, 44, 48).

To simulate such global gain increases in our DCNN, we scaled all activation functions with
one global gain parameter :

h n h
—Co a5 )
exp(agfz) -1 2

where f(.5) describes the outgoing activation and S is the incoming activation. The second
part of the equation describes the sigmoidal-like properties of the activation function where
the constants h, cg, c1, 2, c3 and ¢4 were derived from a spiking neuron model, capturing the
mapping between the incoming current and the average postsynaptic potential over infinite time
steps (see 31, for more details). In brief, we changed the global gain of our model with a single
parameter 7y, which scaled the output of the activation functions, thereby increasing or reducing
response gain everywhere in the model.

£(S) = ymax | 0,

Tasks
Parametric perceptual difficulty task

The Yerkes-Dodson effect - the relationship between arousal level and performance as a function
of task difficulty - is commonly studied by manipulating sensory difficulty (4, 10, 58). To recreate
an analogous situation for our model, we developed a task in which we could parametrically
manipulate the visual complexity required to solve a binary discrimination task. This task
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required the model to distinguish a real image from an average image, an image that was created
by averaging over different numbers of scene images. That is, an average image could either be
based on only 1.25 images (average of a normal image and another image with an alpha level of
25%), which rendered it very similar to a real image and thus perceptually difficult to distinguish
from a real natural scene image, or it could be based on averaging over up to 40 images, making
the average image very dissimilar from a natural scene and thus the discrimination task easier
(see Figure 2B for examples). The average images were constructed from a separate set of images
than those used as real images, thereby avoiding overlap in image features. All images were
taken from a dataset consisting of street scenes, described here (32).

For every level of perceptual difficulty, a separate sigmoidal output node of the DCNN was
fine-tuned, while the rest of the weights were kept unchanged and the global gain parameter
was set to 1. The respective models were fine-tuned for 50 epochs on 6040 training images and
validated using 2592 images, each containing 50% natural scenes for 10 network instances. The
data shown in Figure 2 for a global gain of 1 show the performance of these models on the
held-out test set (2159 images). To construct the performance-gain profiles depicted in Figure 2,
the same test set was evaluated using the same fine-tuned DCNNs.

For evaluating the signal detection properties, we calculated d’ and the criterion as follows:

hits FA
[ _
d = Z(hits + misses) Z(FA + CR)
L hits FA
criterion = -0.5(z( hits + misses + 2 FA+ CR)’

where z corresponds to a z-transform and F'A to false alarms and C'R to correct rejections.

Visual search with a varying number of options

To assess how the results from the parametric perceptual difficulty task generalized to other
scenarios, we also tested the model on a visual search task across two scene contexts in which
we varied the number of answer options. The benefit of this was two-fold. First, we could test
how our the DCNN responds to another factor of task difficulty, with an eight-way classification
being more difficult than a two-way classification. Secondly, we could assess whether we would
also observe an inverted U-shaped gain-performance profile for visual search, a perceptually
difficult task. We tested the DCNN across two search contexts (street scenes and food scenes).
These datasets were curated to be challenging for visual search, while reducing other informative
features such as the background (for a detailed description, see 32).

We fine-tuned an output layer with sigmoid nodes separately for each number of answer
options (2, 4, 8 categories), while keeping the remaining model weights unchanged. The models
were trained on multi-label images for 75 epochs and tested on single-label images. To reduce
the number of answer options, but prevent differences between the different answer option
conditions in categories included, we randomly sampled with replacement from the 8 categories
over 20 iterations thus providing us with the depicted standard deviation in Figure 3 for the
conditions 2 and 4.

Block information

We examined the effects of global gain on model block information to determine how our
manipulation of arousal, at the level of sensory processing, may have affected performance as
a function of perceptual difficulty. To assess the amount of task-related information that is
linearly decodable, we used a logistic regression classifier. In particular, we used this decoding
approach on the activations from the last activation layer in each ResNet block, thus just before
the residual and skip connections split. We ran 5 iterations with randomly drawn training and
test datasets of 1000 images each for every combination of level of perceptual difficulty and
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gain value. For the logistic regression, we used the standard parameters as implemented in the
scikit-learn package (59).

Block activation

Next to examining effects of global gain on block information, we also examined gain effects on
task-related activation. To obtain a measure of activation along the hierarchy of the model, we
recorded the mean activation across all dimensions for the test set used in Figure 2 for varying
degrees of global gain and perceptual difficulty for all trained model instances in the same layers
as included in the decoding analyses.

Model disruption — Spatial scrambling

To manipulate the model’s processing, we developed a method to selectively reduce the contri-
bution of a given block to the model’s performance, named spatial scrambling (Figure 5A). In
particular, we leveraged the organizational principle of ResNet blocks, consisting of a residual
and a skip branch (see Figure 5A), where the residual branch contains the majority of the
additional task-relevant features extracted for a given block (in the convolutional layers). In a
functioning ResNet, the features from the residual branch are added back to the skip branch,
which did not undergo this extra computational step. The information transmitted via the skip
connection is thus identical to the model activations before they entered the residual branch (see
Figure 5A). Spatial scrambling interferes with these residual branch features to effectively reduce
their contribution to the model’s performance. Specifically, we spatially scrambled the feature
maps and did so with an increasing proportion of all feature maps. Thereby spatial scrambling
maintained the distributional statistics within a feature map (in contrast to other methods such
as Dropout (60) or lesioning), but interfered with the information contained therein.

By increasing the proportion of randomly chosen feature maps affected by spatial scrambling
while probing the network for its performance, it is possible to estimate how robust the network
is to these manipulations while at a neutral gain of 1. This is illustrated in Figure S3, which
shows how performance drops as a function of features maps being targeted by spatial scrambling
(importance curves). The gradual decay of these curves informs about the relevance of these
model features for performance. For instance, a model’s block importance curve that quickly
falls off as a function of an increased proportion indicates that this feature was essential to the
model’s overall performance. For the main experiments in which we also varied global gain, we
determined the proportion of randomly chosen feature maps at which a model block dropped
to 20% of its possible contribution to network performance (dots in Figure S3). This ensured
that applying spatial scrambling to every targeted ResNet-block had approximately the same
relative impact on model performance.

In a next step, we used this approach to dissect which part of the model drove the performance-
gain profiles to be optimal at medium or heightened global gain states. For this analysis, we
now only applied the same spatial scrambling rate identified based on the importance curves
for every block, but changed the global gain of the model. In particular, we were interested to
dissociate the influence of early versus later network blocks on the performance-gain profiles.
To this end, we either gradually disrupted later model blocks first and successively added earlier
model blocks or the other way around, thereby either leaving mostly earlier or later model blocks
intact. Doing this for different task difficulties then allowed us to inspect the performance-gain
profiles as a function of disrupted early or later network block function. All spatial scrambling
experiments were repeated ten times on the same set of training weights.

Software

All code for reproducing these results will be made available upon publication. Furthermore, the
results presented here were obtained while relying on the following Python packages: NumPy (61),
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keras (62), TensorFlow (63), Pandas (64), Scikit-Learn (59) and SciPy (65). Data visualization
was done using matplotlib (66) and, in particular, seaborn (67).
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Figure S1. Signal detection properties as a function of perceptual difficulty and
global gain. Shaded areas depict the 95% confidence interval across ten model instances. The
grey vertical lines are in reference to Figure 2D and serve to illustrate the results for a more

narrowly sampled global gain range.
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Figure S2. Global gain changes affect task-related information and activation.
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Figure S3. Importance curves obtained from spatial scrambling at neutral gain
states. The dots represent the scrambling rate at which 20% of the baseline performance is
maintained.
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Figure S4. Performance-gain profiles for scrambling early to late network blocks.
A shows a perceptually difficult task and B a perceptually easy task. All figure conventions are
the same as in Figure 5.
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