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Abstract-We introduce DeepSPEC, a novel convolutional neu-
ral network (CNN) -based approach for frequency-and-phase
correction (FPC) of MRS spectra to achieve fast and accurate
FPC of single-voxel PRESS MRS and MEGA-PRESS data. In
DeepSPEC, two neural networks, including one for frequency
correction and one for phase correction were trained and vali-
dated using published simulated and in vivo PRESS and MEGA-
PRESS MRS dataset with wide-range artificial frequency and
phase offsets applied. DeepSPEC was subsequently tested and
compared to the current deep learning solution - a “vanilla”
neural network approach using multilayer perceptrons (MLP).
Furthermore, random noise was added to the original simulated
dataset to further investigate the model performance with noise
at varied signal-to-noise (SNR) levels (i.e., 6 dB, 3 dB, and 1.5
dB). The testing showed that DeepSPEC is more robust to noise
compared to the MLP-based approach due to having a smaller
absolute error in both frequency and phase offset prediction.
The DeepSPEC framework was capable of correcting frequency
offset with 0.01±0.01 Hz and phase offset with 0.12±0.09° abso-
lute errors on average for unseen simulated data at a high SNR
(12 dB) and correcting frequency offset with 0.01±0.02 Hz and
phase offset within -0.07±0.44° absolute errors on average at
very low SNR (1.5 dB). Furthermore, additional frequency and
phase offsets (i.e., small, moderate, large) were applied to the in
vivo dataset, and DeepSPEC demonstrated better performance
for FPC when compared to the MLP-based approach. Results
also show DeepSPEC has superior performance than the model-
based SR implementation (mSR) in FPC by having higher accu-
racy in a wider range of additional offsets. These results rep-
resent a proof of concept for the use of CNNs for preprocessing
MRS data and demonstrate that DeepSPEC accurately predicts
frequency and phase offsets at varying noise levels with state-of-
the-art performance.
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tion
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Introduction
MRS is a widely available approach for research and for rou-
tine clinical applications, which provides noninvasive, quan-
titative metabolite profiles of tissue. However, many insta-
bilities such as scanner frequency drift and subject motion
can result in frequency and phase shifts that affect data anal-

ysis. Thus, frequency and phase correction (FPC) is an im-
portant technique that needs to be performed for metabolite
quantification. For instance, the metabolite GABA is the pri-
mary inhibitory neurotransmitter in the human brain. A vari-
ety of studies of neurological and psychiatric disorders have
shown their unique pathological characteristic in brain dys-
function [1,2]. Among a wide range of methods for mea-
suring GABA in vivo, MEGA-PRESS is currently the most
widely used MRS technique [3,6]. MEGA-PRESS is a J-
difference editing (JDE) pulse sequence that separates GABA
from overlapping metabolites such as creatine (Cr), which is
present in much greater concentrations. A major limitation in
JDE pulse sequences is that they depend on the subtraction of
spectral edited “On Spectra” and non-edited “Off Spectra” to
reveal the edited resonance in the “Diff Spectra”. As a result
of the overlapping resonances being an order of magnitude
larger in intensity than the GABA resonance, small changes
in scanner frequency and spectral phase will lead to incom-
plete subtraction and distortion of the edited spectrum. The
standard approach in GABA editing is to apply frequency and
phase drift correction of individual frequency domain tran-
sients [4,5] by fitting the Cr signal at 3 ppm. The major
limitation of the Cr fitting-based correction method is that it
relies strongly on sufficient SNR of the Cr signal in the spec-
trum. To overcome this limitation, spectral registration (SR)
approaches were proposed that can accurately align single
transients in the time domain [6,7] or frequency domain [8].
In the SR approach, the frequency and phase offsets are es-
timated based on a nonlinear optimization numerical method
to maximize the cross-correlation between each transient to a
reference template. The correction accuracy depends on the
overall spectral SNR. The performance of the SR method for
drift correction is limited at low SNR around 1.5 dB when
the spectra are dominated by noise.

Deep learning is a common strategy to address wide
range of complex computational problems. The architecture
of the network in terms of the number of layers, type of
layers, and output function is fixed prior to inputting data.
The output data is unknown, and sufficient network train-
ing is required to optimize the weights and bias parameters
for assessment on validated and tested data. Moreover, deep
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learning is an effective image processing approach that has
been enthusiastically adopted in MR imaging but thus far has
had a more modest impact on MRS. A multilayer perceptron
(MLP) model has been recently applied to single-transient
FPC for edited MRS [9]. This work demonstrated the great
potential of applying deep learning in MRS data preprocess-
ing by pre-training models with simulated datasets with dif-
ferent frequency and phase offsets. Although MLP provides
quick and yields well-predicted results, a more robust net-
work could be considered, such as a convolutional neural net-
work (CNN) approach to more accurately obtain spatial in-
formation and extract key features of the input data for FPC.

In the present study, we aim to investigate the feasi-
bility and utility of CNNs for FPC of single voxel MEGA-
PRESS MRS data. We implemented automatic FPC with
CNNs for the first time. Our proposed approach, DeepSPEC,
was tested on a published simulated dataset and an in vivo
dataset against the benchmark - a “vanilla” neural network
approach using MLP [9]. DeepSPEC achieved state-of-the-
art performance and nearly optimal correction efficiency. We
then investigated the effect of additional noise of 6 dB, 3 dB,
and 1.5 dB on the FPC performance to further demonstrate
that DeepSPEC is a more robust solution when dealing with
spectra with a low signal-to-noise ratio (SNR). Additional
offsets (small, moderate, large) were also applied to the in
vivo dataset to demonstrate the utility of DeepSPEC to ac-
curately predict the spectral frequency and phase offsets in a
more real-life scenario.

Methods

A. Datasets.
1) Simulated Datasets
For adequate network training, data selection is a vital
challenge for deep learning. Since there is no ground truth
of frequency and phase offsets for the in vivo dataset, in
this work, the MEGA-PRESS training, validation, and test
transients were simulated using the FID-A toolbox (version
1.2), with the same parameters as described in the previous
work [9]. The training set for the DeepSPEC model was
allocated 36,000 OFF+ON spectra, the validation set was
allocated 4,000, and 1,000 for the test set. Furthermore,
we created additional spectra with lower SNRs (at 6 dB, 3
dB, and 1.5 dB) by adding random Gaussian noise to the
published simulated dataset respectively.

2) In vivo Datasets
In vivo data was retrieved from the publicly available Big
GABA repository [10]. Thirty-three MEGA-edited datasets
were collected in total. 320 transients OFF+ON were used
and tested on DeepSPEC, all of which were acquired using
a water suppression method (VAPOR) [18] that generated
positive water residual in the spectra.

B. Network architecture.
1) DeepSPEC
A CNN model was evaluated to compare its accuracy in fre-
quency and phase offset prediction (Figure 1A). The model

Fig. 1. Network structure, the pipeline for assessment and sample outputs of Deep-
SPEC model. (A) The network architecture of the CNN model. Both the frequency
and phase offset were predicted using the same architecture of 2 hidden 1D convo-
lutional layers, 2 1D max-pooling layers, and 3 fully connected layers. The convolu-
tional layer consisted of 4 kernels with a size of 3, and the max-pooling layer had a
pool size of 2 with a stride of 2. Furthermore, two fully-connected layers (FC) with
1024 and 512 nodes respectively followed by a final fully-connected linear output
layer of 1 node, were implemented. All hidden layers were each followed by a rec-
tified linear unit (ReLU) activation function and the output fully connected layer by
a linear activation function that generated the predicted offset. Simulated spectra
manipulated from FID-A with artificially generated frequency or phase offsets were
used as training data for the network (F-model and P-model). Each network was
trained through 300 epochs with early stopping implemented when 40 consecutive
epochs did not improve the lowest validation loss. (B) Flow chart of computation
to determine the Diff spectra with details of the input and output from the network
architecture. (C) Comparison between On, Off, and Diff spectra with offsets, with
DeepSPEC, and without offsets. The top row shows multiple simulated individual
spectra, while the bottom row shows the averaged spectra.

was implemented as sequential networks (F-model, then P-
model). Each network consisted of a channel with 1024
nodes as an input layer and a one-dimensional convolutional
layer followed by a one-dimensional max-pooling layer. The
latter layer was subsequently connected to another series
of one-dimensional convolutional layer followed by a one-
dimensional max-pooling layer. The convolutional layer con-
sisted of 4 kernels with a size of 3, and the max-pooling layer
has a pool size of 2 with a stride of 2. Furthermore, a fully-
connected layer (FC) with 1024, 512 were used a final fully-
connected linear output layer of 1 node was designed. Each
hidden layer was followed by a rectified linear unit activation
function to introduce non-linearity. An Adam optimizer was
used to train the neural network. The output from each net-
work was the predicted offset of frequency or phase. Adam
was used as the optimizer for the DeepSPEC network with a
0.01 learning rate, and each model was trained for 300 epochs
with a batch size of 32, and the mean absolute error was the
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C Network testing

loss function.

C. Network testing.
On the scale of -20 to 20 Hz and 90° to 90°, uniformly
distributed artificial offsets were first added into random
pairs, consisting of a frequency offset and a phase offset.
Gaussian distributed noise was added to the dataset right
before inputting into the network. The random pairs were
then applied to the time-domain simulated transient. Figure
1B demonstrates the mechanism of DeepSPEC. The ma-
nipulation of the CNN networks for ON and OFF spectra
was the same. First, we applied a Fast Fourier transform to
the uncorrected data and normalized them to the maximum
signal in the spectrum. The peripheral 1024 samples were
then cropped off, and the central 1024 samples were selected
and the absolute value was taken to feed the network. Sub-
sequently, the predicted frequency offset (∆f ) was applied
to the original transient to perform frequency correction.
Next, we applied a Fast Fourier transform and normalized
the frequency-corrected transient in the time domain. We
selected and took the absolute value of the central 1024
samples into the phase-offset-prediction network. The
network predicted the phase offset (∆φ) and was used
for phase correction for the frequency-corrected transient.
Finally, by subtracting the corrected OFF transients from the
ON transients, an average difference spectrum was obtained.

1) Evaluation and comparison using in vivo dataset
The thirty-three MEGA-edited datasets were used as the
test set of the DeepSPEC network. For a first comparison
to the performance of DeepSPEC CNN, SR [14] performed
FPC in the time domain. ON and OFF transients were
registered to a single template, and the first n points of the
signal were used, where n was the last point at which the
SNR was higher than 3. The noise was computed from the
bottom quarter of the signal, and n was set to a value larger
than 100. The real and imaginary parts of the first n points
were concatenated as a real vector and registered to the
median transient of the dataset using MatLab function nlinfit
(version 2019a, MathWorks, Natick, MA). The starting
parameters for the subsequent transient were the same as
the fitted parameters from 1 transient. The initial starting
values for the offsets were 0 Hz and 0 degrees. In order
to correct for the residual frequency and phase offsets, the
transients were averaged, and global FPC was performed
using Cr/Cho modeling (nlinfit) of this averaged spectrum
after registration. Beyond SR, a model-based SR (mSR) was
also implemented as a comparison of DeepSPEC. Unlike
SR, mSR uses a noise-free model as the template instead
of the median transient of the dataset. Noise-free ON and
OFF FID models were created in Osprey (version 1.0.0),[12]
an open-source MatLab toolbox, following peer-reviewed
preprocessing recommendations.[11] As another comparison
for DeepSPEC CNN, a “vanilla” neural network using MLP
containing 3 FC layers (1024, 512, 1 node(s)) was tested.[9]
In this network, each hidden FC layer was followed by a
ReLU activation function, and a linear activation function
followed the output layer.

To test the network in a more extreme environment,
in addition to the random offsets, additional artificial off-
sets were added to the in vivo data. There were 3 different
kinds of additionally added offsets: 1. 0 ≤ |∆f | ≤ 5Hz and
0≤ |∆φ| ≤ 20°; 2. 5≤ |∆f | ≤ 10Hz and 20°≤ |∆φ| ≤ 45°;
3. 10≤ |∆f | ≤ 20Hz and 45°≤ |∆φ| ≤ 90°. All additional
offsets were sampled from a uniform distribution and added
as random pairs of frequency and phase to each transient.

D. Performance measurement.
In the simulated dataset, the artificial offsets were set as the
ground truth, and the mean square error between the ground
truth and predicted value was used as the criteria to measure
the network’s performance. Moreover, we calculated and
plotted the difference value between the true spectra and the
corrected spectra using SR, MLP, and DeepSPEC. A Q score
was used to determine the performance strengths of each dif-
ferent methods, and it is defined as: Q= 1−σ12/(σ12 +σ22),
where σ2 is the variance of the choline subtracted artifact in
the average difference spectrum. If the Q score is greater than
0.5, it indicates that the first method performs better than the
second method and vice versa.

Results

A. Spectra Analysis between the MLP-based ap-
proach and DeepSPEC for varying SNRs.

Figures 2A, 2C, 2E, and 2G illustrate the results of the MLP-
based approach on the 1000 transients (500 ON, 500 OFF) of
the simulated test set as well as of the test set with lower SNR
at 6 dB, 3 dB, and 1.5 dB. Figures 2B, 2D, 2F, and 2H show
the results of the DeepSPEC on the same simulated test set
as well as of the test set with lower SNR at 6 dB, 3 dB, and
1.5 dB. In each subfigure of Figure 2, the frequency offset
errors are plotted against their corresponding correct values,
the phase offset errors are plotted against their corresponding
correct values, the model-corrected difference spectrum and
the difference spectrum corrected by the true offsets are plot-
ted together, and the residues between the difference spectra
are shown. For the original test set, the mean frequency off-
set error was 0.02 ± 0.02 Hz for the MLP-based approach and
0.01 ± 0.01 Hz for the DeepSPEC, and the mean phase offset
error was 0.19 ± 0.17° for the MLP-based approach and 0.12
± 0.09° for the DeepSPEC. With a lower SNR at 6 dB, the
mean frequency offset error was 0.00 ± 0.04 Hz for the MLP-
based approach and 0.00 ± 0.02 Hz for the DeepSPEC, and
the mean phase offset error was 0.02 ± 0.36° for the MLP-
based approach and -0.08 ± 0.29° for the DeepSPEC. With a
lower SNR at 3 dB, the mean frequency offset error was 0.00
± 0.05 Hz for the MLP-based approach and -0.01 ± 0.02 Hz
for the DeepSPEC, and the mean phase offset error was 0.01
± 0.41° for the MLP-based approach and 0.01 ± 0.34° for the
DeepSPEC. With a lower SNR at 1.5 dB, the mean frequency
offset error was 0.00 ± 0.05 Hz for the MLP-based approach
and 0.01 ± 0.02 Hz for the DeepSPEC, and the mean phase
offset error was 0.02 ± 0.61° for the MLP-based approach
and -0.07 ± 0.44° for the DeepSPEC. Figure 2 shows that the
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Fig. 2. Visualizing the performance of the MLP-based approach and our proposed DeepSPEC for frequency and phase correction using the published simulated dataset for
varying SNRs. The scatter plots show the correction errors between the ground truths and model predictions at different frequency and phase offsets. The spectra below
the scatter plots demonstrate the deep learning model predictions (MLP or CNN), the true MEGA-PRESS difference spectrum, and the subtraction of the MLP/CNN and true
difference spectrum (Single Diff Spectra). (A) Output of MLP-based approach on the original test set (SNR at 12 dB). (B) Output of DeepSPEC on the original test set. (C)
Output of MLP-based approach on the test set with SNR at 6 dB. (D) Output of DeepSPEC results on the test set with SNR at 6 dB. (E) Output of MLP-based approach on
the test set with SNR at 3dB. (F) Output of DeepSPEC on the test set with SNR at 3 dB. (G) Output of MLP-based approach on the test set with SNR at 1.5 dB. (H) Output of
DeepSPEC on the test set with SNR at 1.5 dB.

DeepSPEC had smaller errors within the frequency and phase
ranges for all SNR levels tested.

B. DeepSPEC and MLP-based approach Error com-
parison.

Figure 3 illustrates the comparison of the results of the MLP-
based approach and the DeepSPEC for frequency and phase
correction of both the Off spectra and the On spectra of the
simulated test set for varying SNRs (high, medium, low).
DeepSPEC showed significantly lower frequency estimation
errors than the MLP-based model for the Off spectra at vary-
ing SNRs (Figure 3C) and for the On spectra at varying SNRs
(Figure 3A). For example, with the test set at a lower SNR of
1.5 dB, the mean frequency offset error for Off spectra was
0.042 ± 0.036 Hz for the MLP-based approach and 0.019 ±
0.015 Hz for the DeepSPEC, and for On spectra, it was 0.041
± 0.036 Hz for the MLP-based approach and 0.021 ± 0.016
Hz for the DeepSPEC (Figure 3H). Similarly, it showed sig-
nificantly lower phase estimation errors than the MLP-based
model for the OFF spectra at varying SNRs (Figure 3D) and
for the On spectra at varying SNRs (Figure 3B). With the test
set at a lower SNR of 1.5 dB, the mean phase offset error for
Off spectra was 0.429 ± 0.351° for the MLP-based approach
and 0.372 ± 0.289° for the DeepSPEC, and for On spectra it
was 0.518 ± 0.436° for the MLP-based approach and 0.333
± 0.247° for the DeepSPEC (Figure 3H). Consequently, the
residual spectra errors of the DeepSPEC were significantly
lower than those of the MLP-based model for the Off spec-
tra at varying SNRs (Figure 3F), for the On spectra at vary-
ing SNRs (Figure 3E), and for the difference spectra between
the MLP-based model and the DeepSPEC at varying SNRs
(Figure 3G), indicating the overall higher performance of the
DeepSPEC with respect to the MLP-based approach as well

as its robustness to noise.

Fig. 3. Comparison between the MLP-based approach and our proposed Deep-
SPEC for frequency and phase correction of both the OFF spectra and On spectra
at varying SNRs. (A) Bar graph showing the frequency estimation error (in Hz) of
the MLP-based method and the DeepSPEC at varying SNRs of the On spectra.
(B) Bar graph showing the phase estimation error (in degrees) of the MLP-based
method and the DeepSPEC method at varying SNRs of the On spectra. (C) Bar
graph showing the frequency estimation error (in Hz) of the MLP-based method
and the DeepSPEC at varying SNRs of the Off spectra. (D) Bar graph showing the
phase estimation error (in degrees) of the MLP-based method and the DeepSPEC
method at varying SNRs of the Off spectra. (E) Bar graph showing the residual
spectra mean squared error of the MLP-based method and the DeepSPEC of the
On spectra. (F) Bar graph showing the residual spectra mean squared error of the
MLP-based method and the DeepSPEC of the Off spectra. (G) Bar graph showing
the residual spectra error of the MLP-based method and the DeepSPEC of the dif-
ference spectra. The two-tailed P value was used and is less than 0.0001**** for all
the comparisons between the MLP-based and DeepSPEC-based approaches.

As observed in Figures 2 and 3, the original test set’s
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Table 1. Table of the errors of the MLP-based approach and our proposed DeepSPEC for frequency and phase correction of the On spectra and Off spectra, of the resulting
On and Off spectra, and of the corresponding difference spectra at varying SNRs.

results were fairly better than the results of the test set with
added noise of 6 dB, indicating that the noise level in the
original test set must have been higher than 6 dB. Further
computations confirmed that the test set’s noise level was 12
dB.

C. in vivo Datasets.

Figure 4A illustrates the spectra resulting from the 33 in
vivo datasets without (column 1) or with additional artificial
offsets (columns 2-4) for no correction, MLP-based correc-
tion, DeepSPEC-based correction, and SR-based correction.
When small offsets C1 were added, all three models per-
formed similarly. The mean performance score of the MLP-
based approach and DeepSPEC was 0.51 ± 0.09 (Figure 4D,
column 2) while it was 0.49 ± 0.08 for DeepSPEC and SR
(Figure 4C, column 2), and 0.49 ± 0.10 for the MLP-based
approach and SR (Figure 4B, column 2). the MLP-based ap-
proach performed better than SR for 42.42 % of the 33 in
vivo datasets, DeepSPEC performed better than SR for 45.45
% of the 33 in vivo datasets, and DeepSPEC performed bet-
ter than the MLP-based approach for 66.67 % of the 33 in
vivo datasets. As for medium offsets C2, the performance of
DeepSPEC and the MLP-based approach was comparable,
but both models performed better than SR. The mean per-
formance score of the MLP-based approach and DeepSPEC
was 0.54 ± 0.09 (Figure 4D, column 3) while it was 0.78
± 0.14 for DeepSPEC and SR (Figure 4C, column 3), and
0.79 ± 0.13 for the MLP-based approach and SR (Figure 4B,
column 3), the MLP-based approach performed better than
SR for 96.97 % of the 33 in vivo datasets, DeepSPEC per-
formed better than SR for 96.97 % of the 33 in vivo datasets,
and DeepSPEC performed better than the MLP-based ap-
proach for 60.61 % of the 33 in vivo datasets. When large
offsets C3 were added, the performance of DeepSPEC was
better than the MLP-based approach and SR’s. The mean
performance score of the MLP-based approach and Deep-
SPEC was 0.57 ± 0.14 (Figure 4D, column 4) while it was
0.77 ± 0.12 for DeepSPEC and SR (Figure 4C, column 4),
and 0.73 ± 0.16 for the MLP-based approach and SR (Fig-
ure 4B, column 4). The MLP-based approach performed bet-
ter than SR for 90.91 % of the 33 in vivo datasets, Deep-
SPEC performed better than SR for 96.97 % of the 33 in vivo
datasets, and DeepSPEC performed better than the MLP-

based approach for 75.76 % of the 33 in vivo datasets. For
small and medium offsets, DeepSPEC-corrected spectra and
MLP-corrected spectra (Figure 4A, columns 2-3) are simi-
lar to the original spectra (Figure 4A, column 1). However,
for large offsets, the MLP-corrected spectra (Figure 4A, col-
umn 4) slightly diverge from the original spectra, while the
DeepSPEC-corrected spectra still are not noticeably different
from the original spectra. mSR exhibited the same perfor-
mance pattern as DeepSPEC with respect to the MLP-based
approach, with a similar mean performance score of 0.51 ±
0.13 for small offsets and of 0.52 ± 0.13 for medium offsets,
and a better mean performance score of 0.57 ± 0.11 for large
offsets. (All numerical results are shown in Figure 4E).

Discussion
Frequency and phase correction is a crucial step when quanti-
fying metabolites to analyze edited MRS data. The resulting
Diff spectra must be as robust as possible to achieve the best
result for quantification. Thus, when constructing the net-
work architecture, meticulous attention was given to gener-
ate an optimal model. Many methodological options were
considered, and we decided that having separate networks
to perform frequency and phase correction using a convolu-
tional neural network would produce the best results. A CNN
model, DeepSPEC, was constructed with 2 layers of convo-
lutional layers followed by 2 layers of max-pooling layers
with an activation function of ReLU on top of the MLP-based
model. Furthermore, the networks were designed to output
the FPC parameters instead of the corrected spectra. Inputs
were the magnitude spectrum for the frequency network and
the real spectrum for the phase network. The networks were
trained using simulated datasets concatenated with Off and
On transients and validated using simulated datasets with ar-
tificially added offsets as well. The risk of noise was also
considered where the central 1024 points were selected for
the input. The robustness of the models to noise was also
quantified where the noise of 6 dB, 3 dB, and 1.5 dB were in-
troduced to the simulated dataset and compared to the MLP-
based model. In vivo data were also used to assess the perfor-
mance of the models. With given data and varied additional
offsets, the performance score P and its average score Q were
used. Comparison of DeepSPEC was performed with MLP,
SR, and mSR for the in vivo datasets.
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Fig. 4. Difference spectra and performance scores comparing the MLP-based approach to SR, DeepSPEC to SR and DeepSPEC to the MLP-based approach for the 33 in
vivo datasets. The difference spectra were generated without any FPC (NO), using the network shown in Figure 1 (MLP-based approach and CNN) and using SR (spectral
registration). (A) Results of applying corrections to the in vivo data without further manipulation, and with additional frequency and phase offsets, applied to the same 33
datasets: small offsets (0-5 Hz; 0-20°), medium offsets (5-10 Hz; 20-45°), and large offsets (10-20 Hz; 45-90°). (B) Comparative performance scores P and Q for the
MLP-based approach and SR for each dataset. A score above 0.5 indicated that the MLP-based approach performed better than SR, whereas a score below 0.5 (50%)
indicated that SR performed better than the MLP-based approach in terms of alignment. (C) Comparative performance scores P and Q for CNN and SR for each dataset. (D)
Comparative performance scores P and Q for CNN and the MLP-based approach for each dataset.

From Figure 2 and 3,we observed that the DeepSPEC
model performed better compared to MLP-based models
when using simulated data. The scatter plot shows the CNN
model has smaller correction errors (i.e., smaller mean ab-
solute error and standard deviation) for both frequency and
phase offset estimation compared to the MLP-based ap-
proach. Moreover, it can also be seen that for each off-
set, the subtraction of the prediction to the ground truth data
points congregate near the y=0 line indicating the small de-
viation it had compared to the true value. In addition, the
Diff spectra below also demonstrated that our model has
smaller residual differences when the corrected spectra are
subtracted from the truth spectra. The influence of noise was
also found to have smaller effects in predicting the Diff spec-
tra as smaller residues were observed when the spectra were
subtracted. Especially at lower SNRs (1.5 and 3 dB), the

difference was obvious, indicating that the MLP-based ap-
proach cannot cope with noisy data very well. From Figure
2, a prediction of the innate SNR for the original dataset can
be made. By comparing Figure 2A with other figures, it can
be seen that 2B and 2D resemble each other really well. Fig-
ure 2B shows a flat residual curve indicating the SNR could
be greater than 6 dB and close to 12 dB. Computation was
done to confirm that the results where using the mean of the
central data points of one of the truth spectra as the signal and
the standard deviation of the remaining points as the noise;
the SNR was computed to be approximately 12 dB. Further-
more, Figure 3 shows the mean absolute error to be smaller in
all cases for DeepSPEC with improved accuracy in larger off-
sets when compared to the MLP-based approach. This result
can be seen for frequency, phase, and residual error where
the two-tailed p-value shows the significance of this result.
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Especially in frequency (On and Off) and residual error (On,
Off, Diff), the differences are tremendous.

From Figure 4, the same conclusion can be made when
using in vivo data. There is better performance in the Deep-
SPEC model as performance score P is higher and the out-
put spectra are clearer compared to the MLP-based approach.
This is well shown in the performance when we added a large
offset to the dataset, indicating our model can handle more
varied offsets with higher accuracy. The benchmark was the
comparison to SR, where both MLP and CNN performed bet-
ter with no offset, C1, and C3 which show superior results for
DeepSPEC due to its larger Q and P-value. When comparing
DeepSPEC to MLP directly (Figure 4D), it can be shown that
our model performed better than MLP in all cases for both
performance score P and its Q value. Additionally, compar-
ing the performance to mSR, it can be stated that our model
performs better due to the larger score for C1 and C2, indi-
cating the lack of performance for this small and moderate
offset for mSR. Smaller standard deviation is also observed
throughout our DeepSPEC model performance which corre-
sponds to the higher robustness of our model.

DeepSPEC was found to demonstrate accurate quantifi-
cation with training and validation for frequency and phase
offset estimation in separate models. However, this takes
more computational time to train the models and makes the
method inflexible to account for additional parameters such
as first-order phase, amplitude, and bandwidth variance in
different transients. Moreover, only the MEGA-PRESS se-
quence was considered in this study. The DeepSPEC per-
formance on other JDE sequences, such as MEGA-sLASER
[17] was not discussed. The magnetic field strength to pro-
duce the simulated dataset and to acquire the in vivo dataset
was 3 T. However, the DeepSPEC performance over higher
magnetic fields is yet unknown. Additionally, our study was
only based on human MRS data. Nevertheless, in pre-clinical
studies, animal models continue to play a significant role in
the scientific investigation of neuropsychiatric disorders. Fu-
ture studies on animal MRS data may further validate the
generalization of the proposed method across species. Data
from different vendors other than Philips such as Siemens,
GE, and Bruker are also an important variable that should be
considered in the future. Finally, different experimental con-
ditions such as ex vivo, in situ, and in vitro should also be
assessed to further demonstrate our model’s general utilities
in MRS data preprocessing.

For future work, combining frequency and phase off-
set predictions into a single model can further improve the
computational efficiency. Although DeepSPEC was imple-
mented and optimized specifically for MEGA-PRESS MRS
data at 3T in this study, DeepSPEC should be able to pro-
cess any MRS spectra in general. Application-specific MRS
training data across different sequences, field strengths, and
varying experimental conditions can be simulated using pub-
licly available toolboxes such as SpinWizard [15], FID-A,
and MARSS [16], and the tailored DeepSPEC networks can
be easily retrained for any MRS experiment accordingly.

Table 2. Table of the P score percentages and the average Q scores comparing the
MLP-based approach to SR, CNN to SR and CNN to the MLP-based approach with
no additional offsets and three magnitudes of additional offsets (C1. 0 ≤ |∆f | ≤
5Hz and 0 ≤ |∆φ| ≤ 20°; C2. 5 ≤ |∆f | ≤ 10Hz and 20° ≤ |∆φ| ≤ 45°;
C3. 10 ≤ |∆f | ≤ 20Hz and 45° ≤ |∆φ| ≤ 90°). P score percentages and the
average Q score of mSR to MLP are also depicted.

Conclusions
This work provides the first proof of concept of the feasibility
of a CNN framework to preprocess MRS spectra. Our Deep-
SPEC model shows better performance and delivers results
more robust to noise as compared to the current state-of-the-
art model in both simulation and in vivo tests.
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