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Abstract

Deep convolutional neural networks (CNNs) are powerful computational tools for a large variety of tasks
(Goodfellow, 2016). Their architecture, composed of layers of repeated identical neural units, draws
inspiration from visual neuroscience. However, biological circuits contain a myriad of additional details
and complexity not translated to CNNs, including diverse neural cell types (Tasic, 2018). Many possible
roles for neural cell types have been proposed, including: learning, stabilizing excitation and inhibition,
and diverse normalization (Marblestone, 2016; Gouwens, 2019). Here we investigate whether neural cell
types, instantiated as diverse activation functions in CNNs, can assist in the feed-forward computational
abilities of neural circuits. Our heterogeneous cell type networks mix multiple activation functions within
each activation layer. We assess the value of mixed activation functions by comparing image
classification performance to that of homogeneous control networks with only one activation function per
network. We observe that mixing activation functions can improve the image classification abilities of
CNNs. Importantly, we find larger improvements when the activation functions are more diverse, and in
more constrained networks. Our results suggest a feed-forward computational role for diverse cell types
in biological circuits. Additionally, our results open new avenues for the development of more powerful

CNNE.

Introduction

Deep convolutional neural networks (CNNs) draw architectural inspiration from visual neuroscience.
CNNs contain many processing units that aim to emulate the role of neurons in the mammalian visual
system, a series of iterative processing steps (Goodfellow, 2016, Hubel & Wiesel, 1959; Hubel & Wiesel,
1962). Recently performance of CNNs has rapidly improved across a wide range of computational tasks,
particularly visual object recognition and classification (LeCun et. al., 2015). CNNs work by developing
highly nonlinear representations of inputs across repeated layers of processing units. These
representations are learned through training by updating the connections, or weights, between units in
successive layers. Types of processing layers include convolutional layers, which convolve input with

learned spatial filters, activation layers which include a nonlinear activation function, and max-pooling
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layers. Typicallyy, CNNs units are uniform across each layer within a network. Network
architectures—meaning the number, size, type, and arrangement of processing unit layers—are often
manually designed through iterative experimentation, although automated search techniques are being
actively developed (Zoph & Le, 2016). Individual convolutional features and weights are determined

through iterative training, not architectural design.

Biological circuits, however, contain diverse cell types at each location in the visual hierarchy.
Classification of neural cell types dates back to the pioneering work of Ramon y Cajal, who described in
fine detail elaborate neural morphology (Llinas, 2003). Recent studies have classified neurons by their
location in the brain, morphology, gene transcription, and electrical properties (Tasic, 2018; Teeter, 2018;
Gouwens, 2019; Gouwens, 2020). The biological function of these diverse neural cell types is not yet
fully understood, but is an active area of research (Burnham, 2021; Zeldenrust, 2021; Perez-Nieves,
2021). Many possible roles for neural cell types have been proposed, including: learning, stabilizing
excitation and inhibition, and diverse normalization (Marblestone, 2016; Gouwens, 2019). Recently
several studies have begun to investigate computational properties of networks with heterogeneous cell
types, instantiated in different ways such as excitatory vs inhibitory (Cornford, 2020), synapses
(Burnham, 2021), connectivity (Stockl, 2021), and intrinsic dynamics (Padmanabhan, 2010; Gjorgjieva,
2016; Duarte, 2019; Perez-Nieves, 2021; Zeldenrust, 2021). Broadly, these studies find computational
benefits from adding heterogeneity to neurons. Burnham et al, 2021 and Perez-Nieves et al, 2021
investigated adding heterogeneous synaptic and membrane timescales, finding improved performance on
standardized sequential datasets. Stockl et al, 2021 constructed networks with cell type specific
connectivity rules, and found improved performance with reduced number of neurons. Zeldenrust et al,
2021 analytically derived a class of spiking network models that optimally track time-varying inputs,
resulting in networks with diverse internal dynamics. We build on these results by instantiating cell type
diversity as mixed activation functions, and explore the possible role for neural heterogeneity in

feed-forward computation in CNNs performing image classification.

One basic classification of neurons uses their electrical input-output relationships characterizing them
electrophysiologically based on features of their /~/ curves—nonlinear functions that map input current to
neuronal firing rate (Izhikevich, 2007). In the deep learning context, neurons are reduced to units
represented by a single, 1-dimensional quantity: their activation function. Activation functions are
typically nonlinear functions that transform the weighted sum of a unit’s input to an output value. Taking
advantage of this similarity between activation functions and f-/ curves, we can designate different CNN

unit cell types by applying mixed activation functions as an analog for electrophysiological classification.
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Applying these constraints in the deep learning context presents an opportunity to use CNNs as a model
for studying the role that heterogeneous cell types might play in feed-forward sensory coding. Here we
investigate the effects of adding mixed activation functions as an analog for cell types to an existing CNN
architecture. To constrain our investigation we did not explore heterogeneous connectivity (Stdckl, 2021),
synapses (Burnham, 2021), timescales (Burnham, 2021 and Perez-Nieves, 2021), or spike-timing
(Zeldenrust, 2021). We seek to characterize the network response to the addition of cell types in terms of
classification accuracy, learning, and the network’s internal representation of the input space. We find that
mixed activation functions can improve image classification compared to control homogeneous networks,
and that the benefit of mixed activation functions is larger in more constrained networks. Finally, we find

that internal representations in mixed networks differ from the control networks.

Results

Mixed activation functions on an image classification task. To investigate the role of heterogeneous
cell types in feed-forward processing, we implemented a programmatic framework that generates CNN
instances containing heterogeneous configurations of activation functions, then trains them on an image
classification task. We adopted the CIFAR-10 image set as our primary classification benchmark. This
imageset contains 10 image classes with 6000 exemplars in each class (Krizhevsky, 2009). As a standard
network testbed we used the popular, relatively simple, VGG11 architecture (Simonyan & Zisserman,
2014). VGGI11 contains 11 composite layers including 8 convolutional layers and 3 fully connected
layers. We started experimentation with VGGI11 because its uniform architecture across layers allows for
straightforward analysis and modification, its popularity means its performance is well-studied on popular

datasets, and its depth offers the ability to attain state of the art classification accuracy.

We replaced the homogeneous activation functions (Figure 1a) in VGGI11 to introduce heterogeneity
(Figure 1b). In particular, each mixed network contains two activation functions within every activation
layer and fully connected layer. We refer to a network configuration that mixes activation functions A and
B with a name of the form “mixed A-B” (Figure 1b), and a homogeneous control network that uses only
A or B as “control A” or “control B” (Figure 1a). Note that our mixed networks contain the same number
of units, connections, and learnable parameters as the control networks. For each mixed or control
configuration, we trained 10 initializations of the same network architecture with random starting
weights. This approach allows us to statistically assess whether mixed activation functions improve image
classification ability. For example, comparing the control networks Swish(7.5), and PTanh(1) (Figure 1c),
with the corresponding mixed network Swish(7.5)-PTanh(1), we find the mixed network outperforms

both the linear average of the two control networks, and each control network individually (Figure 1d).
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Figure 1. (a) Homogeneous control networks corresponding to the mixed network in (b). Each control network
contains only one activation function across all units. (b) Illustration of mixed activation functions within a
CNN. PTanh and Swish units are intermixed within each activation and fully connected layer in the network. (c)
PTanh and Swish nonlinear activation functions. PTanh is saturating, while Swish has rectification properties.
(d) Comparison of final classification accuracies for a heterogeneous configuration of VGGI11 and its
corresponding control networks. For each network type, each dot represents the final accuracy of a single
random initialization, and the dashed line is the mean accuracy across initializations. The max prediction is the
greater of the two control cases, while the linear prediction is the average of the two control cases. Here the
mixed network outperforms both predictions. (e¢) Examples of Swish and PTanh nonlinearities over a range of
parameter values.
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106 Search space. To keep the scope of the investigation practical, we defined a search space that balances
107 dynamic range of effect with the feasibility of exploration. The dimensions of this space include the set of
108 candidate activation functions and their associated parameters, the ten targetable activation layers in
109 VGGI11, and the set of locations within the targeted layers at which activation functions can be applied.
110 Since an exhaustive exploration of all possible permutations of even a small set of activation functions in
111 a single layer is not feasible, we set out to target all activation layers with systematic cell type
112 arrangements that offer a good sampling of the overall search space. Our results presented here used a 1:1

113 ratio of two activation functions within each layer of each network.

114 Families of parametric activation functions. The choice of activation functions in artificial deep
115 networks is an active area of research (Ramachandran et. al., 2017). Different activation functions have
116 been historically used in deep learning with different motivations (Goodfellow et. al., 2016). We
117 separated activation functions into different families that exhibit the qualitatively different behaviors of
118 rectification and saturation (Figure 1c). Commonly used members of each family are thought to offer
119 different advantages in deep neural networks. For example, rectifying functions like ReLU are often
120 piecewise linear, and are thought to help the network develop a sparse internal representation of the input
121 space. Saturating activation functions like Tanh operate with bounded outputs at input extremes. And a
122 non-monotonic activation function like Swish offers behavior that is mostly rectifying, while maintaining
123 continuous differentiability. We reasoned that mixed activation functions might offer computational
124 benefits by combining the diverse advantages of different function families. We chose the parametric
125 activation function Swish to represent the rectifying family (eq. 1), and the saturating activation function
126 PTanh of our own design to represent the saturating family (eq. 2).
o X
C l4e B
tanh(z) + tanh(ax)

2

127 In addition to mixing across function families, we can evaluate the benefits of mixing within a function

Eq. 1 Swish(j3,z)

Eq. 2 PTanh(a,z) =

128 family by changing the function hyper-parameters f and a. Over a range of parameters, a single
129 nonlinearity like Swish or PTanh can take a variety of forms (Figure le). PTanh has a parameter o that
130 changes the curvature of the activation function such that the network cannot compensate by scaling the
131 input weights. As the Swish parameter B increases, the function displays increasing rectification,
132 becoming more similar to ReLU. Here we explore mixing cell types both “within” function families: the
133 same function with a different parameter value, and “across” function families: different functions with

134 potentially different parameter values.
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135 Accuracy relative to linear and max prediction. To evaluate the role of mixed activation functions, the
136 performance of a given mixed network is compared to that of its corresponding homogeneous control
137 networks using two metrics: the mixed network’s linear and max prediction (Figure 1d). The linear
138 prediction expects the mixed network to perform as well as a linear combination of its control network
139 accuracies. Our mixed networks use a 1:1 ratio of two activation functions, so the linear prediction is
140 simply the average of the two control accuracies. For example, the control networks Swish(f=7.5) and
141 PTanh(o=1) have mean final accuracies 88.59% and 85.24%, therefore the linear prediction for mixed
142 network Swish(f=7.5)-PTanh(a=1) is 86.92%. Note here that the mean final accuracy for both the
143 homogeneous control networks and the mixed networks is the average over 10 random initializations of
144 each network type. The max prediction accounts for the possibility that a mixed network learns to
145 compensate for the introduction of a population of units with a nonlinearity that performs poorly by
146 adjusting its weights to “ignore” those units, thereby inaccurately inflating the mixed net’s performance
147 with respect to its linear prediction. The max prediction is resistant to this effect. It expects the mixed
148 network to perform as well as the best of its control network accuracies. For example, given the same
149 control network accuracies presented above, the max prediction for mixed network Swish(7.5)-PTanh(1)
150 is 88.59%. Figure 1d shows results for Swish(7.5)-PTanh(1), with mean final accuracy of 89.27%,
157 outperforms both the maximum and linear prediction of its control networks. Our primary investigation
152 aims to uncover under what conditions mixed activation function networks can outperform the max

153 prediction of their control networks.

154 Diverse heterogeneous networks outperform homogeneous control networks. Using the VGG11
155 architecture, we applied heterogeneous configurations within and across the parametric spaces of Swish
156 and PTanh nonlinearities, then compared the final validation accuracies attained by each configuration on
157 CIFAR-10 to the linear and max prediction based on each configuration’s corresponding homogeneous
158 control networks. We observe that cross-family networks and within-family networks composed of
159 diverse nonlinearities frequently beat their linear predictions (34 out of 35 cross-family and 21 out of 31
160 within-family using VGG11). However, when we hold the same network configurations to the higher
1671 standard of the max prediction (see example in Figure 1d), network performance relative to the control

162 networks significantly depends on the choice of activation function parameters.

163 Using the max prediction benchmark, 6 out of 35 cross-family heterogeneous configurations impart an
164 improvement in image classification accuracy to VGG11 that is statistically significant after adjusting for
165 multiple comparisons (Figure 2a, note that this panel excludes networks containing nonlinearities

166 Swish(f=0.1) and PTanh(0=0.01) for visual clarity). We refer to a network that beats its max prediction as
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167 exhibiting a positive response to mixed activation function. The largest positive response is that of
168 Swish(7.5)-PTanh(1), which beats its max prediction by 0.7% on average. The magnitude of this effect
169 corresponds to around 70 additional correct image classifications in CIFAR-10’s test set that neither
170 control network configurations Swish(7.5) or PTanh(1) was able to correctly classify on average. The
171 mean validation accuracy relative to max prediction for cross-family configurations of VGG11 is +0.04%
172 (Figure 2b), and +0.79% relative to the linear prediction (Figure 2c). VGGI11’s cross-family parameter
173 landscape is relatively smooth, with a clear preference for higher Swish g values (Figure 2d). Specifically,
174 we find configurations that mix PTanh(a) with Swish(f) functions using higher g values exhibit the
175 largest increase in accuracy, and the highest final accuracy overall (Figure 2d). However, we see a less
176 clear preference for PTanh’s a values. It is worth noting that as Swish’s f increases, the Swish function
177 has stronger rectification and the activation profile more closely approximates that of ReLU (Figure 1e).

178 These results demonstrate that heterogeneous activation functions can improve image classification.

179 Within-family heterogeneous configurations of VGG11 rarely outperform their max predictions (Figure
180 2b)—none of the 31 such configurations explored beat their max prediction with statistical significance.
181 This demonstrates that the benefit of mixed activation functions may arise from utilizing the diverse

182 characteristics of activation function families, such as saturation and rectification.

183 Sticknet8—a reduced-parameter CNN. Between its filters, biases, and weights, VGG11 contains over
184 120 million trainable parameters. Additionally, since VGG11 has been demonstrated to achieve over 90%
185 testing accuracy on CIFAR-10 (Fu 2019), there remains less than 10% left for potential improvement
186 beyond that as a result of the addition of heterogeneous activation functions. Motivated by the factors
187 above, we reasoned that more significant improvements may be readily observable in a network more
188 constrained than VGGI11. Therefore we set out to investigate the effects of adding mixed cell types to
189 Sticknet8—a CNN which we describe here, based on the VGGI11 architecture, but with approximately
190 1000 times fewer parameters. Sticknet8 joins the first 2 convolutional layers from VGG11 with VGG11°s
191 final 3 fully-connected layers, while significantly reducing the number of parameters per layer. It
192 preserves aspects of VGG11’s architecture including its 3x3 convolutional filters, its repeated groups of
193 convolutional, activation, and pooling layers, and its relative layer-to-layer increases in parameters, but
194 reduces the number of filters in the first convolutional layer from 64 to just 8. These changes result in a
195 reduction from VGGI11’s 128 million parameters down to Sticknet8’s 119,000. Using Sticknet8 as a base
196 architecture, we repeated the experiments performed on VGGI11 with the same set of heterogeneous

197 network configurations.
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198  Figure 2. Mixed activation functions improve image classification performance. (a) Summary of mixed
199  network accuracy relative to max prediction compared to control networks for VGG11 (red) and Sticknet8 (teal)
200  architectures. Only cross-family networks are shown for clarity. Error bars represent a 95% confidence interval
201 across 10 independently trained random initializations. Stars and darker shading indicate significant
202  improvement of mixed network performance over control networks (one-sided t-test, p < 0.05 after
203  Benjamini-Hochberg correction for multiple comparisons). Networks containing nonlinearities Swish(f=0.1)
204  and PTanh(¢=0.01) excluded for visual clarity (present in remaining panels). (b) Comparison of mean peak
205  accuracy relative to max prediction for cross- and within-family mixed network configurations of VGG11 (only
206  significant networks included). (¢) Same as (b) using linear prediction. Notably, both cross- and within-family
207  mixed networks beat their linear predictions on average for both network architectures. (d) Peak accuracy
208  parameter landscapes for within-family Swish networks (left) and cross-family networks (right) for VGG11
209  architecture. (e) Same as (d) using Sticknet8 architecture.

210 Sticknet8 offers more pronounced benefits of mixed activation functions. As expected, the CIFAR-10
211 final validation accuracies for Sticknet8 are generally lower than they are for the less constrained VGG11.
212 The best configurations of Sticknet8 attain peak accuracies around 68% or lower (Figure 2¢). However,
213 the positive responses to the addition of cross-family mixed nonlinearities are both more frequent across
214 explored network configurations (Figure 2a) and more pronounced within each configuration for

215 Sticknet8 than for VGGI11 (Figure 2b), supporting our expectation that improvements would be more
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216 readily observable in a parameter-constrained network that operates in a lower peak accuracy regime of
217 CIFAR-10 than VGG11. Consistent with VGG11, the max prediction is a higher standard than the linear
218 prediction, and cross-family networks outperform within-family networks. Compared to the linear
219 prediction, 42 out of 42 cross-family, and 27 out of 36 within-family configurations outperform the linear
220 prediction. Using the max prediction benchmark, 21 of the 42 cross-family configurations of Sticknet8
227 exhibit a positive response to the introduction of mixed nonlinearities (Figure 2a, note again some
222 network configurations excluded from figure for visual clarity), and 3 out of 36 within-family

223 configurations outperformed their max predictions.

224 While the effects in Sticknet8 hold over a larger landscape of parameter values, the performance is less
225 sharply dependent on specific parameter values (Figure 2e). Interestingly, the best performing parameter
226 combinations differ between Sticknet8 and VGG11, with Sticknet8 achieving the best performance with
227 smaller values of Swish’s f compared to VGGI11 (Figure 2d,e). Notably, several mixed configurations
228 that negatively impacted the performance of VGGI11 are among the top performing configurations of
229 Sticknet8 (Figure 2a): Swish(2)-PTanh(1), Swish(5)-PTanh(0.05), and Swish(2)-PTanh(0.05). These three

230 configurations beat their max predictions by almost 4%.

231 Our results with Sticknet8 demonstrate the computational advantages of mixed activation functions are
232 more pronounced in a more constrained network, with mixed activation configurations beating their max
233 predictions both more frequently and with larger magnitudes. As with VGG11, we observe the largest

234 benefit from mixing across activation function families.

235 Activation functions alter dimensionality of network responses. To gain insight into when and how
236 mixed activation functions improve classification accuracy, we measured the dimensionality of network
237 activations within each layer in response to a stratified subset of 500 CIFAR-10 images. We measured
238 dimensionality using the participation ratio. The participation ratio measures the dimensionality as the
239 square of the sum of the covariance matrix of unit activation eigenvalues over the sum of the squared

240 eigenvalues (Recanatesi, 2019a; Recanatesi, 2019b; Gao, 2017; Rajan, 2010):

241

Dim(C) = —(EZ))\:Q)

242 We adopted the participation ratio because it is simple to compute and interpret.
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Figure 3. Different activation functions change the dimensionality of internal representations. (a) The average
dimensionality of the response to each image category (within category dimensionality) for different classes of
Sticknet8 networks (mean =+ 95% CI). (b) Same as (a) for VGG11 networks. (¢) Dimensionality across layers for an
example Sticknet8 mixed network and its control networks (colors). Each network has 10 random initializations
(lines). (d) Same as (c) for VGG11. (e) Dimensionality across three swish control networks with different parameter
values. (f) Dimensionality across three cross-family mixed networks, varying the swish parameter, and fixing the

tanh parameter.

We find in both Sticknet8 and VGGI1 that changing the activation function dramatically alters the
dimensionality of network activations within each layer (Figure 3a,b). Consistent with previous findings
(Recanatesi, 2019a), in both Sticknet8 and VGG11 we find dimensionality generally increases moving
deeper into the network before decreasing in the final layers (Figure 3a,b). Additionally, in both
architectures, the dimensionality was largely consistent across the 10 initializations of each network
configuration, with consistency increasing in deeper layers (Figure 3c,d). The relationship between
activation functions and dimensionality within each layer appears complex. As a demonstration, Figure 3
shows the dimensionality of several example network configurations. Mixed networks generally
displayed dimensionalities that differed from their control networks, and did not appear to follow a linear
relationship (Figure 3c,d). The dimensionality responds nonlinearly to smooth variation of the activation
function parameter (Figure 3e). In a mixed network configuration smoothly varying the parameter of one

activation function in the presence of a constant second activation function resulted in large changes in
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262 dimensionality (Figure 3f). For example in Figure 3, comparing each Swish() control network in Figure
263 3e with the corresponding mixed network in Figure 3f, we find the layer with the largest dimensionality
264 shifts to a deeper layer. In the case of Sticknet8, cross-family networks and within-family Swish
265 networks—but not within-family PTanh networks—displayed smaller dimensionality throughout layers
266 than control networks on average (Figure 3a). We did not observe this pattern in VGG11 (Figure 3b). This
267 discrepancy may underlie the increased benefit of mixed activation functions in Sticknet8 compared to
268 VGGI11. In summary, we find that modifying activation functions can dramatically alter the internal

269 representations of deep convolutional networks.

270 Discussion

277 Our results show that the addition of heterogeneous activation functions to deep networks can improve
272 image classification accuracy compared to the corresponding control activation functions independently.
273 Mixing activation functions across Swish and PTanh families had a larger benefit than within either
274 family alone. We found larger improvements from mixed activation functions in a more constrained
275 network. The dimensionality of the internal representation varied greatly depending on the choice of

276 activation functions.

277 In this study we instantiated neural cell types by their activation functions, as a simplification of the f-/
278 curves used to classify neurons, typically into “Type 17 and “Type 2” excitability. These types differ in
279 how abruptly their f~/ curves change in response to increase input current. Interestingly, one recent study
280 found that “Type 17 and “Type 2” excitable neurons make spike timing networks more robust to
281 correlated noise (Zeldenrust, 2021). Our findings suggest that diverse f~/ curves may offer feed-forward
282 computational benefits. However, some neurons exhibit nonlinear dynamics in their dendrites that are not
283 effectively summarized by the f-/ curve, underscoring that activation functions are an approximation of
284 single neuron dynamics. Emerging work modeling dendritic computation (Beniaguev, 2019; Gidon, 2020)
285 has parallels to network-in-network approaches in deep learning (Lin, 2013; Manessi, 2019). Beyond
286 dynamical properties, there are many other attributes of neural diversity that are not commonly translated
287 to deep learning, such as cell type specific sensory inputs, excitatory vs inhibitory neurons, and
288 neuromodulation. Our findings join recent studies exploring the computational benefits of neural
289 diversity, such as cell type specific connectivity (Stockl, 2021), synaptic timescales (Burnham, 2021;
290 Perez-Nieves, 2021), and membrane timescales (Perez-Nieves, 2021). Determining the functional role of
297 neural cell types is an active area of research, and many of these cell type attributes may have

292 translational benefit to deep learning applications.
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293 An alternative approach to adding heterogeneity to network activation functions is to parameterize and
294 learn the activation function parameters for each unit in the network. This parametric approach has been
295 used with ReLU (He, 2015; Balaji, 2019), a set of basis functions (Goyal, 202), and piecewise linear
296 functions (Agostinelli, 2015). Learning the activation function parameters has the benefit of increased
297 flexibility at the cost of additional parameters, and choices about the parametric form of the activation
298 functions. We find the largest benefit from mixing across parametric families of activation functions,

299 demonstrating a distinct benefit beyond existing parametric approaches.

300 These findings raise an intriguing question: how do diverse nonlinearities impart improvements in
307 feed-forward processing? One possibility is that mixed activation functions serve as more diverse basis
302 functions within each layer, allowing increasingly complex transformations from one layer to another,
303 increasing the overall expressivity of the network. A related possibility is that mixed activation functions
304 balance the computational roles of sparsification and saturation across transformations of the network’s
305 internal representation of the input space. Future work should further investigate the underlying
306 mechanisms of diverse nonlinearities by examining the internal representations in mixed versus
307 non-mixed networks. The relationship between network performance and internal representations is an

308 active field of study, and mixed activation functions may serve as a useful test case for future work.

309 Our study explored the simplest alternating configurations for mixed activation functions in a 1:1 ratio.
310 Ideally, automatic search techniques could generalize our approach to find optimal combinations of
3117 multiple activation function families across different layers of deep networks. Additionally, we found the
312 highest performing activation functions in VGGI11 and Sticknet8 differed. This highlights the need for
313 further research to understand which activation functions, and in which combinations, lead to the largest
314 improvement in accuracy. Our finding that a more constrained network had a larger benefit from mixed
315 cell types suggests that one may see larger benefits on more complex datasets. In addition, future work
316 should explore the role of mixed activation functions in settings beyond image classification. Deep
317 learning is rapidly being applied to many tasks, and our study is only an initial investigation into the role

318 of diverse activation functions.

319 In summary, heterogeneous cell types are a striking feature of biological circuits, and notably absent in
320 deep artificial neural networks. In this study we instantiated diverse cell types by diverse activation
327 functions. While many possible roles for cell types have been proposed, here we demonstrate their benefit
322 in feed-forward computation in deep convolutional networks. This finding opens a large number of future

323 studies to examine the role of cell types in biological circuits, and as tools in machine learning.
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324 Methods

325 Network. Our base network architecture is VGG11 (Simonyan & Zisserman, 2014). The Pytorch instance
326 of VGGI11 contains 11 composite layers, 8 convolutional layers and 3 fully-connected layers. Each
327 convolutional layer consists of a series of 3x3 convolutional filters, a ReLU activation layer, and a
328 pooling layer that is included following activation layers 1, 2, 4, 6, and 8. Each fully-connected layer
329 consists of a series of units linearly connected to input features with weights and biases, followed by a

330 ReLU activation layer and a dropout layer. VGG11 contains 128 million trainable parameters.

331 Additionally, we developed a smaller network we named Sticknet8. Sticknet8 takes the first two
332 convolutional layers from VGG and grafts them onto VGG’s final 3 fully-connected layers. Additionally,

333 the number of units per layer decreased (Table 1). Sticknet8 contains 119,000 trainable parameters.

334 Pytorch framework. We trained networks using Pytorch (Paszke, 2019). Each network had either the
335 VGGI11 or Sticknet8 architecture with random initial weights. Each network configuration is described by
336 the names of their control nonlinearities and their corresponding parameter values. We initialized 10
337 instances of the base network with random weights, then replaced every ReLU layer with a

338 MixedActivationLayer, alternating the control nonlinearities across each unit in the layer.

339 Training dataset and procedure. We trained our networks for image classification on the CIFAR-10
340 dataset—a 10-class set of 32x32 pixel images with 6000 images per class, broken into 5000 training and
347 1000 validation images (Krizhevsky, 2009). Networks are optimized for top-1 accuracy via cross-entropy
342 loss using the training algorithm Adam, which picks the best learning rate per network parameter
343 (Kingma, 2015). This counteracts effects observed when using stochastic gradient descent where a global
344 learning rate can lead to different observed rates of change in loss depending on the choice of activation
345 function. For each network configuration, 10 random initializations are trained independently to assess
346 statistical significance, using the same optimal learning rate selected for each network configuration.
347 VGGI11 and Sticknet8 networks were trained without using a learning rate scheduler for 500 or 300

348 epochs respectively.
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Layer VGG11 Sticknet8
Convl 64 filters 8 filters
Activation] 64 units 8 units
MaxPooll Kernel=2, stride=2 Kernel=2, stride=2
Conv2 128 filters 16 filters
Activation2 128 units 16 units
MaxPool2 Kernel=2, stride=2 Kernel=2, stride=2
Conv3 256 filters -
Activation3 256 units -

Conv4 256 filters -
Activation4 256 units -
MaxPool4 Kernel=2, stride=2 -

Conv5 512 filters -
Activation5 512 units -

Conv6 512 filters -
Activation6 512 units -
MaxPool6 Kernel=2, stride=2 -

Conv7 512 filters -
Activation7 512 units -

Conv8 512 filters -
Activation8 512 units -
MaxPool8 Kernel=2, stride=2 -

FC9 4096 units 128 units
Activation9 4096 units 128 units
FC10 4096 units 128 units
Activation10 4096 units 128 units
FCl11 4096 units 128 units

349 Table 1. Description of network architectures.
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350  Figure 4. Learning rate vs. cross-entropy loss over a single training epoch. Lower learning rates fail to improve
351  the loss, while higher learning rates cause it to diverge. The best value is somewhere on the negative slope
352  between ~5e-4 and le-2 (Smith 2015). We initialized (Take learning rate, blue dot) each network configuration
353  with 50% of the maximum learning rate (Peak learning rate, green dot).

354 Network training and initial learning rate selection. Given that our networks contain mixtures of
355 activation functions with different input/output scaling properties, it was important to use a training
356 procedure that would optimize individual parameters at different learning rates. However, Adam - our
357 optimizer (Kingma, 2015) - is sensitive to the initial global learning rate specified during instantiation. As
358 with stochastic gradient descent, specifying too low an initial learning rate results in small updates to
359 network parameters that fail to reduce the loss function over many training epochs, while specifying too
360 high a learning rate prevents the optimizer from finding loss minima, leading to divergent behavior. This
361 effect is particularly challenging in our case because a given network configuration can have its own
362 optimum initial learning rate that if used to train other configurations can significantly hamper their
363 learning, making comparisons of final accuracy less meaningful. Therefore we adopted a routine to
364 choose the best initial learning rate per network configuration from a range of values based on loss
365 recorded at each value (Smith 2015). The global learning rate is swept from low to high over the course of
366 a single training epoch, stepping the learning rate and recording the loss after each minibatch. The best
367 initial learning rate is then determined to be the highest value before loss starts to diverge, i.e. the lowest
368 point of the LR-loss profile in Figure 4. This value is averaged across 10 network initializations per
369 configuration, divided by 2 to account for variance in the LR-loss profile across initializations that might
370 cause the routine to select too high a value, and given as input to the Adam optimizer at the start of

371 training.
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372 Max and Linear Predictions. For each mixed network, we define a maximum and linear prediction. For
373 each corresponding control network, we compute the average validation accuracy across the 10 random
374 initiations, and refer to this as the control accuracy. The maximum prediction is the maximum control
375 accuracy across all corresponding control networks. The linear prediction is the weighted average
376 between the corresponding control networks. Unless otherwise specified, our control networks were
377 mixed in a 1:1 ratio, so the weighted average was a simple average. Where presented in the text, 95%
378 confidence intervals were computed by assuming normally distributed variations across the 10 random

379 1initiations.

380 To establish statistical significance for our mixed networks compared to their control cases we utilized a
381 1-sided t-test between control and mixed networks. Pairs of initializations from both groups were
382 randomly selected. We corrected for multiple comparisons using the Benjamini-Hochberg correction to

383 produce a corrected false-positive rate of p=0.05.

384 References

385 Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P. (2015) Learning activation functions to improve deep
386 neural networks. arXiv:1412.6830v3 [cs.NE]

387 Balaji, S., Kavya, T., Sebastian, N. (2019) Learn-able parameter guided Activation Functions
388 arXiv:1912.10752 [cs.LG]

389 Beniaguev, D., Segev, 1., London, M. (2020) Single Cortical Neurons as Deep Artificial Neural Networks.
390 bioRxiv 613141; doi: https://doi.org/10.1101/613141

391 Burnham, D., Shea-Brown, E., & Mihalas, S. (2021) Learning to Predict in Networks with Heterogeneous
392 and Dynamic Synapses bioRxiv 2021.05.18.444107; doi: https://doi.org/10.1101/2021.05.18.444107

393 Cornford J., Kalajdzievski, D., Leite, M., Lamarquette, A., Kullmann, DM., Richards, B. (2020).
394 Learning to live with Dale’s principle: ANNs with separate excitatory and inhibitory units. bioRxiv
395 2020.11.02.364968; doi: https://doi.org/10.1101/2020.11.02.364968

396 Dimsdale-Zucker, H. R., and Ranganath, C. "Representational similarity analyses: a practical guide for
397 functional MRI applications." Handbook of Behavioral Neuroscience. Vol. 28. Elsevier, 2018. 509-525.

398 Duarte R, Morrison A (2019) Leveraging heterogeneity for neural computation with fading memory in
399 layer 2/3 cortical microcircuits. PLOS Computational Biology 15(4): e1006781.
400 https://doi.org/10.1371/journal.pcbi.1006781

4071 Fu, CY. https://github.com/chengyangfu/pytorch-vgg-cifar10, 2019.


https://arxiv.org/search/cs?searchtype=author&query=Balaji%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Kavya%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Sebastian%2C+N
https://arxiv.org/abs/1912.10752
https://doi.org/10.1101/2021.05.18.444107
https://doi.org/10.1101/2020.11.02.364968
https://doi.org/10.1371/journal.pcbi.1006781
https://doi.org/10.1101/2021.06.21.449346

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449346; this version posted June 22, 2021. The copyright holder for this preprint

402
403
404

405
406
407

408
409
410

411
412

413
414
415
416
417
418
419
420
421
422
423
424
425

426
427

428

429

430
431

432
433

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Peiran Gao, Eric Trautmann, Byron Yu, Gopal Santhanam, Stephen Ryu, Krishna Shenoy, Surya Ganguli.
(2017) A theory of multineuronal dimensionality, dynamics and measurement. bioRxiv 214262; doi:
https://doi.org/10.1101/214262

Gidon, A., Zolnik, TA., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., Holtkamp, M., Vida, L.,
Larkum, ME. (2020) Dendritic action potentials and computation in human layer 2/3 cortical neurons.
SCIENCE 03 JAN 2020 : 83-87

Gjorgjieva, J., Drion, G. & Marder, E. Computational implications of biophysical diversity and multiple
timescales in neurons and synapses for circuit performance. Current Opinion in Neurobiology 37, 44-52
(2016).

Goodfellow, 1., Bengio, Y., Courville, A. Deep Learning, MIT Press, 2016.
http://www.deeplearningbook.org

Gouwens NW, Sorensen SA, Berg J, Lee C, Jarsky T, Ting J, Sunkin SM, Feng D, Anastassiou CA,
Barkan E, Bickley K, Blesie N, Braun T, Brouner K, Budzillo A, Caldejon S, Casper T, Castelli D, Chong
P, Crichton K, Cuhaciyan C, Daigle TL, Dalley R, Dee N, Desta T, Ding SL, Dingman S, Doperalski A,
Dotson N, Egdorf T, Fisher M, de Frates RA, Garren E, Garwood M, Gary A, Gaudreault N, Godfrey K,
Gorham M, Gu H, Habel C, Hadley K, Harrington J, Harris JA, Henry A, Hill D, Josephsen S, Kebede S,
Kim L, Kroll M, Lee B, Lemon T, Link KE, Liu X, Long B, Mann R, McGraw M, Mihalas S, Mukora A,
Murphy GJ, Ng L, Ngo K, Nguyen TN, Nicovich PR, Oldre A, Park D, Parry S, Perkins J, Potekhina L,
Reid D, Robertson M, Sandman D, Schroedter M, Slaughterbeck C, Soler-Llavina G, Sulc J, Szafer A,
Tasic B, Taskin N, Teeter C, Thatra N, Tung H, Wakeman W, Williams G, Young R, Zhou Z, Farrell C,
Peng H, Hawrylycz MJ, Lein E, Ng L, Arkhipov A, Bernard A, Phillips JW, Zeng H, Koch C.
Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nat
Neurosci. 2019 Jul;22(7):1182-1195. doi: 10.1038/s41593-019-0417-0. Epub 2019 Jun 17. PMID:
31209381; PMCID: PMC8078853.

Gouwens, NW., et al. (2020). Integrated Morphoelectric and Transcriptomic Classification of Cortical
GABAergic Cells. Cell. 183(4), 935-953, https://doi.org/10.1016/j.cell.2020.09.057

Goyal, M., Goyal, R., Lall, B. (2020) Learning Activation Functions: A new paradigm for understanding
Neural Networks. arXiv:1906.09529 [cs.LG]

He, K., Zhang, X., Ren, S., Sun, J. (2015) Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification. arXiv:1502.01852v1 [cs.CV]

Hubel, D. H, & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. The
Journal of Physiology, 148(3), 574-591.


https://science.sciencemag.org/content/367/6473/83/suppl/DC1
https://doi.org/10.1016/j.cell.2020.09.057
https://doi.org/10.1101/2021.06.21.449346

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449346; this version posted June 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

434 Hubel, D. H, & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in
435 the cat's visual cortex. The Journal of Physiology, 160(1), 106-154.

436 Izhikevich, EM., (2007) Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting,
437 The MIT Press, DOI: https://doi.org/10.7551/mitpress/2526.001.0001

438 Kingma, D., & Ba, J. Adam: A Method for Stochastic Optimization, ICLR 2015.

439 Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - connecting the
440 branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4.

4471 Krizhevsky, Alex. (2009). Learning Multiple Layers of Features from Tiny Images. University of Toronto.

442 LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature (London), 521(7553), 436-444.

443 Lin, M., Chen, Q., Yan, S. (2013). Network In Network. arXiv:1312.4400v3 [cs.NE]

444 Llinas RR. The contribution of Santiago Ramoén y Cajal to functional neuroscience. Nat Rev Neurosci.
445 2003 Jan;4(1):77-80. doi: 10.1038/nrn1011. PMID: 12511864.

446 Marblestone, AH., Wayne, G., Kording, KP. (2016) Toward an Integration of Deep Learning and
447 Neuroscience. Frontiers in Computational Neuroscience. 10, 94, 1662-5188.
448 DOI=10.3389/fncom.2016.00094

449 Manessi, F., Rozza., A. (2019) Learning combinations of activation functions. arXiv:1801.09403v3
450 [cs.LG]

457 Padmanabhan, K., Urban, N. (2010) Intrinsic biophysical diversity decorrelates neuronal firing while
452 increasing information content. Nat Neurosci 13, 1276—1282. https://doi.org/10.1038/mn.2630

453 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
454 Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,

455 Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019) PyTorch: An Imperative Style, High-Performance
456 Deep Learning Library. Advances in Neural Information Processing Systems. 32

457 Perez-Nieves,N., Leung, VCH., Dragotti, PL., Goodman, DFM., (2021) Neural heterogeneity promotes
458 robust learning. https://www.biorxiv.org/content/10.1101/2020.12.18.423468v3

459 Ramachandran, P., Zoph, B., & Quoc VL. (2017). Searching for Activation Functions.
460 https://arxiv.org/abs/1710.05941



https://doi.org/10.7551/mitpress/2526.001.0001
https://doi.org/10.1038/nn.2630
https://arxiv.org/abs/1710.05941
https://doi.org/10.1101/2021.06.21.449346

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449346; this version posted June 22, 2021. The copyright holder for this preprint

461
462

463
464

465
466
467

468
469

470
471

472
473

474
475

476
477
478

479
480

481

482

483

484
485

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Rajan, K., Abbott, L., & Sompolinsky, H. (2010). Inferring Stimulus Selectivity from the Spatial
Structure of Neural Network Dynamics. Advances in Neural Information Processing Systems 23

Recanatesi, S., Farrell, M., Advani, M., Moore, T., Lajoie, G., & Shea-Brown, E. (2019a). Dimensionality
compression and expansion in Deep Neural Networks. https://arxiv.org/abs/1906.00443

Recanatesi, S., Ocker, G. K., Buice, M. A., & Shea-Brown, E. (2019b). Dimensionality in recurrent
spiking networks: Global trends in activity and local origins in connectivity. PLoS computational biology,
15(7), €1006446. https://doi.org/10.1371/journal.pcbi. 1006446

Simonyan, Karen, & Zisserman, Andrew. (2014). Very Deep Convolutional Networks for Large-Scale
Image Recognition. https://arxiv.org/abs/1409.1556

Smith, LN. (2017) Cyclical Learning Rates for Training Neural Networks. [EEE Winter Conference on
Applications of Computer Vision (WACYV), pp. 464-472, doi: 10.1109/WACV.2017.58.

Stockl, C., Lang, D., Maass, W. (2021) Probabilistic skeletons endow brain-like neural networks with
innate computing capabilities. https://www.biorxiv.org/content/10.1101/2021.05.18.444689v1

Tasic, B., Yao, Z., Graybuck, L.T. et al. (2018) Shared and distinct transcriptomic cell types across
neocortical areas. Nature 563, 72—78 . https://doi.org/10.1038/s41586-018-0654-5

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., Szafer, A., Cain, N., Zeng, H.,
Hawrylycz, M., Koch, C., & Mihalas, S. (2018) Generalized leaky integrate-and-fire models classify
multiple neuron types. Nature communications, 9(1):709—709. ISSN 2041-1723.

Zeldenrust F, Gutkin B, Denéve S (2021) Efficient and robust coding in heterogeneous recurrent
networks. PLOS Computational Biology 17(4): €e1008673. https://doi.org/10.1371/journal.pcbi.1008673

Zoph, B., & Le, Q. (2016). Neural Architecture Search with Reinforcement Learning.
https://arxiv.org/abs/1611.01578
Appendix

The full code repository, containing all training, analysis, and visualization code can be found here:

https://github.com/briardoty/allen-inst-cell-types
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