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 11 

SUMMARY 12 

Many motor skills are learned by comparing ongoing behavior to internal performance 13 

benchmarks. Dopamine neurons encode performance error in behavioral paradigms where 14 

error is externally induced, but it remains unknown if dopamine also signals the quality of 15 

natural performance fluctuations. Here we recorded dopamine neurons in singing birds and 16 

examined how spontaneous dopamine spiking activity correlated with natural fluctuations in 17 

ongoing song. Antidromically identified basal ganglia-projecting dopamine neurons correlated 18 

with recent, and not future, song variations, consistent with a role in evaluation, not 19 

production. Furthermore, dopamine spiking was suppressed following the production of 20 

outlying vocal variations, consistent with a role for active song maintenance. These data show 21 
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for the first time that spontaneous dopamine spiking can evaluate natural behavioral 22 

fluctuations unperturbed by experimental events such as cues or rewards. 23 

 24 

KEYWORDS 25 

Dopamine, Birdsong, Gaussian Process Model, Generalized Linear Model, Performance 26 

Prediction Error, Natural Behavior, Motor Skill Learning, Skill Maintenance, Basal Ganglia, 27 

Ventral Tegmental Area 28 

 29 

INTRODUCTION 30 

Dopamine (DA) is associated with fluctuations in future movements as well as the outcomes of 31 

past ones. During spontaneous behavior, DA activity can be phasically activated before a 32 

movement (da Silva et al., 2018; Hamilos et al., 2020), or can ramp as an animal approaches 33 

reward (Hamid et al., 2016; Howe et al., 2013). DA neurons can also signal a reward prediction 34 

error (RPE) during reward seeking, where phasic signals represent the value of a current 35 

outcome relative to previous outcomes (Schultz et al., 1997). It remains poorly understood how 36 

spontaneous DA activity relates to natural fluctuations in behavior that are independent of 37 

experimentally induced rewards or perturbations.  38 

Zebra finches provide a tractable model to study the role of DA in natural behavior. 39 

First, they sing with a significant amount of trial-to-trial variability, but the overall stereotypy of 40 

the song allows renditions to be accurately compared. Second, they have a discrete neural 41 

circuit (the song system) that includes a DA-basal ganglia (BG) loop (Figures 1A and 1B) that is 42 

necessary for song learning and maintenance (Brainard and Doupe, 2000; Hisey et al., 2018; 43 
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Hoffmann et al., 2016; Xiao et al., 2018). Third, BG projecting DA neurons signal performance 44 

prediction error (PPE) during singing: they exhibit pauses following worse-than-predicted 45 

outcomes caused by distorted auditory feedback (DAF), and they exhibit phasic bursts following 46 

better-than-predicted outcomes when predicted distortions do not occur (Figures 1A-1D) 47 

(Gadagkar et al., 2016). Yet one limitation of this study was that song quality was controlled 48 

with an external sound (DAF, Figure 1C), so it remains unclear if the DA system is simply using 49 

song timing to build expectations about an external event (DAF), or if it also evaluates the 50 

quality of natural fluctuations (Figure 1E), which would be necessary for natural song learning. 51 

Furthermore, this experimental paradigm did not test if DA activity was associated with 52 

upcoming syllables, consistent with a premotor signal.  53 

To test DA’s role in natural behavior, we recorded from DA neurons in the ventral 54 

tegmental area (VTA, Figure 1B), and examined how spiking activity correlated with natural 55 

song fluctuations (Figure 1E). First, if DA activity following externally distorted and undistorted 56 

song (Figure 1D) truly reflects a function of the DA system in performance evaluation, then DA 57 

activity should correlate with recent song fluctuations (Figure 1E). Second, DAF-associated error 58 

signaling was previously only observed in a small subclass of ‘VTAerror’ neurons, most of which 59 

projected to Area X, the BG nucleus of the song system. ‘VTAother’ neurons were defined by the 60 

absence of an error signal during singing. We hypothesize that the VTAerror population will carry 61 

a performance error signal for natural song (Figure 1E), while the VTAother population will not. 62 

Thus, we ask in this analysis: do VTA neuron activity patterns relate to fluctuations in natural 63 

song? If so, what is the structure of these relationships, and do they relate to a performance 64 

evaluation framework, a premotor framework, or both?  65 
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To answer these questions, we first parameterized natural song into a low dimensional 66 

set of time-varying song features. We then agnostically fit the relationship between rendition-67 

to-rendition variations in song features and spike counts at local time-steps in song across a 68 

range of song segment-spike window latencies and identified if and when song feature 69 

variations predicted spike counts. Finally, we characterized both the timing and the form of 70 

these predictive fits. We find that the activity of the VTAerror, but not the VTAother, neuronal 71 

population encodes fluctuations in natural song in a manner consistent with a performance 72 

evaluation signal. These results show that basal ganglia-projecting DA neurons may provide 73 

continuous evaluation of natural motor performance independent of external rewards or 74 

perturbations.  75 

 76 

RESULTS 77 

 78 

A Gaussian Process Model Approach Reveals Song-Spike Relationships 79 

We sought to identify how VTA spiking varied with natural fluctuations in song syllables. To 80 

identify relationships between natural song fluctuations and VTA spiking, we chose an eight-81 

dimensional, time-varying representation of song based on established song parameterizations 82 

(Figure 2A; see STAR Methods). For each neuron, we identified song syllables and binned both 83 

song feature values and spike counts in sliding windows to search for relationships between 84 

song fluctuations and spike counts at different latencies (Figure 2B; see STAR methods). We 85 

combined all eight song features and binned spike counts into a single multi-dimensional 86 

Gaussian Process (GP) regression model (two features shown for illustration) to quantify 87 
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whether song feature fluctuations predicted spike counts (Figures 2C and S1-S3; see STAR 88 

Methods). This strategy flexibly identifies the most relevant dimensions of song variation within 89 

a single model. Specifically, we computed an r2 value for each model fit using leave-one-out 90 

cross validation to assess how well variations in song features predicted spike counts (Figure 91 

2C). Values of r2>0 indicates that song feature variations across renditions can predict spike 92 

counts; the larger the r2 value, the more predictive the song-spike relationship in the model. 93 

Finally, we fit the full model to many song-spike latencies and thus built a matrix of r2 values for 94 

each neuron’s response to song fluctuations, with each r2 value in the matrix representing one 95 

full model fit (one feature shown for illustration) between a song window-spike window pair 96 

(Figure 2D).  97 

 98 

Timing of Song-Spike Relationships for VTAerror Neurons is Consistent with an Evaluative 99 

Process 100 

Using the GP model approach described above, we asked if significant relationships between 101 

natural song fluctuations and VTA neuron spiking exist, and if so, at what song-spike latencies 102 

they occur. If VTA spiking is predictive of upcoming syllable fluctuations in a premotor fashion, 103 

then significant relationships would be observed at negative lags. Alternatively, if VTA spiking is 104 

playing an evaluative function, then variations in spike counts should follow variations in 105 

syllable acoustic structure, and relationships should be observed at positive lags. Based on past 106 

work (Gadagkar et al., 2016), an evaluation signal is predicted to occur at a positive lag of ~50 107 

ms with a duration range of 0 to 150 ms. Figure 3A shows an example VTAerror neuron’s song-108 

spike relationship (the r2 matrix) for a single syllable. The y-axis is the midpoint of each song 109 
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window (song window width = 35 ms) aligned to syllable onset (t=0). The x-axis is the latency, 110 

defined as the time between the song window midpoint and the spike window midpoint (spike 111 

window width = 100 ms). Colored pixels in the r2 matrix indicate that song feature fluctuations 112 

predict spike counts (r2 > 0); greyscale pixels indicate that song feature fluctuations do not 113 

predict spike counts (r2 <= 0). The pink box indicates the song-spike latencies (0-150 ms) where 114 

we expect to see evaluation-like relationships based on the DAF experimental results (Figure 115 

1D). We assessed the significance of finding predictive fits by shuffling entire spike trains 116 

relative to song renditions and refitting our model across all latencies and song windows 117 

(Figures 3A bottom and S4; see STAR Methods). This population method of shuffling the data 118 

preserves the underlying temporal correlation structure of song and spiking while randomizing 119 

the song-spike relationship and allowed us to assess the significance of the entire set of model 120 

fits and account for multiple comparisons (see STAR Methods). The bottom matrix in Figure 3A 121 

shows the r2 values from one such randomized shuffle of the same neuron’s activity patterns. 122 

Positive r2 values were found to be less frequent in the shuffled data (one-sided z-test: p < 123 

0.01).  124 

We then analyzed the temporal relationship between song features and spiking by 125 

comparing the latency distribution for all song window-spike window pairs within the r2 matrix 126 

in which song features predicted spike counts (r2 > 0) to the latency distribution for pairs 127 

without predictive relationships (r2 <= 0) (Figure 3B). The latencies of the predictive fits were 128 

clustered within the expected error evaluation range (0-150 ms) (Figure 3B). Figure 3C shows 129 

the result of the same analysis performed across all the VTAerror neurons in our dataset (N=19). 130 

In Figure 3C, the blue line indicates the song-spike latency distribution for which song 131 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449657doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449657


7 
 

fluctuations predict spike counts (r2 > 0) while the black line and grey shading are the mean and 132 

standard deviation of the same latency distributions across all randomized population shuffles. 133 

The true data showed a large peak within the expected PPE latency range (3.74 standard 134 

deviations from the mean, one-sided z-test: p < 0.01; see STAR Methods). We found that song 135 

fluctuations are most predictive of spike counts 0-100 ms after the song fluctuation occurs, 136 

consistent with a PPE-like signal based on our previous DAF experiments (Figure 1D). In 137 

addition, across the population of VTAerror neurons there were significantly more predictive fits 138 

within the PPE latency window than expected by chance (p <= 0.01; see STAR Methods). Thus, 139 

the timing and frequency of the predictive song-spike relationships was remarkably consistent 140 

with a PPE-like response to natural song variations.  141 

We next performed the identical analysis on a population of VTAother neurons (N=23), 142 

which did not show an error-like response in previous DAF experiments (Figure 1D). The 143 

number of predictive song-spike relationships from this population was also significantly larger 144 

than expected by chance (bootstrap test, p <= 0.01, see STAR Methods). However, unlike the 145 

VTAerror neurons, the predictive relationships from this population did not cluster within the PPE 146 

latency range, nor did the variance of the distribution significantly deviate from the randomized 147 

latency distributions (p=0.21; Figure 3D; see STAR Methods). Thus, consistent with results from 148 

the DAF experiments (Figure 1D), only the responses of VTAerror, and not the non-error 149 

responsive VTAother, neuron population were predicted by natural song fluctuations within the 150 

expected PPE latency range with significantly increased frequency.  The same neurons that 151 

exhibited error responses to the DAF sound exhibited significant relationships with natural 152 
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syllable fluctuations. Remarkably, both the DAF-induced error and the natural fluctuations were 153 

at a similar latency with respect to song.  154 

 155 

The Form of the Predominant Song-Spike Relationship for VTAerror Neurons is Consistent with 156 

Song Maintenance  157 

The hypothesis that VTAerror neurons evaluate natural song fluctuations led to further 158 

predictions about the forms of these song-spike relationships. If a bird is trying to maintain the 159 

acoustic structure of a syllable, then typical variations should be followed by more spikes and 160 

rare, outlying syllable variations should be followed by fewer spikes (Figure 4A, top left). 161 

Alternatively, if the bird is trying to modify a syllable, e.g. increase its pitch, then the 162 

relationship between syllable acoustic structure and spike should be directional: spike counts 163 

should peak at whatever shifted variant to which the bird aspires but is not yet consistently 164 

producing (Figure 4A, right panels). We did not expect PPE-like signals to have multiple maxima 165 

in a disruptive fit: we assumed there is a single ‘best’ version of the song at each time-step 166 

(Figure 4A, bottom left).   167 

To test these possible outcomes, we characterized tuning curve shapes of song-spike 168 

relationships. For this analysis, we focused our attention on the subset of GP model fits that 169 

were predictive (r2 > 0). Within this subset, we further selected single-feature fits that were also 170 

predictive (r2 > 0 for the 1D feature fit).  We selected this subset of song-spike relationships 171 

because we are interested only in the tuning curves that might actually carry information about 172 

song. We re-fit all such song-spike relationships with a generalized linear model (GLM) using 173 

both linear (l-GLM) and quadratic (q-GLM) features (Figure 4B; see STAR Methods). We chose 174 
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these models because the parameters can be used to directly quantify aspects of the tuning 175 

curve shapes. If the song-spike fit has a single peak, the spiking response is stabilizing, and the 176 

quadratic coefficient of the q-GLM is negative (Figure 4A, top left). If the song-spike fit has two 177 

peaks, the spiking response is disruptive, and the quadratic coefficient of the q-GLM is positive 178 

(Figure 4A, bottom left).  If the song-spike fit is monotonic, the spiking response is directional, 179 

and the l-GLM (with only linear features) is the more appropriate model (Figure 4A, right 180 

panels). Figure 4C shows examples of predictive relationships between individual song features 181 

and spike counts along with all model fits (GP, q-GLM, and l-GLM). Each point on these plots 182 

represents the song feature value and the spike count for a single rendition. Specific models 183 

were better fits for some distributions than others. For example, in panel 4 (Figure 4C, fourth 184 

panel from left), the q-GLM produced the same model fit as the l-GLM because the quadratic 185 

term added no improvement to the fit, whereas in panel 3 (Figure 4C, third panel from left), the 186 

quadratic term was necessary to accurately follow the spiking response and thus the q-GLM 187 

resulted in a better fit than the l-GLM.  188 

When the spiking response is either clearly stabilizing or disruptive, the quadratic 189 

coefficient of the q-GLM distinguishes between these two response types making the q-GLM 190 

the better model choice. We used the Akaike Information Criterion (DAIC) to compare the 191 

relative success of the q-GLM and the l-GLM (see STAR Methods). DAIC > 0 indicates that the 192 

quadratic model outperforms the linear model, considering both the likelihood of the model fit 193 

and the complexity of the model used. DAIC = -2 indicates the quadratic model provides no 194 

benefit over the linear model. The larger the DAIC, the better the q-GLM fit relative to the l-195 

GLM. In Figure 4D, each point represents a fit to a single song feature with an r2>0 within a 196 
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multi-dimensional model fit with an r2>0 for the population of VTAerror neurons within the 197 

expected PPE latency range. We found a greater fraction (0.78) of q-GLM fits with negative 198 

quadratic coefficients, which indicates more stabilizing tuning curves than disruptive tuning 199 

curves (Figure 4D). Furthermore, when the quadratic model outperformed the linear model, 200 

the fraction of stabilizing fits also increased (Figure 4E). Thus, the predictive fits from the GP 201 

model had significantly more stabilizing tuning curves than disruptive when their shape was 202 

better characterized as quadratic rather than linear, as we expect for a PPE signal with a single 203 

best outcome (2-tailed z-test: p < 0.02). This finding is consistent with our hypothesis that a PPE 204 

signal should respond most strongly to a single best performance of song. The DAIC measure 205 

also allowed us to examine the fraction of tuning curves that are better fit by a linear versus 206 

quadratic model. The VTAerror population did not differ from chance in this fraction (fraction fits 207 

with DAIC > 0 = 0.43; 2-tailed z-test, p = 0.34), consistent with a PPE signal with both directional 208 

and stabilizing responses depending on the current level of song error.  209 

 210 

DISCUSSION  211 

Value judgements in the brain are necessary to drive appropriate changes in behavior during 212 

learning. Using experimentally constrained tasks with external rewards, previous studies have 213 

found that DA neurons in VTA can encode a key component of value judgement: the mismatch 214 

between expected and actual reward outcomes, the reward prediction error (Schultz et al., 215 

1997). However, extending these findings to natural behavior and intrinsic reward has been a 216 

challenge. Here, we made use of a novel opportunity to use an experimental context to 217 

partition songbird VTA neurons into error and non-error classes and analyze their spiking 218 
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responses in the context of a natural behavior (Gadagkar et al., 2016). We compared natural 219 

song fluctuations at a local, within-syllable scale to variations in spike counts of VTA neurons. 220 

We developed a Gaussian Process regression analysis to quantify the non-stationary spiking 221 

response to variations in performance at different points in song and with different temporal 222 

relationships to song. We found evidence that VTA DA neurons’ activity patterns correlate with 223 

variations in natural song in a manner consistent with performance evaluation: both the timing 224 

and tuning properties of the DA response was consistent with a PPE-like response. This finding 225 

corroborates and extends complementary discoveries of RPE signals emerging from mammalian 226 

DA neurons in VTA in experimentally imposed tasks. We did not find significant temporal 227 

relationships between DA and song fluctuations consistent with a premotor signal as has been 228 

observed in previous studies of DA (Barter et al., 2015; Engelhard et al., 2019). Our results are 229 

the first direct evidence we are aware of that DA neurons in VTA respond to fluctuations in 230 

natural behavior in a manner consistent with evaluation.  231 

 Two important predictions from these PPE-like signals we find in DA VTA neurons is 232 

that, one, future song renditions will shift towards song variations which correlate with the 233 

peak response in the DA neurons and that, two, this shift will be accompanied by a decrease in 234 

the PPE peak response. We could not address these predictions here because we analyzed 235 

single recording sessions of limited duration. This will be an important direction for future work 236 

and will help disambiguate the role of the VTA DA responses from other possible relationships 237 

to song. We chose a pre-defined set of song features (N=8), which have been shown to 238 

represent biologically relevant song variations in previous studies, because we focused on 239 

single sessions with limited data. Future work could apply more flexible, non-parametric 240 
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dimensionality reduction methods using more song renditions to better identify VTA’s 241 

relationship to song features that are most modulated by the bird at different points in song 242 

(Goffinet et al., 2021; Kollmorgen et al., 2020). 243 

While, as a population, the non-error VTAother neuron activity did not relate to song 244 

fluctuations in a manner consistent with a PPE signal, many neurons exhibited correlated 245 

relationships to song (Chen et al., 2021). These findings are consistent with previous studies in 246 

mammals which found that both DA and non-DA neurons in VTA contribute to an RPE 247 

calculation and that elements of the RPE signal are computed, in part, locally within VTA (Cohen 248 

et al., 2012; Dobi et al., 2010; Ju Tian, 2016; Wood et al., 2017). Correlations with song 249 

variations in this population could represent components of the PPE calculation. 250 

This project uses the structure of an experimentally grounded characterization of 251 

individual neurons’ response to song-triggered, distorted auditory feedback to analyze the 252 

same neurons during natural behavior. The connection to an existing experiment (Gadagkar et 253 

al., 2016) as well as to a Reinforcement Learning framework (Sutton and Barto, 1998) anchors 254 

our interpretations of natural behavior in a constrained laboratory paradigm and theory. The 255 

unusually high stereotypy of the natural behavior we consider, zebra finch song, allows 256 

reasonable inferences to be made both in the experimental and natural context about the 257 

behavior of the bird and a reasonable way to characterize and align a complex, natural 258 

behavior. We found a parallel relationship, including a striking temporal correspondence, 259 

between the VTAerror neuron activity in experimental and natural contexts that corroborates the 260 

experimental finding that VTAerror neurons encode time-step specific performance prediction 261 

errors in song. Our analysis of natural song addresses the critique that the DAF experimental 262 
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paradigm is aversive rather than perturbative and thus qualitatively different from natural song 263 

evaluation. A frequent debate in neuroscience is whether artificial behavioral paradigms serve 264 

as true building blocks for understanding neural activity in complex, freely behaving contexts, 265 

or whether they represent a different, overly-simplified context that will not extrapolate to 266 

natural behavior. This experimentally guided study of natural behavior is a fruitful direction that 267 

permits the control of experimental contexts and the complexity of natural contexts to interact 268 

and build upon one another. 269 
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 285 

Figure 1. Experimental Identification of Performance Error in VTA DA Neurons in Singing Birds  286 

(A) Evaluation of auditory feedback during singing is thought to produce an error signal for song 287 

learning.  288 

(B)  Basal ganglia (Area X)-projecting DA neurons from VTA were antidromically identified.  289 

(C) Example of DAF. The target syllable was randomly distorted across motifs. All other syllables 290 

(labeled ‘Natural’) were left undisturbed.  291 

(D) Left, top to bottom: example spectrograms of renditions with the target syllable undistorted 292 

(enclosed in blue box) and distorted (enclosed in red box); rate histogram of distorted and 293 

undistorted renditions (the horizontal bar indicates significant deviations from baseline (p < 294 

0.05, z-test; see STAR Methods)); Right: normalized response to target syllable in VTAerror and 295 

VTAother neurons (mean +- SEM, see STAR Methods).  296 
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(E) The experimental results suggest a hypothesis that fluctuations in natural song should also 297 

result in VTAerror responses.  298 
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Figure 2. A Gaussian Process Model Approach Reveals Song-Spike Relationships  301 

(A) Natural song was parameterized into eight time-varying song features.   302 

(B) Schematic of fitting song fluctuations to spike counts within specific time windows. Local 303 

feature averages (one feature shown for illustration) were used to predict local spike counts 304 

using a GP model.  305 

(C) Schematic of fitting a single, multivariate model using multiple song features. The 306 

multidimensional model takes a weighted average of the model predictions from every 307 

combination of eight song features (two shown here for illustration). The model’s goodness of 308 

fit was quantified by the cross-validated r2 (see STAR Methods).  309 

(D) The modeling technique shown in (B) and (C) was extended across a range of song windows 310 

and song-spike latencies, thus building a matrix of r2 values. The top panels show a sliding 311 

window along the song (single feature shown for illustration). The bottom panels show the 312 

time-aligned spiking activity across renditions in a raster plot. Each entry in the r2 matrix 313 

(middle panels) represents the fit between one song window and one spike window, shown 314 

here connected with red lines.  315 
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 316 

Figure 3. Timing of Song-Spike Relationships for VTAerror Neurons Suggests an Evaluative 317 

Process  318 

(A) Spectrogram of example syllable (top left). Heat map of r2 values for fitted relationships 319 

between local song feature averages and binned spike counts (top right). r2 > 0 indicates a 320 

predictive relationship. The pink box indicates the region where the latency matches the 321 

hypothesized response for a PPE, 0-150 ms. The lower heat map shows an r2 matrix for a 322 

shuffled version of the data (see STAR Methods).  323 

(B) Histogram of latencies for predictive fits shown in (A).  324 
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(C) Latency distribution of predictive fits over all VTAerror neurons (N=19) showed a significant 325 

peak in the number of responses in the expected PPE time window (** indicates p < 0.01, see 326 

STAR Methods).  327 

(D) Same as in (C), but for the VTAother neuron population (N=23).  328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 



20 
 

 347 

Figure 4. The Form of the Predominant Song-Spike Relationship for VTAerror neurons is 348 

Consistent with Song Maintenance  349 

(A) The form of a song-spike relationship determines how the song is being reinforced. a and b 350 

correspond to the quadratic and linear coefficients in the GLM shown in (B).   351 

(B) Schematic of the nested GLM fitting process to quantify tuning curve shape for VTAerror 352 

neuron activity to natural song fluctuations.  353 
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(C) Example tuning curves obtained with the GP model, l-GLM, and q-GLM between single song 354 

features and spike counts for a selection of song-spike model fits. Each point on each plot 355 

represents a single rendition. Pink shapes denote fit locations marked in (D). 356 

(D) The quadratic coefficient for all q-GLM model fits to predictive song-spike relationships 357 

(defined within the GP model) as a function of ∆AIC values in the GLM model comparison within 358 

the PPE latency range. Pink shapes denote fits shown in (C). 359 

(E) Fraction of stabilizing fits (negative quadratic coefficient) for all fits better described as 360 

quadratic than linear (∆AIC > 0) compared to shuffled population fractions. The blue point is the 361 

data and each value in the gray histogram is a single fraction from an independent population 362 

shuffle (see STAR Methods). The data showed a greater fraction of stabilizing fits than expected 363 

by chance (p-value < 0.01). Inset: same distribution but now shown for both the binned ∆AIC > 364 

0 group and ∆𝐴𝐼𝐶	 ∈ [−2, 	0]. The blue point is the true fraction and gray points are fractions 365 

from shuffled populations (see STAR Methods). 366 
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STAR METHODS 376 

 377 

RESOURCE AVAILABILITY 378 

 379 

Lead Contact 380 

Further information and requests for resources should be directed to and will be fulfilled by 381 

Vikram Gadagkar (vikram.gadagkar@columbia.edu). 382 

 383 

Materials Availability 384 

This study did not generate new unique reagents.  385 

 386 

Data and Code Availability 387 

The data and code generated during this study are available at (to be created code repository).  388 

 389 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 390 

Subjects were 26 adult male zebra finches 74-300 days old singing undirected song. All 391 

experiments were carried out in accordance with NIH guidelines and were approved by the 392 

Cornell Institutional Animal Care and Use Committee. During implant surgeries, each bird was 393 

anesthetized with isoflurane and a bipolar stimulation electrode was implanted into Area X at 394 

established coordinates (+5.6A, +1.5L relative to lambda and 2.65 ventral relative to pial 395 

surface; head angle 20 degrees). Intraoperatively in each bird, antidromic methods were used 396 

to identify the precise part of VTA containing VTAx neurons. Next, custom made, plastic printed 397 
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microdrives carrying an accelerometer, linear actuator, and homemade electrode arrays (5 398 

electrodes, 3-5 MOhms, microprobes.com) were implanted into this region.  399 

 400 

METHOD DETAILS 401 

 402 

Syllable-targeted distorted auditory feedback  403 

Detailed description of all aspects of the distorted auditory feedback (DAF) experiments is 404 

described elsewhere (Gadagkar et al., 2016). Descriptions of experimental details relevant to 405 

this study are presented here.  Postoperative birds were placed in a sound isolation chamber 406 

equipped with a microphone and two speakers which provided DAF. To implement targeted 407 

DAF, the microphone signal was analyzed every 2.5 ms using custom Labview software. Specific 408 

syllables were targeted either by detecting a unique spectral feature in the previous syllable 409 

(using Butterworth band-pass filters) or by detecting a unique inter-onset interval (onset time 410 

of previous syllable to onset time of target syllable) using the sound amplitude as previously 411 

described (Ali et al., 2013; Hamaguchi et al., 2014; Tumer and Brainard, 2007). In both cases a 412 

delay ranging from 10-200 ms was applied between the detected song segment and the target 413 

time.  414 

To ensure that DAF would not be perceived as an aversive stimulus, the DAF sound had the 415 

same amplitude and spectral content as normal zebra finch song. For broadband DAF (n = 16 416 

birds), DAF was a broadband sound band passed at 1.5-8kHz, the same spectral range of zebra 417 

finch song (Andalman and Fee, 2009). For displaced syllable DAF (n = 10 birds), DAF was a 418 

segment of one of the bird’s own syllables displaced in time. For both types of DAF, the 419 
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amplitude was carefully measured with a decibel meter (CEM DT-85A) and maintained at less 420 

than 90 dB, the average peak loudness of zebra finch song (Mandelblat-Cerf et al., 2014). This 421 

ensured that DAF was not a particularly loud sound for the bird; the distorted part of the song 422 

was significantly softer than the loudest parts of the song. 423 

Target time in the song was defined as the median time of DAF onset across target 424 

syllables; jitter of the target time was defined in each bird as the standard deviation of the 425 

distribution of DAF onset times relative to the target syllable onset. Syllable truncations 426 

following DAF were rare and were excluded from analysis.  427 

 428 

Electrophysiology  429 

Neural signals were band pass filtered (0.25-15 kHz) in homemade analog circuits and acquired 430 

at 40 kHz using custom Matlab software. Single units were identified as Area X-projecting 431 

(VTAx) by antidromic identification (stimulation intensities 50-400 μA, 200 μs on the bipolar 432 

stimulation electrode in Area X). All neurons identified as VTAx were further validated by 433 

antidromic collision testing. Spike widths were computed as the trough-to-peak interval in the 434 

mean spike waveform. 435 

 436 

Spike sorting and analyzing responses to distorted auditory feedback 437 

Spike sorting was performed offline using custom Matlab software. Firing rate histograms were 438 

constructed with 25 ms bins and smoothed with a 3-bin moving average. To calculate the 439 

significance of error responses (Figure 1D), spiking activity within ±1 second relative to target 440 

onset was binned in a moving window of 30 ms with a step size of 2 ms.  Each bin after the 441 
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target time was tested against all the bins in the previous 1 second (the prior) using a z-test 442 

(Mandelblat-Cerf et al., 2014). Response onset (latency) was defined as the first bin for which 443 

the next 3 consecutive bins (6 ms) were significantly different from the prior activity (z-test, p < 444 

0.05); response offset was defined as the first bin after response onset for which the next 7 445 

consecutive bins (14 ms) did not differ from the prior (p > 0.05, z-test); the response onset and 446 

offset were required to bracket the maximum (undistorted) or minimum (distorted) response 447 

after target time.  448 

 449 

Parameterizing song 450 

We used open source MATLAB software, Sound Analysis Pro 2011 (SAP 2011), to assemble the 451 

spectrogram as well as to define and extract song features. SAP 2011 is a customized software 452 

package written to analyze animal communication and is originally and most frequently used to 453 

study bird song (Tchernichovski et al., 2000). We used an existing SAP feature set for our 454 

parameterization because these features have been used in many previous studies to link zebra 455 

finch song variations to neural activity or neuromodulator concentrations (Kao et al., 2005; 456 

Leblois et al., 2010; Woolley and Kao, 2014), to study variation in song over development 457 

(Deregnaucourt et al., 2004; Lipkind and Tchernichovski, 2011; Ravbar et al., 2012) and to drive 458 

adult learning in DAF paradigms (Andalman and Fee, 2009; Sober and Brainard, 2009; Tumer 459 

and Brainard, 2007). Therefore, we can use this form of dimensionality reduction of song 460 

knowing in advance that these dimensions are behaviorally relevant to song variation in other 461 

contexts. The features extracted were Wiener entropy, pitch, goodness of pitch, amplitude, 462 

amplitude modulation (AM), frequency modulation (FM), mean frequency, and aperiodicity. 463 
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These features result in an eight-dimensional representation of song at each time-step. We 464 

further applied a moving-average filter (35 ms) to smooth the feature signals in time and 465 

sampled the smoothed value every 5 ms across song. 466 

 467 

Aligning syllables across renditions 468 

To compare song across renditions, syllables were classified using custom Matlab code 469 

(Gadagkar et al., 2016). Clusters of unique syllables were labelled alphabetically as ‘a’, ‘b’, ‘c’ 470 

etc. depending on order within a rendition. The number of syllables each bird sings varies bird-471 

to-bird from 3-7 syllables. We identified syllable onsets and offsets across renditions for every 472 

syllable set in which there were greater than 15 renditions of that syllable using an amplitude 473 

threshold chosen to match the amplitude variance of that syllable. All alignments were further 474 

checked by eye. Renditions in which alignment was ambiguous by eye were excluded from 475 

analysis.  476 

All syllable types (i.e. ‘a’ or ‘b’ etc.) were isolated and aligned across renditions by 477 

syllable onset times. Individual syllable types have a stereotyped, characteristic duration; 478 

however, there is some variation of this duration from rendition-to-rendition. In order to make 479 

sure that minor differences in syllable lengths were not misaligning local syllable features at the 480 

later parts of the syllable, we linearly time-warped the feature wave forms of each syllable 481 

rendition such that they all lasted the median duration of that syllable type (Kao et al., 2008).   482 

 483 

 484 

 485 
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Parameterizing and aligning spiking activity  486 

Spike sorting was performed offline using custom MATLAB software (Gadagkar et al., 2016). For 487 

every syllable, we considered the spike train ± 500 ms around the syllable onset. In order to 488 

align spiking activity to the song features, we first applied the same linear time-warping map to 489 

the spike train that we used to align syllables for each rendition (Kao et al., 2008). In all cases, 490 

we applied this map to the time window in which the syllable took place. When possible, we 491 

generated a piece-wise linear time warping map based on syllable boundaries in surrounding 492 

syllables. In the time windows where there was no song with which to build a time warping 493 

map, we left the spike train un-warped.  494 

 We binned spike counts within a sliding window (100 ms) across the 1000 ms length of 495 

spike train we considered for each syllable. We chose this spike count window based on the 496 

firing rate of the VTA-error neurons we considered (mean firing rate = 13 ± 5 Hz).   497 

 498 

Fitting spikes to song with a Gaussian process regression 499 

The goal of our analysis is to quantify non-stationary spiking responses to a time-varying 500 

sensory signal, with the following characteristics. First, if VTA neuron activity encodes 501 

prediction error responses to song fluctuations, these responses would be specific to the time 502 

in song; an identical vocalization occurring at the beginning of the song might elicit a very 503 

different response than at the middle. Second, the relevant dimensions of the signal space 504 

could vary throughout the song; thus, different parameterizations of the song might provide 505 

better low-dimensional representations of error-relevant song variation at different song time-506 

steps. Third, the form of a PPE-like tuning curve could also vary across the song.  507 
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Towards this goal, we used a regression approach to determine if spike counts are 508 

related to the variation in song. The relationship between spike counts and song is likely non-509 

linear and related to a variable number of features depending on the point in song. To address 510 

this, we used a non-parametric Gaussian process (GP) regression to fit the relationship between 511 

our eight song features and spike counts within single time windows (Williams, 2006).  512 

There are multiple sources of model uncertainty in this task: it is unclear which and how 513 

many features to use at a given point in song. Furthermore, the prediction of the model 514 

depends heavily on which features are used. To address this uncertainty, we used a Bayesian 515 

model averaging approach to determine the predicted spike count wherein we integrated over 516 

all possible feature combinations and weighted their predictions according to their posterior 517 

probability given the observed spike counts (Hoeting, 1998). 518 

For each neuron, in every non-target (distorted or undistorted) syllable for which there 519 

were 𝑁 ≥ 15 renditions, we sampled the smoothed song features every 5 ms across the 520 

syllable and sampled spike counts in 100 ms windows every 10 ms across 1s of spike train 521 

centered around syllable onset. We fit the multi-dimensional GP model across all song 522 

segment-spike bin pairs and generated song-spike relationships at many time latencies. We 523 

additionally fit a GP model using each feature individually. For all of these fits we computed the 524 

𝑟2 value.  525 

 526 

Construction of the Gaussian process regression model  527 

We modeled the relationship between the set of N z-scored song features on a single rendition 528 

i, 𝒙4, and the spike counts on that given rendition, 𝑦4, in single time windows (e.g. the song 529 
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feature values 20 ms after syllable onset and the spike count in a 100 ms window, 75 ms after 530 

syllable onset). To address this, we used a non-parametric Gaussian process (GP) regression to 531 

fit the relationship between the eight song features and spike counts across song and spike 532 

window pairs (Williams, 2006). We used a Bayesian model averaging approach to combine a 533 

weighted average of GP regressions using all subsets of song features into a single model 534 

prediction.  535 

We selected a subset of features, M, for a single GP regression, where feature is indexed 536 

by 𝑖 = 1, 2, . . . , 𝑁 such that ℳ ⊆ {1,2, …𝑁},ℳ ≠ 0, N = 8. The GP regression model for a single 537 

set of ℳ is: 538 

 539 

𝑦4|	𝑓ℳ	~	𝒩C𝑓ℳC𝒙4,ℳD, 𝜎2D										(1) 540 

 541 

𝑓ℳ(	∙	)	~	𝒢𝒫 K𝜇, 𝜔2𝜅(ℳ)(𝒙, 𝒙′)P										(2) 542 

 543 

where f is a function relating song features to spike rate and 𝜅 is the covariance function and 544 

defines how spike counts will be correlated with one another in feature space. We used the 545 

commonly selected kernel function for 𝜅,  546 

 547 

𝜅(ℳ)(𝒙, 𝒙′) = expT−
‖𝒙ℳ − 𝒙ℳV ‖2

2𝑙2 X.									(3) 548 

 549 
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𝜔2 is the GP variance term and specifies how strongly the spike counts vary as a function of the 550 

song features. 𝜎2 is the variance term that captures noise in the spike count (i.e. how much the 551 

spike counts vary at a single point in song feature space). The length scale, 𝑙, determines how 552 

close points must be in feature space to have correlated spike counts. To reduce computational 553 

complexity, we set 𝑙 = 0.5, for all model fits and z-scored the individual song features at each 554 

time step we considered.    555 

Although we do not observe f directly, the GP framework allows us to compute the 556 

marginal likelihood of the data with respect to the model parameters. The likelihood of all 𝑇 557 

renditions of spike count-song segment pairs is: 558 

 559 

𝑝(𝑦\:^|𝒙\:^,ℳ, 𝑙, 𝜎2, 𝜔2, 𝜇) = 	𝒩C[𝑦\, 𝑦2, … , 𝑦^]_;	[𝜇, 𝜇, … , 𝜇]_, 	𝜔2Κ(ℳ) + 𝜎2𝐼^D;								(4) 560 

 561 

Κ(ℳ) = 	 d
𝜅(ℳ)(𝒙\, 𝒙\) ⋯ 𝜅(ℳ)(𝒙\, 𝒙^)

⋮ ⋱ ⋮
𝜅(ℳ)(𝒙^, 𝒙\) ⋯ 𝜅(ℳ)(𝒙^, 𝒙^)

h,								(5) 562 

 563 

where 𝐼^  is the identity matrix of dimension 𝑇. 564 

 565 

The prediction mean-squared error for the GP model is: 566 

 567 

𝑀𝑆𝐸lmm
(no) = 	

1
𝑇p

(𝑦4 − 𝑦q4)2
^

4r\

							(6) 568 

 569 



31 
 

𝑦q4 = 			𝔼u𝑦4	|	𝒙/4, 𝒚/4, 𝒙4x							(7) 570 

 571 

where 𝑦q4  is the predicted spike count from the model for rendition 𝑖, and 𝒙/4  and 𝒚/4  are the 572 

song features and spike counts for all renditions except for the 𝑖z{ rendition.  573 

 We determined the predicted spike count by applying a Bayesian model averaging 574 

approach. We integrated over all possible values of ℳ and then weighted their predictions 575 

based on their posterior probability given observed spike counts (Hoeting, 1998): 576 

 577 

𝔼u𝑦4	|	𝒙/4, 𝒚/4, 𝒙4x 		= 	 p | 𝔼u𝑦4	|	ℳ, 𝑟, 𝒙/4, 𝒚/4, 𝒙4x𝑝Cℳ, 𝑟|𝒙/4, 𝒚/4D𝑑𝑟,
~	

�ℳ⊆{\,2,…�},ℳ��

			(8) 578 

 579 

where 𝑟 = 	 �
�

��
 is the ratio of the GP variance to the observation noise. We integrated over all 580 

possible values of ℳ and weighted their predictions according to their posterior probability 581 

given the observed spike counts.  582 

 583 

𝔼u𝑦4	|	𝜇,ℳ, 𝑟, 𝒙/4, 𝒚/4, 𝒙4x = 	Κ/4,4
(ℳ)_KΚ/4,/4

(ℳ) + 𝑟𝐼(^�\)P
�\
C𝒚/4 − 𝜇D + 𝜇	.						(9) 584 

 585 

Thus, we incorporated all combinations of features into a single model prediction for each 586 

song-spike count pair. We re-parameterized (𝜎2, 𝜔2) to (𝜓2, 𝑟2) where 𝜓2 is the total 587 

variance: 588 

 589 

𝜓2 = 	𝜎2 + 𝜔2,										(10) 590 
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 591 

𝜎2 = 	
𝑟

𝑟 + 1𝜓
2,										𝜔2 = 	

𝜓2

𝑟 + 1										(11) 592 

 593 

And evaluated the posterior over model parameters using Bayes’ rule: 594 

 595 

𝑝Cℳ, 𝑟|𝒙/4, 𝒚/4D = 	
𝑝C𝒚/4|𝑟,ℳ, 𝒙/4D𝑝(ℳ, 𝑟)

∑ 𝑝(ℳ∗) ∫ 𝑝C𝒚/4|𝑟∗,ℳ∗, 𝒙/4D𝑝(ℳ∗, 𝑟∗)𝑑𝑃(𝑟∗)	~	
�ℳ∗⊆{\,2,…�}

	.															(12) 596 

 597 

We again used Bayes’ rule to compute the likelihood term in Eq. 12:  598 

 599 

𝑝C𝒚/4|𝑟,ℳ, 𝒙/4D = 	
𝑝C𝒚/4|𝜇, 𝜓2, 𝑟,ℳ, 𝒙/4D𝑝(𝜇, 𝜓2)

𝑝C𝜇, 𝜓2|𝑟, 𝜇, 𝒙/4, 𝜓2,ℳD
.																	(13)											 600 

The likelihood term is computed as in Eq. 4. We again used Bayes’ rule to compute the 601 

posterior over 𝜇 and 𝜓2 :  602 

 603 

𝑝C𝜇, 𝜓2|𝑟, 𝜇, 𝒙/4, 𝜓2,ℳD 	∝ 	𝑝C𝒚/4|𝜇, 𝜓2, 𝑟,ℳ, 𝒙/4D𝑝(𝜇, 𝜓2).																(14) 604 

 605 

We then placed a conjugate normal-inverse gamma prior over 𝜇 and 𝜓2 : 606 

 607 

(𝜇, 𝜓2)	~	Ν_Γ�\(𝜇�, 𝜆�, 𝛼�, 𝛽�)															(15) 608 

 609 

where,  610 
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 611 

𝜇� = 0;							𝜆� = 1;							𝛼� = 10;							𝛽� = 	𝛼� + 1.															(16) 612 

 613 

Thus, 614 

 615 

C𝜇, 𝜓2|𝑟, 𝜇, 𝜓2,ℳ, 𝒙/4D	~Ν_Γ�\K𝜇�m�z
(4) , 𝜆�m�z

(4) , 𝛼�m�z
(4) , 𝛽�m�z

(4) P,													(17)															 616 

 617 

where, 618 

 619 

𝜇�m�z
(4) = 	

𝑏(4)

𝑎(4)
,														(18)		 620 

 621 

𝜆�m�z
(4) = 	 𝑎(4),														(19)		 622 

 623 

𝛼�m�z
(4) = 𝛼� +	

𝑇 − 1
2 ,														(20)		 624 

 625 

𝛽�m�z
(4) =

1
2T𝑐

(4) −
𝑏(4)

𝑎(4)
X,														(21) 626 

 627 

𝑎(4) = (𝑟 + 1)𝟏_KΚ/4,/4
(ℳ) + 𝑟𝐼P

�\
𝟏 + 𝜆�,														(22) 628 

 629 

𝑏(4) = (𝑟 + 1)𝟏_KΚ/4,/4
(ℳ) + 𝑟𝐼P

�\
𝒚/4,														(23) 630 
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 631 

𝑐(4) = (𝑟 + 1)𝟏_KΚ/4,/4
(ℳ) + 𝑟𝐼P

�\
𝒚/4 + 2𝛽�,														(23) 632 

 633 

where 1 is a vector of ones. With this, we can compute all of the terms in Eq. 13.  634 

 The integral over Eq. 12 is over one dimension and thus tractable to compute. We chose 635 

a discrete distribution for the prior 𝑃(𝑟) to increase computation speed: 636 

 637 

𝑃(𝑟) = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚({3,4,5.67,9}),														(24) 638 

 639 

such that the GP model could account for 25%, 20%, 15% or 10% of the total variance.  640 

 We imposed a truncated binomial prior over the number of included features such that 641 

|ℳ| ≥ 1, that favored models with fewer features (i.e., sparse models): 642 

 643 

𝑝(ℳ) = 	
1

1 − (1 − 𝑝)� K
𝑁
|ℳ|P𝑝

|ℳ|(1 − 𝑝)��|ℳ|.														(25) 644 

 645 

We set p=0.1 so that approximately 2/3 of the prior probability mass rests on single-feature 646 

models. We could integrate over a sparse prior in our model, rather than a shrinkage prior such 647 

as the Lasso, because we considered only a small (N=8) set of features (Park and Casella, 2012). 648 

Using this normal inverse-gamma description of the posterior, we can compute the prediction 649 

of 𝑦4, given ℳ and 𝑟: 650 

 651 
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𝔼u𝑦4	|	ℳ, 𝑟, 𝒙/4, 𝒚/4, 𝒙4x = 	𝔼u𝔼u𝑦4	|	𝜇,ℳ, 𝑟, 𝒙/4, 𝒚/4, 𝒙4x|ℳ, 𝑟, 𝒙/4, 𝒚/4, 𝒙4x,						(26) 652 

 653 

																																												= 	Κ/4,4
(ℳ)_KΚ/4,/4

(ℳ) + 𝑟𝐼(^�\)P
�\
K𝒚/4 − 𝜇�m�z

(4) P + 𝜇�m�z
(4) 	.						(27) 654 

 655 

We then insert Eq. 27 and Eq. 12 into Eq. 8 to obtain the prediction of 𝑦4. 656 

 657 

Construction of the latency distribution 658 

We defined the latency distribution as the set of all latencies between spike bins and song 659 

feature windows in which there was a predictive relationship (r2>0) within the GP model.  660 

 661 

Characterizing tuning curves of cell responses  662 

The GP model is flexible in that it will fit any relationship between the independent and 663 

dependent variables and is computationally efficient. However, from the output of the model 664 

we have no easily interpretable means of characterizing the shape of the fit. In order to 665 

characterize the form of the spike-count to song relationships across the large number of fits 666 

we assessed, we needed an automated way to categorize the shapes of the tuning curves.  667 

To do this, we used a generalized linear model (GLM)  with (q-GLM) and without (l-GLM) 668 

a quadratic transformation of the song features (Il Memmming Park, 2013). A GLM consists of a 669 

stimulus filter, an invertible non-linearity (the link function) and a stochastic exponential non-670 

linearity, such as a Poisson process: 671 

𝑦|𝒙	~	𝑃𝑜𝑖𝑠𝑠C𝑓(𝑄(𝒙))D											(28) 672 

 673 
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𝑄(𝑥) = 	𝑎𝑥2 + 𝑏𝑥 + 𝑐,											(29) 674 

 675 

where y is the spike count, f is the inverse link function, x is the stimulus and Q is a quadratic 676 

function of 𝑥 with coefficients 𝑎, 𝑏, 𝑐. We considered song features individually in this tuning 677 

curve analysis, so dim(𝒙) = 1, and the quadratic coefficients became scalars (a, b, c). We took 678 

the link function to be an exponential and the noise process to be Poisson. Thus, we can fit the 679 

quadratic coefficients by maximizing the log-likelihood: 680 

 681 

log 𝑃(𝑌|𝑋, 𝑎, 𝑏, 𝑐) = 	p[−exp	(𝑄(𝑥4)) + 𝑎 ∗ 𝑦4𝑥42 +	𝑏 ∗ 𝑦4𝑥4 + 𝑐 − log	(y§!)]
�

4r\

,									(30) 682 

We maximized the log-likelihood numerically using conjugate gradient methods. The sign of the 683 

quadratic coefficient, a, of this model determines whether the data is better fit by an upwards-684 

facing, quadratic basis in which the data is double-peaked, or a downwards-facing quadratic 685 

basis in which the data is single-peaked. We compared this model to a nested model fit where 686 

the quadratic term is set to zero (l-GLM). 687 

We compared the performance of the two models using the Akaike information 688 

criterion (AIC) (Akaike, 1974). The AIC metric is defined as: 689 

 690 

𝐴𝐼𝐶 = 2𝑘 − 2 ln ℒ¬ ,													(31) 691 

 692 

	ℒ¬ = 𝑎𝑟𝑔𝑚𝑎𝑥®,¯,° 	log 𝑃(𝑌|𝑋, 𝑎, 𝑏, 𝑐), 												(32) 693 

 694 
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where ℒ¬ is the maximum of the log-likelihood function for a given model and 𝑘 is the number of 695 

estimated parameters. This metric balances goodness of fit with model complexity. A lower AIC 696 

metric indicates better performance. Therefore, the difference in the AIC metrics of two models 697 

indicates the relative success of one model over another, taking into account differences in 698 

model complexity (Akaike, 1974; Raftery, 1995). We can then ask, when the quadratic model 699 

(q-GLM) is a better fit to the data than the linear model (l-GLM), does the tuning curve 700 

relationship of spike counts to song features show a positive or negative curvature? We 701 

predicted that a PPE-like signal should have a negative curvature.  702 

 We compared the q-GLM and l-GLM models on all GP model fits with 𝑟2 > 0 for all 703 

individual song features which had themselves predictive fits within the multi-dimensional 704 

model. We calculated the fraction of fits with the quadratic coefficient, a < 0, as a function of 705 

the AIC comparison between the two models: 706 

  707 

∆𝐴𝐼𝐶	 ≡ 	2𝑘l4³´®µ − 2 ln ℒ¬l4³´®µ − 2𝑘¶·®¸ + 2 ln ℒ¬¶·®¸.											(33) 708 

 709 

QUANTIFICATION AND STATISTICAL ANALYSIS 710 

 711 

Evaluating the Gaussian Process model performance 712 

To evaluate GP model performance we use a leave-one-out cross validation method to estimate 713 

the mean-squared prediction error for new observations as in (Vehtari, 2017): 714 

 715 
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𝑀𝑆𝐸lmm
(no) = 	

1
𝑇p

(𝑦4 − 𝑦q4)2,
^

4r\

							(34) 716 

 717 

𝑦q4 = 	𝔼u𝑦4	|	𝒙/4, 𝒚/4, 𝒙4x,						(35) 718 

 719 

where 𝑦q4  is the model prediction spike count for rendition ‘i’, and 𝒙/4  and  𝒚/4  are the song 720 

features and spike counts of all renditions excluding the ith rendition. We then compared the GP 721 

model to a model with constant mean firing rate equal to the mean spike count over all 722 

renditions excluding the ith rendition: 723 

 724 

𝑦(4)~𝒩(𝛼, 𝜏2).						(36) 725 

The predictive mean-squared error of this model is: 726 

 727 

𝑀𝑆𝐸lmm
(³·ll) = 	

1
𝑇pC𝑦4 − 𝑦/º»»»»D

2
^

4r\

							(37) 728 

where,  729 

 730 

𝑦/º»»»» = 	
1

𝑇 − 1p𝑦¼
¼�4

.							(38) 731 

 732 

The cross-validated 𝑟2 value is: 733 

 734 
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𝑟2 = 1 −	
𝑀𝑆𝐸lmm

(no)

𝑀𝑆𝐸lmm
(³·ll) .							(39) 735 

 736 

An 𝑟2 > 0 indicates that the model predicts new observations better than simply using the 737 

mean. The maximum theoretical value the 𝑟2 can take is one—this indicates perfect model 738 

prediction and, in practice, is never achieved. We use the 𝑟2 value as our measure of model 739 

performance.  740 

 741 

Bootstrapping to assess population-level significance  742 

Assessing the significance of the model predictions must be done on a population level for this 743 

type of analysis. We generated model fits to hundreds of song segment-spike count pairs for 744 

each syllable. Simply by chance, a portion of these fits would generate a predictive 𝑟2 > 0 745 

value.  746 

Furthermore, spike-song pairs are correlated, not only because of overlapping spike 747 

counts and song segment windows but also because of possible underlying correlations in the 748 

song and spike fluctuations across the song. To address this, we randomized the relationship 749 

between entire spike trains and song renditions and then re-performed our model fits on the 750 

randomized, spike count-song segment pairs across all time steps. By leaving the temporal 751 

structure of the song and spiking activity intact and only randomizing the relationship between 752 

them, we built a randomized population of fits for each cell-syllable pair, which retained the 753 

unknown, underlying temporal structure possibly present in the spike trains and song (Tusher 754 
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et al., 2001). We repeated this procedure 100 times for the VTAerror cell population and 100 755 

times for the VTAother cell population to build a distribution of coherently randomized cell sets.  756 

From this distribution of randomized cell sets, we computed single-tailed p-values 757 

assessments of the 𝑟2 values of the individual spike count-song segment model fits as well as 758 

on population measures of significance in the VTAerror and VTAother cell populations 759 

independently. We assessed four population measures: 760 

1. The frequency of the predictive signal across the whole cell population. An 𝑟2 >761 

0	indicates the model predicts the data better than an estimate based solely on the 762 

mean spike count across renditions, and we call this a ‘predictive signal’. We therefore 763 

assessed the significance of the total number of 𝑟2 > 0 song segment-spike count fits 764 

within the PPE latency window for both the VTAerror (p < 0.01) and VTAother (p < 0.01) 765 

syllable-cell pairs respectively with a single-tailed p-value test.  766 

2. The spread of the predictive signal across the cell population. We asked whether a small 767 

number of cells were accounting for the majority of the positive r2 values or if the signal 768 

appeared across multiple cells and syllables in the population. To answer this, we first 769 

labeled each cell-syllable pair as ‘significant’ if the number of positive r2 values within 770 

the PPE latency window (0-150 ms) had a single-tailed p < 0.05. We then calculated the 771 

single-tailed p-value for the number of significant cell-syllable pairs across the entire cell 772 

population (VTAerror population: one-sided z-test: p < 0.01; VTAother population: one-773 

sided z-test: p < 0.01).  774 

3. The significance of the magnitude of the peak in signal occurrence within the PPE latency 775 

window across the cell population. We computed latency distributions as the latencies 776 
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of the full set of spike-count song feature pairs that resulted in GP model fits with r2 > 0. 777 

We compared the variance of the latency distributions of the randomized populations to 778 

the variance of the peak we found in the actual data. We computed the single-tailed p-779 

value for the maximum fluctuation of a latency distribution at any point in the latency 780 

domain. In this way we tested the significance not only of finding a peak in the data at 781 

the PPE window but of finding a peak of that size anywhere in the latency distribution.  782 

For example, VTAerror population latency distribution had a peak within the expected 783 

PPE latency region (Figure 3C). This peak was 3.84 standard deviations from the mean. 784 

The variance in relation to the maximum variance in randomized latency distributions 785 

was significant (one-sided z-test: p < 0.01). The time-bin of this latency distribution was 786 

25 ms. VTAother  population latency distribution had a peak is 2.30 standard deviations 787 

from the mean (Figure 3D). This variance was not significant (one-sided z-test: p = 0.21). 788 

The time-bin of this latency distribution was 25 ms. 789 

4. The significance of the shapes of tuning curves we find via our GLM parameterization 790 

technique. We computed the single-tailed p-value of the fraction of single-peaked 791 

tuning curves in the real population relative to the randomized populations (Figure 4E 792 

legend and main text).  793 

Note that the goal of this significance strategy allows us to assess the VTAerror cell 794 

activity as a population, not the significance of particular song segment-spike count pairs. More 795 

data are needed for this level of specificity.  796 
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Figure S1. Related to Figure 2. Spiking Responses to Song Fluctuations are Captured by a 799 

Subset of Available Features, which Varies Across Context  800 

Distributions of individual song feature weights in the full GP model for r2>0 and r2<=0 801 

populations. In fits with r2>0 (predictive), the distribution was bimodal with an additional peak 802 

at around 0.5, implying that in predictive fits fewer numbers of features captured most of the 803 

information. In overfit models (r2<=0) all features contributed more equally to the poor 804 

estimate. Also note that the distributions across features were quite similar; no one feature 805 

captured significantly more of the song variations.  806 
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Figure S2. Related to Figure 2. Feature Contributions to Full GP Model Show Pairwise 808 

Correlations at Low, But Not High Weights  809 

Scatterplots of relationships of feature contributions to the full GP model for individual fits with 810 

r2 > 0 within the PPE window. All plots: each point represents one model fit with an r2 > 0. Axes 811 

are the total feature weight in full the GP model of indicated feature; red dot is mean value. 812 

Pairs of features were selected to be representative of the full model set. All pairs showed 813 

comparable correlations at low weights.  814 
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Figure S3. Related to Figure 2. 1st Order Feature Contributions are Not Correlated  816 

Scatterplots of Relationships of only the 1st order feature contributions to the full GP model for 817 

individual fits with r2 > 0 within the PPE window. All plots: each point represents one model fit 818 

with an r2 > 0. Axes are the 1st order feature weights in full GP model; red dot is mean value. 819 

Pairs of features were selected to be representative of the full model set. These data showed 820 

that correlations between features are mainly higher order coupling effects. 821 
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Figure S4. Related to Figure 3. Coherent Shuffling of Entire Spike Trains Retains Underlying 823 

Correlation Structure and Permits a Population-level Significance Assessment  824 

(A) Schematic of spike train shuffling. Spike trains were randomized relative to the associated 825 

song. The randomized song-spike relationship was re-fit retaining possible underlying 826 

correlations in the spike train and song fluctuations. 827 

(B) Panel replicated from Figure 3A.  828 

(C) r2 distributions for randomized and actual data. Left: r2 distributions for the shuffled and real 829 

data compared across all latencies. The real and shuffled distributions appeared quite similar. 830 

The number of r2 > 0 in the real data was not significantly different from what would be 831 

expected by chance. Right: the distribution of r2 values that fall within the PPE latency window 832 

compared to the randomized distribution from within this same latency range. This distribution 833 

was shifted away from the randomized distribution, with more, larger r2 > 0. This population 834 

had a significantly greater number of r2 > 0 than expected by chance (one tailed z-test, p-value = 835 

0.02).  836 
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