
Efficient decoding of large-scale neural
population responses with Gaussian-process

multiclass regression

C. Daniel Greenidge Benjamin Scholl Jacob L. Yates
Jonathan W. Pillow

May 2020

Abstract

Neural decoding methods provide a powerful tool for quantifying the information
content of neural population codes and the limits imposed by correlations in neu-
ral activity. However, standard decodingmethods are prone to overfitting and scale
poorly to high-dimensional settings. Here, we introduce a novel decoding method
to overcome these limitations. Our approach, the Gaussian process multi-class de-
coder (GPMD), is well-suited to decoding a continuous low-dimensional variable
from high-dimensional population activity, and provides a platform for assessing
the importance of correlations in neural population codes. The GPMD is a multi-
nomial logistic regression model with a Gaussian process prior over the decoding
weights. The prior includes hyperparameters that govern the smoothness of each
neuron’s decoding weights, allowing automatic pruning of uninformative neurons
during inference. We provide a variational inference method for fitting the GPMD
to data, which scales to hundreds or thousands of neurons and performs well even
in datasets with more neurons than trials. We apply the GPMD to recordings from
primary visual cortex in three different species: monkey, ferret, and mouse. Our
decoder achieves state-of-the-art accuracy on all three datasets, and substantially
outperforms independent Bayesian decoding, showing that knowledge of the cor-
relation structure is essential for optimal decoding in all three species.

1 Introduction

Since Zohary, Shadlen, and Newsome’s landmark demonstration of correlated ac-
tivity in a population of MT neurons (Zohary et al., 1994), computational neuro-
science has been seeking to elucidate the role that correlations play in the popula-
tion code (Averbeck et al., 2006; Bartolo et al., 2020; Ecker et al., 2011; Kanitschei-
der et al., 2015; Kohn et al., 2016; Moreno-Bote et al., 2014; Nirenberg & Latham,

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

2003; Schneidman et al., 2003). A common strategy for evaluating the role that
correlations play in a particular population’s code is to compare the accuracy of
two decoders trained on that population’s stimulus-response data: a correlation-
blind decoder, and a correlation-aware decoder (Berens et al., 2012; Graf et al., 2011;
Nirenberg & Latham, 2003; Stringer et al., 2021). If the correlation-aware decoder
performs better, then onemay conclude that downstream regionsmust take correla-
tions into account to optimally read out information from the upstream population
code.
This strategy is an effective way to investigate the scientific question, but exist-
ing work is plagued by a number of statistical issues, which we aim to address
in this paper. First, as neural datasets have increased in dimensionality, regular-
ization has become a prerequisite for good decoding performance, making it diffi-
cult to compare correlation-blind decoders—which are often unregularized—and
correlation-aware decoders, which are almost always regularized. Second, con-
ventional correlation-aware decoders struggle to scale computationally to modern
datasets containing tens or hundreds of thousands of neurons.
To address these shortcomings, we develop a suite of three new decoders with a
common regularization strategy based on Gaussian Processes (GPs). First, we in-
troduce two correlation-blind decoders that apply Bayesian decoding to an inde-
pendent encoding model: the GP Poisson Independent Decoder (GPPID), which
assumes independent Poisson encoding noise; and the GP Gaussian Independent
Decoder (GPGID), which assumes independent Gaussian encoding noise. Both of
these decoders place a Gaussian process prior over the neural tuning curves. (For
each neuron, its tuning curve is its mean response as a function of the stimulus
variable.) The GPPID model can be used when the neural responses are encoded
by non-negative integers (e.g., spike counts), whereas the GPGID model can be
used when the neural responses are real numbers (e.g., calcium imaging). We em-
phasize that both of these decoders are insensitive to correlations in neural activity,
because they rely on independence assumptions.
We then introduce a third decoder, which is correlation-aware, the Gaussian Pro-
cess Multiclass Decoder (GPMD), which is a multinomial logistic regressionmodel
that uses aGP prior to regularize its weights. This decoder, which learns a direct lin-
ear mapping from high-dimensional neural activity patterns to the log-probability
of the stimulus, is the only one of the three that can take into account neural corre-
lations. However, the three decoders have a similar number of parameters—equal
to the number of neurons times the number of stimulus categories—and rely on a
common regularization method, making it straightforward to compare them.
We compared our decoders to a variety of previously proposed decoding methods:
first, multinomial logistic regression regularized using an elastic-net penalty (GLM-
NET, see Zou and Hastie [2005]); second, the empirical linear decoder (ELD), a
decoder trained using support vector machines (Graf et al., 2011); and third, the
“super-neuron” decoder (SND), a recently proposed decoder trainedusing least squares
regression and a bank of nonlinear target functions (Stringer et al., 2021). All three
of these decoders are linear, correlation-aware classifiers. For completeness, we

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

also compared our decoders to unregularized, correlation-blind Poisson and Gaus-
sian independent decoders (PID/GID).
We benchmarked all these decoders on three real-world datasets from primary vi-
sual cortex (V1), recorded frommonkey (Graf et al., 2011), ferret, andmouse (Stringer
et al., 2021). We found that our regularized correlation-blind decoders (GPPID and
GPGID) could match and even exceed the performance of some of the correlation-
aware decoders. However, none of these decoders did as well as our our proposed
correlation-aware decoder, theGPMD,which achieved state-of-the-art performance
on all datasets. These results indicate that knowledge of the correlation structure
is crucial for reading out stimulus information from V1 populations in all three
species. For ease of use, our decoders conform to the scikit-learn interface and are
released as a Python package at https://github.com/cdgreenidge/gdec.

2 The neural decoding problem

In this paper, we consider the problem of a decoding a low-dimensional stimulus
variable (i.e., the orientation of a sinusoidal grating) from a high-dimensional neu-
ral activity pattern (i.e., a vector of spike counts). We assume the stimulus belongs
to one of 𝐾 discrete bins or classes, formally making this a classification problem.
However, the regression problem can be approximated by making 𝐾 large, so that
the grid of stimulus values becomes arbitrarily fine.
Figure 1 illustrates the problem setup for the V1 datasets we examined. The visual
stimulus for each individual trial is a drifting sinusoidal grating with an orienta-
tion 𝜃𝑘 selected from a set of discrete orientations {𝜃1, … , 𝜃𝐾} that evenly divide the
interval [0, 2𝜋]. The stimulus variable to be decoded is thus a categorical variable
𝑦 ∈ {1, … , 𝐾}.
We consider the neural population response to be a vector x ∈ ℝ𝐷, where 𝐷 in-
dicates the number of neurons in the dataset. We obtained this response vector
by summing each neuron’s spikes (monkey) or two-photon calcium fluorescence
(ferret and mouse) over some time window after stimulus presentation. Figure 1B
shows orientation tuning curves from three example neurons from each dataset.
The monkey datasets (left) contained between 𝐷 = 68 and 𝐷 = 147 neurons, with
𝐾 = 72 discrete stimulus orientations (spaced every 5 degrees), and 50 trials per
orientation for 𝑇 = 3600 trials (Graf et al., 2011). The ferret dataset (middle) con-
tained𝐷 = 784neurons, with𝐾 = 180 discrete stimuli (spaced every 2 degrees) and
11 trials per orientation for a total of 𝑇 = 1991 trials, with the 0∘/360∘ orientation
sampled twice. Finally, the mouse datasets (right) contained between 𝐷 = 11311
and 𝐷 = 20616 neurons. The stimuli for this experiment were sampled uniformly
in [0, 2𝜋], and we subsequently discretized them into 𝐾 = 180 bins (Stringer et al.,
2021). Each bin contained between 12 and 42 trials for a total of between 𝑇 = 4282
and 𝑇 = 4469 trials, depending on the dataset.
In each case, we collected the population response vectors x and the discretized

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://github.com/cdgreenidge/gdec
https://doi.org/10.1101/2021.08.26.457795

Stimulus

Response

time

ne
ur
on
s
(D
)

ne
ur
on
s
(D
) 9

0

3

⋮

14Bin θ to
K classes

Sum
over time

Dataset (T trials)

A

B

0
12

0
12

Sp
ik
es

0 180 360
Stimulus Angle (°)

0
35

0
45

0
15

0 180 360
Stimulus Angle (°)

0
100

Monkey MouseFerret

la
be
l

0.0
0.5

0
1

In
te
ns
ity

0 180 360
Stimulus Angle (°)

0.0
0.5

Figure 1: A: Decoding task diagram. The animal is presented a grating drifting at an
angle 𝜃 ∈ [0, 2𝜋]. Responses are recorded from primary visual cortex and summed
over time into a feature vector, x. The stimulus is binned to an integer class label,
𝑦. We use linear decoders to predict 𝑦 from x. B: Randomly selected tuning curves
from each animal. The two calcium datasets (ferret and mouse) are noisier and
have many more neurons, increasing the importance of regularization.

stimuli 𝑦 into a classification dataset𝒟 = {(x𝑡, 𝑦𝑡)}𝑇𝑡=1. Full details on these datasets
and their preprocessing procedures can be found in Appendix C.
The decoders we consider are all linear classifiers, meaning that they are defined
by a set of linear decoding weights and an intercept term. Their common form is:

̂𝑦 = argmax
𝑘∈{1,…,𝐾}

w⊤
𝑘x + 𝑏𝑘, (1)

wherew𝑘 ∈ ℝ𝐷 is a set of decodingweights, and 𝑏𝑘 is an intercept term for stimulus
class 𝑘. Note that an explicit intercept term is not strictly necessary, since it can be
included in the weights if a 1-valued entry is appended to x. To obtain the stimulus
estimate ̂𝑦, we compute the dot product between the neural response vector x and
theweights for each class, and select the class in {1, … , 𝐾} for which this dot product
is maximal. The full set of parameters for a decoding model is thus the set of decod-
ingweights for each class, which can bewritten as a𝐷×𝐾matrix𝑊 = [w1, … ,w𝐾],
and, optionally, a 𝑘-dimensional intercept vector b = [𝑏1, … , 𝑏𝑘]⊤. The only differ-
ence between the decoding methods we will consider is the procedure for training

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

these weights from data.
We note that decoding with linear classifiers is optimal for so-called “exponential-
family” probabilistic population codes with linear sufficient statistics (Beck et al.,
2007; Ma et al., 2006). Although we could certainly expand our study to consider
decoding with nonlinear classifiers, previous analyses of two of the V1 datasets
we used showed no benefit from adding nonlinear classification (Graf et al., 2011;
Stringer et al., 2021).

3 Review of existing decoders

Here we describe previously proposed neural decoding methods, which we will
compare to the Gaussian Process based decoding methods we introduce in Section
4.

3.1 Correlation-blind decoders

First, we introduce two independent or “correlation-blind” decoders, the first as-
suming Poisson noise, and the second assuming Gaussian noise. Both decoders
make use of Bayes’ rule to obtain a posterior distribution over the stimulus under
an independent encoding model, an approach commonly known as “naïve Bayes.”
The encoding models underlying these decoders assume that neural responses are
conditionally independent given the stimulus, making them unable to take corre-
lations into account during decoding.

3.1.1 The Poisson Independent Decoder (PID)

ThePoisson independent decoder relies on an independent Poisson encodingmodel
of neural responses, which assumes that each neuron’s spike count follows an in-
dependent Poisson distribution with its mean determined by the stimulus (Abbott,
1994; Földiák, 1993). The encoding model describes 𝑥𝑑, the response of neuron 𝑑,
as:

𝑃(𝑥𝑑 ∣ 𝑦 = 𝑘) = Poiss(𝑥; 𝜆𝑑𝑘) =
1
𝑥𝑑!

(𝜆𝑑𝑘)𝑥𝑑𝑒−𝜆𝑑𝑘 (2)

where 𝜆𝑑𝑘 is themean response of neuron 𝑑 to stimulus 𝑘. Under the conditional in-
dependence assumption, the joint distribution of the population response is simply
the product of the single-neuron encoding distributions:

𝑃(x ∣ 𝑦 = 𝑘) =
𝐷
∏
𝑑=1

Poiss(𝑥𝑑; 𝜆𝑑𝑘), (3)

where 𝐷 is the total number of neurons.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

Bayes’ theorem lets us derive the probability over stimuli value given an observed
response vector x:

𝑃(𝑦 = 𝑘 ∣ x) = 𝑃(x ∣ 𝑦 = 𝑘)𝑃(𝑦 = 𝑘)
∑𝐾

𝑘′=1 𝑃(x ∣ 𝑦 = 𝑘′)𝑃(𝑦 = 𝑘′)
. (4)

If there are equal numbers of trials per class in the training dataset, the prior prob-
abilities 𝑃(𝑦 = 𝑘) are equal for all 𝑘, and cancel, leaving the prediction rule

𝑃(𝑦 = 𝑘 ∣ x) =
∏𝐷

𝑑=1 Poiss(𝑥𝑑; 𝜆𝑑𝑘)
∑𝐾

𝑘′=1∏
𝐷
𝑑=1 Poiss(𝑥𝑑; 𝜆𝑑𝑘′)

. (5)

To fit the model, one has to estimate the parameters {𝜆𝑑𝑘} across all the stimuli for
each neuron. Collected into a vector 𝝀𝑑 = (𝜆𝑑1, … , 𝜆𝑑𝐾)𝑇 , these are known as the
tuning curve. Themaximum likelihood estimate for 𝜆𝑑𝑘 is given by the mean spike
count for each neuron-stimulus combination:

̂𝜆𝑑𝑘 =
1

|𝒜𝑘|
∑

(x,𝑦)∈𝒜𝑘

𝑥𝑑 (6)

where 𝒜𝑘 = {(x𝑡, 𝑦𝑡) ∈ 𝒟 ∣ 𝑦𝑡 = 𝑘} is the set of all elements of the dataset 𝒟 =
{(x𝑛, 𝑦𝑛)}𝑇𝑡=1 associated with a particular stimulus 𝑦 = 𝑘, and |𝒜𝑘| is the number of
elements in𝒜𝑘.
Assuming the prior class probabilities 𝑃(𝑦 = 𝑘) are equal, the log of the class-
conditional probability (eq. 5), also known as the log posterior over classes, can
be written:

log𝑃(𝑦 = 𝑘 ∣ x) =
𝐷
∑
𝑑=1

𝑥𝑑(log 𝜆𝑑𝑘) −
𝐷
∑
𝑑=1

𝜆𝑑𝑘 + 𝑐 (7)

where 𝑐 is a constant we ignore because it does not depend on the class. This shows
that the PID decoder is a linear classifier (eq. 1), with weights 𝑊̂ and intercepts b̂
given by

𝑊̂𝑑𝑘 = log ̂𝜆𝑑𝑘 (8)

̂𝑏𝑑 = −
𝐾
∑
𝑘=1

̂𝜆𝑑𝑘. (9)

See Appendix A for a detailed derivation.

3.1.2 The Gaussian Independent Decoder (GID)

The Poisson independent decoder described above can only applied to nonnegative
integer data, such as spike counts. For real-valued data such as calcium fluores-
cence, intracellularly-recorded membrane potential, local field potential, or fMRI

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

BOLD signals, it is common to use a Gaussian encoding model. This model de-
scribes 𝑥𝑑, the response of neuron 𝑑, as:

𝑃(𝑥𝑑 ∣ 𝑦 = 𝑘) = 𝒩(𝑥𝑑; 𝜇𝑑𝑘, 𝜎2𝑑) =
1

√2𝜋𝜎2𝑑
exp (−(𝑥𝑑 − 𝜇𝑑𝑘)2

2𝜎2𝑑
) , (10)

where 𝜇𝑑𝑘 is the mean response of neuron 𝑑 to stimulus 𝑘, and 𝜎2𝑑 is the noise vari-
ance for neuron 𝑑. Unlike a typical Gaussian naïve Bayes decoder, we restrict the
noise variance to be constant across stimulus classes, though, as usual, it can vary
across neurons. With this restriction, the decoder becomes a linear classifier, like
the other decoders we consider. If the noise variance were allowed to vary across
stimulus classes, the decoder would be a quadratic classifier (see Appendix A.)
To fit the model, we compute maximum likelihood estimates of the encoding dis-
tribution parameters for each neuron, which are given by the class-conditional em-
pirical means 𝜇̂𝑑𝑘, and the empirical variances 𝜎2𝑑 , for each 𝑑-th neuron:

𝜇̂𝑑𝑘 =
1

|𝒜𝑘|
∑

(x,𝑦)∈𝒜𝑘

𝑥𝑑 (11)

𝜎̂2𝑑 =
1
|𝒟| ∑

(x,𝑦)∈𝒟
(𝑥𝑑 − 𝜇̂𝑑)2, (12)

As before, 𝒟 = {(x𝑡, 𝑦𝑡)}𝑇𝑡=1 is the dataset, and 𝒜𝑘 = {x ∈ 𝒟 ∣ 𝑦𝑡 = 𝑘} is the set of
all neural response vectors for a particular stimulus 𝑦 = 𝑘.
Decoding stimuli under this encoding model follows from Bayes’ rule in the same
manner as in the Poisson independent decoder (eq. 5), but using the Gaussian en-
coding distribution instead of the Poisson. After some algebra, we can see that the
Gaussian independent decoder (GID) is a a linear classifier (eq. 1) with weights𝑊
and intercepts b given by

𝑊𝑑𝑘 =
𝜇𝑑𝑘
𝜎2𝑑

(13)

𝑏𝑑 = −
𝐾
∑
𝑘=1

𝜇2𝑑𝑘
2𝜎2𝑑

(14)

See Appendix A for a detailed derivation.

3.2 Correlation-aware decoders

Herewe review three previously-proposed decoders that take into account the struc-
ture of neural correlations when determining a classification boundary, and are
therefore “correlation-aware.” Unlike the twonaïveBayes decoders described above,
which resulted fromapplyingBayes’ rule to an encodingmodel, these directlymodel
the posterior probability over stimuli given a vector of neural activity. All three
decoders are multiclass linear classifiers, but they are trained with different loss
functions and regularization methods.

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

3.2.1 Multinomial logistic regression with an elastic-net penalty (GLM-
NET)

The multinomial logistic regression model is a generalization of binary logistic re-
gression to the multiple-class setting. It assumes that the log probability of the
stimulus given the response is an affine function—that is, a linear transform plus a
constant—of the neural response vector (Bishop, 2006). The conditional probabil-
ity of the stimulus belonging to class 𝑘 given the neural response vector x can be
written:

𝑃(𝑦 = 𝑘 ∣ x) = 1
𝑍
𝑒w⊤

𝑘x+𝑏𝑘 , 𝑍 =
𝐾
∑
𝑘=1

𝑒w⊤
𝑘x+𝑏𝑘 (15)

wherew𝑘 is a vector of the decoding weights for class 𝑘, 𝑏𝑘 is the constant offset for
class 𝑘, and the 𝑍 is the normalizing constant.
The model parameters consist of the weights 𝑊 = (w1, … ,w𝐾) and offsets b =
(𝑏1, … , 𝑏𝐾)⊤, and can be fit by maximum likelihood. The log-likelihood function
given the dataset𝒟 = {(x𝑡, 𝑦𝑡)}𝑇𝑡=1 can be written:

ℒ(𝑊,b) = log𝑃(𝒟 ∣ 𝑊,b) =
𝑇
∑
𝑡=1

y⊤𝑡 (𝑊 ⊤x𝑡 + b) − log (1⊤ exp(𝑊 ⊤x𝑡 + b)) , (16)

where y𝑡 is the one-hot vector representation of the stimulus class 𝑦𝑡 ∈ {1, … , 𝐾} on
trial 𝑡—that is, a vector of all zeros except for a one in the entry corresponding to
the stimulus class—and 1 is a length-𝐷 vector of ones.
Themaximum-likelihood estimator (MLE) tends to perform poorly in settings with
limited amounts of data, and may not exist for small datasets. In fact, the MLE is
not defined when the number of trials 𝑇 is smaller than the number of identifiable
parameters in the weight matrix𝑊 , i.e. when 𝑇 < 𝐷(𝐾−1). Even in settings where
the MLE does exist, it may overfit, yielding poor generalization performance.
A popular solution to this problem is to regularize the MLE with the elastic-net
penalty, which combines ℓ1 (“lasso”) and ℓ2 (“ridge”) penalties to induce parameter
sparsity and shrinkage (Friedman et al., 2010). The elastic-net estimator is obtained
by maximizing the log-likelihood minus the regularization penalty:

(𝑊̂, b̂) = argmax
𝑊,b

ℒ(𝑊,b) − 𝛾1(𝛾2||𝑊||ℓ1 + (1 − 𝛾2)||𝑊||2ℓ2), (17)

Here, 𝛾1 is a hyperparameter determining the strength of the regularization, and
𝛾2 is a hyperparameter that controls the balance between the ℓ1 penalty, which en-
courages𝑊 to be sparse, and the ℓ2 penalty, which encourages𝑊 to have a small
magnitude. For our decoding tasks, we found that including the ℓ1 penalty always
diminished cross-validated performance, so we fixed 𝛾2 = 0. We then set 𝛾1 using
a five-step logarithmic grid search from 10−4 to 10, evaluated with three-fold cross
validation.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

3.2.2 The Empirical Linear Decoder (ELD)

The Empirical Linear Decoder (ELD), introduced by Graf et al. (2011), is similar to
multinomial logistic regression in that it models the log probability of the stimulus
class as an affine function of the neural response vector (eq. 15). However, instead of
using standard likelihood-based methods to fit the model, the authors constructed
an inference method based on support vector machines (SVMs).
Their key observation was that the log-likelihood ratio for adjacent stimulus classes
is an affine function of the response vector, with weights given by the difference of
the two classes’ decoding weight vectors. For example, for stimulus classes one and
two we have:

log 𝑃(𝑦 = 2|x)
𝑃(𝑦 = 1|x) = log 𝑒

w⊤
2 x+𝑏2

𝑒w⊤
1 x+𝑏1

= (w2 −w1)⊤x + (𝑏2 − 𝑏1) ≜ v⊤2 x + 𝑐2 (18)

Here, we have defined v2 to be the difference vector (w2 − w1) and 𝑐2 to be the
difference scalar 𝑏2 − 𝑏1.
We see that discriminating class two from class one under the multinomial logistic
regression model is equivalent to solving a linear binary classification task with
weights v2 and offset 𝑐2. The authors proposed estimating v2 and 𝑐2 using an SVM
trained on the data from classes one and two. They then used the same approach
to estimate the weights for all subsequent pairs of adjacent classes. That is, they
estimated the difference weights v𝑘+1 using an SVM trained on data from classes
𝑘 − 1 and 𝑘, for 𝑘 = 2, … , 𝐾.
To recover the weights of the multinomial logistic regression model from the SVM
weights, Graf et al. (2011) used the recursions:

ŵ1 = 0
ŵ𝑘 = ŵ𝑘−1 + 𝛼𝑘v̂𝑘 (19)

and
̂𝑏1 = 0
̂𝑏𝑘 = ̂𝑏𝑘−1 + 𝛼𝑘 ̂𝑐𝑘 (20)

for 𝑘 = 2, … , 𝐾. Here the weights for class one can be set to zero without loss
of generality. The constant 𝛼𝑘, which scales the contribution of the SVM weights
v𝑘 and 𝑐𝑘, is necessary because SVMs only recover v𝑘 and 𝑐𝑘 up to a multiplicative
constant. Wewere unable to determine how the authors set these scaling constants,
so we fit them by maximizing the log likelihood of the data under the multinomial
logistic regression model (eq. 16).

3.2.3 The Super Neuron Decoder (SND)

The Super Neuron Decoder (SND), introduced by Stringer et al. (2021), is a third
approach for training a linear classifier on multi-class data. It optimizes a set of

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

decoding weights using penalized least-squares regression and a set of nonlinear
super-neuron response functions. The super-neuron response functions encode the
tuning curves of a population of narrowly-selective downstream “super-neurons”,
containing one super-neuron for each stimulus orientation. Each super-neuron
responds maximally to a single orientation, making the population response on
each trial a narrow bump of activity centered on the correct stimulus.
Formally, the SND seeks amatrix of weights𝑊 that maps the response vector x to a
target vectorh ∈ ℝ𝐾 on each trial. The target vectorh contains the responses of the
super-neuron population. The super-neurons have tuning curves parameterized by
the vonMises probability density function, which is appropriate since the stimulus
variable is periodic.

The 𝑖-th super-neuron has a preferred orientation of 𝜃𝑖 =
2𝜋
𝐾
(𝑖 − 1), so its tuning

curve is given by:
𝑓𝑖(𝜃) = exp (cos(𝜃𝑖 − 𝜃) − 1

0.1) (21)

The target vector for the 𝑘-th stimulus class is therefore

h𝑘 = (𝑓1(𝜃𝑘), … , 𝑓𝐾(𝜃𝑘))
⊤

(22)

where 𝜃𝑘 = 2𝜋
𝐾
(𝑘 − 1) is the stimulus angle associated with stimulus class 𝑘 ∈

{1, … , 𝐾}.
Stringer et al. (2021) trained the model weights 𝑊 by linearly regressing the ob-
served neural responses onto the target vectors. To penalize large weight values,
they included an ℓ2 (“ridge”) regularization:

𝑊̂ = argmin
𝑊

(
⊤
∑
𝑡=1

||h𝑦𝑡 −𝑊 ⊤x𝑡||2) + 𝛾||𝑊||2ℓ2 , (23)

The term ||h𝑦𝑡 −𝑊 ⊤x𝑡||2 is the squared error between the correct target vector h𝑦𝑡
and the output of the linear decoding weights 𝑊 ⊤x𝑡 on trial 𝑡. The term 𝛾||𝑊||2ℓ2
is the squared ℓ2 penalty on the decoding weights with regularization strength 𝛾,
which the authors fixed at 𝛾 = 1.0. Intuitively, this training procedure seeksweights
𝑊 that make the linearly transformed population response𝑊 ⊤xmatch the super-
neuron population response h as closely as possible in a least-squares sense.
The decoding rule chooses the class label corresponding to themaximum of the lin-
early weighted responses. (This is the same decoding rule as in the other decoders
we have considered):

̂𝑦 = argmax
𝑘∈{1,…,𝐾}

(𝑊 ⊤x)𝑘, (24)

Here (𝑊 ⊤x)𝑘 is the 𝑘-th element of the transformed response vector𝑊 ⊤x. In other
words, the predicted stimuli value is the preferred orientation of the maximally
responding super-neuron.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

4 Proposed methods: GP-regularized decoders

In this section, we first introduce two correlation-blind decoders regularized with
Gaussian process (GP) priors: the GP-regularized Gaussian Independent Decoder
(GPGID) and the GP-regularized Poisson Independent Decoder (GPPID). Like the
GID and PID, these decoders use independentGaussian and Poisson encodingmod-
els, but they also add GP priors to induce smoothness in the neural tuning curve
estimates. Next, we introduce a correlation-aware decoder, the Gaussian Process
Multiclass Decoder (GPMD), which adds a GP prior to multinomial logistic regres-
sion for the same purpose.

4.1 TheGP-regularizedPoisson IndependentDecoder (GPPID)

When doing inference in the PID decoder (section 3.1.1), it is necessary to estimate
each ̂𝜆𝑑𝑘, the mean spike count for the 𝑑-th neuron and the 𝑘-th stimulus. The
mean spike counts for every stimulus form a tuning curve for each neuron 𝝀𝑑 =
(𝜆𝑑1, … , 𝜆𝑑𝐾)𝑇 . The maximum likelihood estimator for each entry in the tuning
curve is simply the empiricalmean of the spike counts for the𝑑-th neuronunder the
𝑘-th stimulus. However, the empirical mean estimates are noisy, especially when
the number of trials for each stimulus is small, which can limit the PID decoder’s
performance.
In principle, we could compensate for the noise by recording more trials for each
stimulus, but this is expensive, particularly if the stimulus grid has a fine resolution.
Instead, we propose to reduce error in the tuning curve estimates by exploiting our
prior knowledge that tuning curves tend to be smooth with respect to orientation.
We incorporate this knowledge into themodel by placing an independent Gaussian
process prior over the log tuning curve of each neuron (Park et al., 2014; Rad &
Paninski, 2010).
The resulting GP-regularized PID model is given by

log𝝀𝑑 ∼ 𝐺𝑃(0, 𝜅𝜃𝑑) (25)
𝑥𝑑 ∣ 𝑦 = 𝑘 ∼ Poiss(𝜆𝑑[𝑘]) (26)

where 𝑥𝑑 is the spike response of neuron 𝑑, and 𝜆𝑑[𝑘] is the 𝑘th element of the
tuning curve 𝝀𝑑. Here, the log tuning curve has a Gaussian Process prior with zero
mean, and a covariance function 𝜅(⋅, ⋅) with hyperparameters 𝜃𝑑.
We choose 𝜅 to be the radial basis (RBF) or “Gaussian” covariance function:

𝜅(𝑗, 𝑘) = 𝜌2𝑑 exp (−
𝑑(𝑗, 𝑘)2
2ℓ2𝑑

) (27)

where 𝑑(𝑗, 𝑘) denotes the distance between stimulus classes 𝑗 and 𝑘, and the hyper-
parameters 𝜃𝑑 = {𝜌𝑑, ℓ𝑑} are themarginal variance 𝜌𝑑 and length scale ℓ𝑑 of the log

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

tuning curve for neuron 𝑑. Because our stimuli lie on a circle with circumference
𝐾, the number of classes, we choose 𝑑 to be the circular distance function

𝑑(𝑥, 𝑦) = |||((𝑥 − 𝑦 − 𝐾
2) mod 𝐾)) −

𝐾
2
||| (28)

We will write the Gaussian process kernel matrix using the overloaded notation
𝜅𝜃(u, v), where u and v are arbitrary vectors in ℝ𝑛 and ℝ𝑚, respectively. This nota-
tion denotes an 𝑛 ×𝑚 kernel matrix, with elements given by 𝜅𝜃(u, v)𝑖𝑗 = 𝜅𝜃(𝑢𝑖, 𝑣𝑗).
An important instance of the kernel matrix is the kernel matrix of the tuning curve.
Because of the kernel function’s lengthscale parameter, the distance between each
stimuli value can be rescaled arbitrarily, so we define the tuning curve kernel ma-
trix to be 𝜅𝜃(r, r), where r = (1, … , 𝐾)⊤.
Note that the neuron-specific hyperparameters 𝜃𝑑 permit tuning curves to differ in
amplitude and smoothness, so different neurons can be regularized differently. For
neurons with non-existent tuning or exceptionally noisy responses, the inference
procedure will set the amplitude 𝜌𝑑 to zero or the length scale ℓ𝑑 to infinity, mak-
ing the tuning curve flat (see fig. 5). Such neurons are effectively pruned from the
dataset, since flat tuning curves make no contribution to decoding. This effect is
known as automatic relevance determination (MacKay, 1992; Neal, 1996), and it
eliminates the need to manually filter out noisy or untuned neurons. Automatic
preprocessing in this manner is critical when working with large datasets.
To fit theGPPIDmodel to spike count data, we employ a two-step procedure known
as empirical Bayes (Bishop, 2006). For each neuron, we first compute a point es-
timate of the tuning curve hyperparameters by maximizing the model evidence,
and then find the maximum-a-posteriori (MAP) estimate of the tuning curve us-
ing the previously estimated hyperparameters. The model evidence for neuron
𝑑 is the marginal probability of X∗𝑑, the 𝑑-th column of the spike count matrix
X = (x1, … , x𝑇)⊤, given the hyperparameters:

𝑝(X∗𝑑 ∣ 𝜃𝑑) = log∫𝑝(X∗𝑑 ∣ 𝝀𝑑, 𝜃𝑑)𝑝(𝝀𝑑 ∣ 𝜃𝑑) 𝑑𝝀𝑑 (29)

= ∫ exp(log𝒩(log𝝀𝑑; 0, 𝜅𝜃(r, r)) +
𝑇
∑
𝑡=1

log Poiss(𝜆𝑑[𝑦𝑡])) 𝑑𝝀𝑑. (30)

This integral is intractable, so we approximate it using a Laplace’s method (Bishop,
2006). We define ℎ(𝝀𝑑) = log𝒩(log𝝀𝑑; 0, 𝜅𝜃(r, r)) + ∑𝑁

𝑛=1 log Poiss(𝜆𝑑[𝑦𝑛]) to be
the sum of log-prior and log-likelihood, and 𝐻 to be the Hessian matrix of ℎ eval-
uated at its maximizer, the MAP estimate 𝝀∗𝑑. The integral’s approximate value is
then given by:

log𝑝(X∗𝑑 ∣ 𝜃𝑑) ≈ −𝑛
2
log(2𝜋) − 1

2
log |𝐻| − ℎ(𝝀∗𝑑). (31)

We compute point estimates of the model hyperparameters ̂𝜃𝑑 by optimizing this
approximationwith respect to 𝜃𝑑 using theNelder-Mead algorithm (Nelder&Mead,
1965).

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

Once we have estimated the hyperparameters ̂𝜃𝑑 for neuron 𝑑, we estimate the neu-
ron’s tuning curve by computing the MAP estimate of 𝝀𝑑 under the model given by
equation 25:

̂𝝀𝑑 = argmax
𝝀𝑑

(log𝒩(log𝝀𝑑; 0, 𝜅𝜃(r, r)) +
𝑇
∑
𝑡=1

log Poiss(𝑥𝑡 ∣ 𝜆𝑑[𝑦𝑡])) (32)

where Poiss(𝑥𝑡 ∣ 𝜆𝑑[𝑦𝑡]) is the probability of spike count 𝑥𝑡 given the firing rate
𝜆𝑑[𝑦𝑡], under a Poisson distribution (eq. 2).
To accelerate the optimization procedure, we use a Fourier-domain representation
of the covariance function based on theKarhunen-Loéve expansion. (SeeAppendix
B for details.) Since the procedure described above can be performed independently
for each neuron, fitting the GPPID model is fully parallelizeable across neurons.

4.2 TheGP-regularizedGaussian IndependentDecoder (GPGID)

To perform inference in the GID (section 3.1.2), it is necessary to estimate the class-
conditional mean activity 𝜇𝑘𝑑 and the variance 𝜎2𝑑 for each neuron. For each 𝑑-th
neuron, the mean activities form a tuning curve, the vector 𝝁𝑑 = (𝜇1𝑑, … , 𝜇𝐾𝑑)𝑇 .
We estimate the tuning curve using the same approach as the PID (section 4.1), but
with a Gaussian likelihood instead of a Poisson likelihood. The model is as follows:

𝝁𝑑 ∼ 𝐺𝑃(0, 𝜅𝜃𝑑) (33)
x𝑑 ∣ 𝑦 = 𝑘 ∼ 𝒩(𝜇𝑑[𝑘]), 𝜎2𝑑), (34)

Note that each neuron has three hyperparameters: theGP prior’smarginal variance
𝜌𝑑 and length scale ℓ𝑑, and the likelihood’s observation noise variance 𝜎2𝑑 . As in
the GID’s model (section 3.1.2), we assume that the observation noise variance is
constant over classes. This restriction ensures that the classification boundary is
linear (see Appendix A).
To fit the model, we use empirical Bayes, as we did for inference in the GPPID.
The first step is to compute a point estimate of each neuron’s hyperparameters by
maximizing themodel evidence. Before proceeding, we need to introduce some no-
tation: the vector 𝝁𝑑[y] is the vector whose 𝑡-th element is given by (𝝁𝑑)𝑡 = (𝝁𝑑)𝑦𝑡 .
Intuitively, this vector contains the values from the 𝑑-th neuron’s tuning curve cor-
responding to each stimulus in the dataset. With this notation, the evidence maxi-

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

mization can be written as:

̂𝜃𝑑, 𝜎̂2𝑑 = argmax
𝜃𝑑 ,𝜎2𝑑

log∫𝑝(X∗𝑑 ∣ 𝝁𝑑, 𝜃𝑑)𝑝(𝝁𝑑 ∣ 𝜃𝑑) 𝑑𝝁𝑑 (35)

= argmax
𝜃𝑑 ,𝜎2𝑑

∫𝒩(𝝁𝑑[y]; 0, 𝜅𝜃(y, y))
𝑇
∏
𝑡=1

𝒩(𝑥𝑡[𝑑]); 𝜇𝑑[𝑦𝑡], 𝜎2𝑑) 𝑑𝝁𝑑 (36)

= argmax
𝜃𝑑 ,𝜎2𝑑

−12X
⊤
∗𝑑(𝜅𝜃(y, y) + 𝜎2𝑑𝐼)−1X∗𝑑 −

1
2 log |𝜅𝜃(y, y) + 𝜎2𝑑𝐼| −

𝑇
2 log 2𝜋

(37)

Since the objective function can be expressed analytically, we perform the maxi-
mization using a trust-region Newton method.
Then, for each neuron, we compute the MAP estimate of the tuning curve:

𝝁̂𝑑 = argmax
𝝁𝑑

(log𝒩(𝝁𝑑[y]; 0, 𝜅𝜃(y, y)) +
𝑇
∑
𝑡=1

log𝒩(𝑥𝑡[𝑑]; 𝜇𝑑[𝑦𝑡], 𝜎2𝑑)) (38)

The solution to this problem can be expressed analytically (Rasmussen &Williams,
2006):

𝝁̂𝑑 = 𝜅𝜃𝑑 (r, y)[𝜅𝜃𝑑 (y, y) + 𝜎2𝑑𝐼]−1X∗𝑑 (39)
However, for scalability, we use an equivalent procedure leveraging the same spec-
tral weight representation as in the GPPID. (See Appendix B for details.)

4.3 The Gaussian Process Multiclass Decoder (GPMD)

In this section, we introduce the the Gaussian ProcessMulticlass Decoder (GPMD),
which is multinomial logistic regression with a GP prior placed over the weights
for each neuron (see fig. 2). As in section 3.2.1, the multinomial logistic regression
model can be written:

𝑃(𝑦 = 𝑘 ∣ x) = 1
𝑍
𝑒w⊤

𝑘x+𝑏𝑘 , 𝑍 =
𝐾
∑
𝑘=1

𝑒w⊤
𝑘x+𝑏𝑘 (40)

wherew𝑘 is a vector containing the decoding weights for class 𝑘, 𝑏𝑘 is the offset for
class 𝑘, and 𝑍 is the normalizing constant.
We regularize the weight matrix by placing an independent zero-mean Gaussian
Process prior on each of its rows:

𝑊𝑑∗ ∼ 𝐺𝑃(0, 𝜅𝜃𝑑), (41)

Here 𝑊𝑑∗ is the 𝑑-th row of 𝑊 , which contains the decoding weights associated
with neuron 𝑑 across all stimuli, and 𝜅𝜃𝑑 is the RBF covariance function defined in
equation 27.

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

GP Prior

W
weight matrix

classes (K)

ne

ur
on

s

x
binned

spike counts

0 91 3 ×

Softmax
Normalization

!()
Classification
Probabilities

p

class

Figure 2: The GPMD model. A smoothing Gaussian Process prior is applied to
each row of a logistic regression weight matrixW to shrink the weights and to en-
sure that they vary smoothly across stimuli, mimicking the smoothness of neural
tuning curves. The weight matrix is then linearly combined with the neuron’s re-
sponse vector x to produce unnormalized scores for each decoding class. A softmax
function is used to transform the unnormalized scores into probabilities.

In the GPPID and GPGID, we used a GP prior to formalize our prior knowledge
that neuron’s tuning curves tend to be smooth. In the GPMD, we cannot apply that
prior knowledge directly, since the GPMD’s weights have no direct interpretation
in terms of tuning curves. Nonetheless, we can motivate our application of GP
prior with the following observation: since orientation is a continuous variable, the
decoding weights ought to vary smoothly as a function of orientation.
Like previous decoders, the GPMD has neuron-specific hyperparameters, which
allow different neurons to have decoding weights with different amplitudes and
different amounts of smoothness. This flexibility has two benefits: first, it allows
each neuron’s weights to adapt to the neuron’s response properties, and second, it
automatically discards untuned or noisy neurons as described in section 4.1, elimi-
nating the need for manual dataset preprocessing.
To fit the GPMD, we use variational inference to simultaneously learn both a poste-
rior estimate for the weights {𝑊,b} and point estimates for the prior hyperparame-
ters. Specifically, given an approximate posterior family 𝑞—which we choose to be
mean-field Gaussian—indexed by parameters 𝜙 and prior hyperparameters 𝜃, we
maximize the evidence lower bound (ELBO, see Blei et al. [2017] andHoffman et al.

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

[2013]) jointly with respect to 𝜙 and 𝜃:

̂𝜙, ̂𝜃 = argmax
𝑞𝜙,𝜃

𝔼𝑞[log𝑝(𝒟 ∣ 𝑊,b)] − 𝐷KL(𝑞 ∥ 𝑝) (42)

To calculate the likelihood term, we draw𝑀 = 3 samples from the variational poste-
rior {(𝑊 (𝑚),b(𝑚))}𝑀𝑚=1 ∼ 𝑞, and use these to compute aMonteCarlo approximation
of the expectation:

log𝑝(𝒟 ∣ 𝑊,b) ≈
𝑀
∑
𝑚=1

𝑇
∑
𝑡=1

1
𝑍
𝑒⟨w

(𝑚)
𝑦𝑡 ,x𝑡⟩+𝑏

(𝑚)
𝑦𝑡 (43)

where 𝑍 is the normalizing constant defined in Eq. 40. In principle, we could also
calculate this approximation using a subset of the data, or “minibatch” (Hoffman
et al., 2013), but our datasets are small enough that this is not necessary, and doing
so increases the approximation variance.
The KL-divergence term expands to a sum of KL divergences for each row of the
weightmatrix, since each row of thematrix is independent of the others. Assuming
𝑞1, … , 𝑞𝐾 are the mean-field variational distributions for each row of the weight
matrix, and 𝑝1, … , 𝑝𝐾 are the associated GP priors, the KL-divergence term reduces
to

𝐷KL(𝑞 ∥ 𝑝) =
𝐾
∑
𝑘=1

𝐷KL(𝑞𝑘 ∥ 𝑝𝑘) (44)

Each of the summands is easy to calculate analytically, since 𝑞𝑘 and 𝑝𝑘 are both
multivariate normal distributions. The approximate variational posterior 𝑞𝑘 is a di-
agonal normal distribution, and theGP prior for each column𝑝𝑘 is themultivariate
normal distribution𝒩(0, 𝜅𝜃𝑘(r, r)), where, as in theGPPIDmodel, r = (0, 1, … , 𝐾)⊤
defines the grid of class labels.
To make predictions, we approximate MAP inference by using the mode of the pos-
terior approximation 𝑞 as a point estimate of the weights𝑊 and b in the multino-
mial logistic regression model (eq. 40). Since we are only interested in the effects
of the prior, and not in using the posterior to assess prediction uncertainty, this
approach suffices.

4.3.1 Scaling GPMD inference

When maximizing the ELBO, there are two scaling concerns: the number of ex-
amples (𝑇) and the number of neurons (𝐷). It is well-known that the ELBO can
be scaled to huge numbers of examples by estimating the likelihood term using
a minibatch approximation (Hoffman et al., 2013). However, even when using a
minibatch approximation, the KL-divergence term must be calculated at each gra-
dient step, and from it costs∼ 𝐷𝐾3 to evaluate (eq. 44). For large values of𝐷, which
are expected in high-dimensional neural datasets, the KL-divergence term evalua-
tion makes stochastic gradient descent far too slow.

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

We solve this problem by representing𝑊 ⊤ using a basis Ψ ∈ ℂ𝐾×𝑀 , i.e.𝑊 ⊤ = Ψ𝑈.
Then, we place an independent normal prior on each entry of 𝑈. This allows the
KL-divergence term to be evaluated with ∼ 𝐷𝑀 complexity, since it becomes a
KL divergence between two diagonal normal distributions. The only difficulty is
choosingΨ such that𝑊 turns out to have the desired Gaussian process distribution
when 𝑈 is a standard normal.
It can be shown that the appropriate choice of Ψ is the unitary Fourier basis (see
Appendix B). With this basis, the entry 𝑈𝑖𝑑, the element in the 𝑑-th column of 𝑈
corresponding to Fourier frequency 𝑖, must satisfy two conditions. The first condi-
tion is conjugacy, 𝑈𝑖𝑑 = 𝑈∗

−𝑖𝑑, which ensures that𝑊 is real. The second condition
is on the distribution, which must be a zero-mean complex normal with variance

𝔼[𝑈𝑖𝑑𝑈∗
𝑖𝑑] =

1
√𝑀

ℱ[𝜅𝜃𝑑] (
𝑖
2𝜋) (45)

This spectral formulation assumes the stimuli lie on [0, 2𝜋], but it can be trivially
extended to any domain.

5 Results

5.1 Evaluation and performance

We benchmarked each decoder by calculating its mean absolute test error on the
monkey (Graf et al., 2011), ferret (this paper), and mouse (Stringer et al., 2021)
datasets, using five-fold cross-validation repeated ten times (fig. 3). We examined
five monkey datasets, one ferret dataset, and three mouse datasets. Figure 3A re-
ports the average scores for each animal; separate scores are reported in supplemen-
tary figure 9. Note that theGID decoder has two variants: the standard formulation,
which has a quadratic decision boundary, and the formulation described in section
3.1.2, which has a linear decision boundary.
The rank ordering of the models remained largely consistent across datasets. In
general, the correlation-blind decoders (the PID and GID) performed worse than
the correlation-aware decoders, which is consistent with previous decoding stud-
ies (Graf et al., 2011; Stringer et al., 2021). Their regularized variants (the GPPID
and GPGID) performed better, but still did not match the performance of the best
correlation-aware decoders.
The GPMD set or matched state-of-the-art performance on all datasets. An impor-
tant advantage of its Bayesian approach is that hyperparameters are learned auto-
matically, which allowed the GPMD to adapt to the conditions present in different
datasets. By contrast, models that set hyperparameters manually exhibited occa-
sional poor performance—for example, the SND’s scores on the monkey datasets.
These results could have been be obscured by the choice of error metric. For ex-
ample, repeating the same benchmark using “proportion correct” instead of mean

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

10 20 30

GPMD
SND

GLMNET
ELD

GPGID
GID_LINEAR

GID
GPPID

PID

Monkey

5 10 15 20 25
Mean Abs. Err. ()

Ferret

1 2 5 10

Mouse

-180-120-60 0 60 120
Error ()

10−4

10−2

100

Tr
ia

l p
ro

po
rti

on

GPMD misclassifies
direction less

0 100 101 102

Absolute Error ()

0.25

0.50

0.75

1.00

C
D

F

GPMD

A

B C

Figure 3: A: Test error on monkey (Graf et al., 2011), ferret, and mouse (Stringer
et al., 2021) datasets, estimated using five-fold cross-validation repeated ten times.
Since there are five monkey and three mouse datasets, we trained the models on
each dataset separately and averaged the scores. We did not train the PID and GP-
PID decoders on the ferret and mouse datasets, which contain real-valued calcium
data, because they assume integer features. Error bars represent the standard error
of the mean. B: Error distributions on the third monkey dataset. The GPMD has
more mass concentrated around 0∘ error (correct classification) than the other de-
coders. The most common source of error appears to be misclassifying direction,
a 180∘ error; the GPMD does this less than the other decoders. C: Empirical CDF
of errors on the third monkey dataset. The GPMD classifies higher fractions of the
dataset at lower errors than the other decoders, demonstrating its superior perfor-
mance.

absolute error improved the performance of the ELD substantially (see supplemen-
tary figure 8), qualitatively replicating the results of Graf et al. (2011). To ensure
that our results were not artifacts of the error metric, we used the empirical error
cumulative distribution function to characterize each decoder’s errors in more de-
tail (fig. 3B). Good decoders should classify higher fractions of the dataset at lower
errors, producing curves that lie up and to the left. We found that the GPMD out-
performed ormatched all the other decoders on all the datasets (see supplementary
figure 10).
Our results show that both regularization and exploiting correlations improved de-
coding performance substantially. The regularized correlation-blind decoders, the

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

PID
GPPID
GID

GID_LINEAR
GPGID

ELD
GLMNET

SND
GPMD

1000 2000 3000
Train set size

101

102

M
ea

n
Ab

s.
 E

rr.

1000 2000 3000
Train set size

10−2

100

Tr
ai

n
tim

e
(s

)

0 10000 20000
Neurons

101

M
ea

n
Ab

s.
 E

rr.

0 10000 20000
Neurons

10−1

101

103

Tr
ai

n
tim

e
(s

)

A B

C D

Figure 4: A: Cross-validated model performance with varying amounts of training
data. We chose random subsets of the third monkey dataset. The GPMD continues
to benefit from increasing training data, and does exhibit asymptotic behavior like
most of the othermodels. B: Training times for the ablation study in (A). Like all the
models, the GPMD shows essentially constant training times. This is because the
monkey dataset is small enough that training cost is dominated by constant factors.
C: Cross-validated model performance with varying amounts of neurons (features).
We chose random subsets of the first mouse dataset. The GPMD’s careful regular-
ization avoids undesirable double-descent characteristics while achieving state-of-
the-art performance for all feature sizes. D: Training times for the ablation study
in (C). The GPMD is nearly two orders of magnitude faster than logistic regression,
a less sophisticated model, and trains in a few minutes on the largest datasets.

GPPID and GPGID, outperformed their unregularized analogues, the GID and PID.
The GLMNET decoder, which is correlation aware, outperformed the correlation-
blind GPPID and GPGID. Finally, the SND and GPMD, which are both regularized
and correlation-aware, outperformed all other decoders.
The relative impact of these strategies depended on dataset dimensionality. For
small datasets, such as the monkey dataset with ∼ 150 neurons, both regulariza-

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

0.0 0.5 1.0 1.5
0.0

2.5

5.0

7.5
D

en
si

ty

Amplitudes ()

0 20 40 60
0.000

0.025

0.050

0.075

Lengthscales ()

0

1
Neuron 39, = 0.0, = 51.0

0

1

M
ea

n
fir

in
g

ra
te

Neuron 112, = 0.0, = 39.3

0 90 180 270 360
Stimulus Angle (°)

0

1
Neuron 76, = 0.0, = 43.3

0

15 Neuron 72, = 1.0, = 8.5

0

25
Neuron 98, = 0.6, = 1.9

0 90 180 270 360
Stimulus Angle (°)

0

15
Neuron 96, = 0.7, = 10.0

A

B C

Figure 5: A: GPMDhyperparameter distributions on the thirdmonkey dataset. The
distribution of amplitudes has a peak near zero, and the distribution of lengthscales
has a secondmodenear 45, indicating an automatic relevance determination (ARD)
effect. B: The ARD-eliminated neurons have amplitudes near zero and, often, long
lengthscales. C: The neurons that were not eliminated have positive amplitudes
andmuch shorter lengthscales. Some have simple “Gaussian bump” tuning curves,
whereas others have more complex tuning characteristics.

tion and exploiting correlations had a substantial effect. For example, adding regu-
larization to the GID (using the GPGID) decreased its mean absolute error by 16.3
degrees, and exploiting correlations (using the GPMD), decreased error by another
9.4 degrees. For high-dimensional datasets where it was easy to overfit, such as
the mouse dataset, which was recorded from ∼ 20, 000 neurons, regularization be-
came the most important strategy. In fact, on the mouse dataset, the regularized
correlation-blind GPGID did just as well as some of the correlation-aware decoders.
To characterize the GPMD’s performance and training times with respect to dataset
size and dimensionality, we performed ablation studies on both the number of train-
ing examples and the number of neural features (fig. 4).
The GPMD performed well at all training set sizes (fig. 4A) implying that its in-
ductive biases were well-calibrated—that is, strong enough to permit good perfor-
mance with few training examples, but flexible enough to allow continued learning
with many training examples. We believe the good calibration is due to the flexibil-

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

−50

0

50

100

−50

0

50

100

20 40 60
−20

0

20

40

20 40 60
−20

0

20

40

100 200 100 200
Original Data Poisson Surrogate

G
PM

D
25
°/3
0°

B
as
is

G
PP
ID
25
°/3
0°

B
as
is

GPPID
Separatrix

GPMD
Separatrix

GPMD
SeparatrixGPMD

Separatrix

GPMD
Separatrix

GPPID
Separatrix

GPPID
Separatrix

GPPID
Separatrix

A

100 200 300

−25

0

25

50

GPPID 0°/5° Basis

−50 0 50

−50

−25

0

25
GPMD 0°/5° Basis

0°

90°

180°

270°

360°
B

Figure 6: A: To investigate the impact of correlations on decoding performance,
we projected the 25∘ and 30∘ data classes to two dimensions using an orthogonal-
ized bases derived from the 25∘ and 30∘ decoding vectors from the correlation-blind
GPPID and correlation-aware GPMD. The data displayed significant correlations
in the GPPID basis, making the GPPID separatrix a poor decision boundary. The
GPPID separatrix only performed well when correlations were removed from the
dataset using a Poisson surrogate model. In the GPMD basis, the difference be-
tween the correlated and Poisson surrogate datasets was much less pronounced,
indicating that the GPMD’s projection decorrelated the data somewhat. B: Class
correlation ellipses plotted using the GPPID and GPMD bases derived from zero-
and five-degree decoding vectors. The GPMD basis produced far superior class sep-
aration.

ity of the GP prior, which learns the structure present in the neural dataset. Models
with stronger inductive biases, such as the GPGID, which assumes independence,
or the SND, which has many hard-coded parameters, had difficulty learning from
increasing numbers of training examples.

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

0 200 400
Position (mm)

0

100

200

300

400

500
Po

si
tio

n
(m

m
)

Ferret

0 200 400
Position (mm)

0

100

200

300

400

500
Mouse

0°

90°

180°

270°

Figure 7: A map of each neuron’s position, colored by its preferred angle as calcu-
lated by the GPMD decoder. The ferret neurons are clustered into cortical columns
according to their direction selectivity, but the mouse neurons are not.

The GPMD also performed well with any number of neural features (fig. 4C). Lin-
ear decoders with no or poor regularization, such as the GID and ELD, did not
exhibit this property; in fact, their performance became worse as the number of
neural features increased from the “classical” to the “interpolating” regime, pro-
ducing a phenomenon known as the “double descent” error curve (Belkin et al.,
2019). Properly regularized models such as the GPGID and GPMD did not display
this phenomenon and gave accurate performance estimates for all numbers of neu-
ral features.
Thanks to theGPMD’s approximate inference, GPUacceleration, and spectralweight
representation, it trained quickly, producing fast cross-validated error estimates
that exhibited favorable scaling with respect to both observations and neurons (fig-
ures 4B and 4D). For the largest datasetwith 20,000 neurons, it took 131+/- 0.82 sec-
onds to train (roughly 20 minutes of wall-clock time) for a ten-fold cross-validation
estimate. By comparison, a performance-tuned GLMNET model took 618 +/- 6.40
seconds to train (roughly 1 hour and 45 minutes of wall-clock time) for the same
estimate. Given the training time trends shown in the training-set size ablation
(fig. 4BB) and neural feature ablation (fig. 4D) studies, we expect the GPMD to han-
dle even larger datasets without difficulty.
Scaling to large datasets was further enhanced by the GPMD’s automatic dataset
preprocessing. Decoding studies, such asGraf et al. (2011), often select only strongly
tuned neurons for decoding, since noisy neurons make it easier for models to over-
fit. Manual selection rules have two disadvantages: first, they may ignore neurons
that look noisy but actually carry information, and second, they can require pro-
hibitive amounts of time if human input is needed (e.g., for choosing initialization
points for nonlinear curve fitting).
The GPMD’s Bayesian formulation automatically discarded noise neurons by set-
ting their prior amplitudes to zero (fig. 5), a phenomenon known as automatic rele-

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

vance determination (MacKay, 1992; Neal, 1996). Examples of tuning curves from
automatically discarded and automatically retained neurons are shown in figure
5. Some of the automatically retained neurons displayed the bimodal “Gaussian
bump” structure commonly sought by manual selection rules. Others displayed
more complicated tuning patterns that would likely be ignored by a manual selec-
tion rule.
Our implementation of the empirical linear decoder (ELD, see Graf et al. [2011])
replicated the original paper’s results only qualitatively, not quantitatively. Our
implementation of theELDdid outperform thePoisson IndependentDecoder (PID)
when using the “proportion correct” error criterion, as in the original paper (see
supplementary figure 8). However, it did not achieve the performance reported in
the original paper. Because our implementation of the PID, a very simple decoder,
also did not match the performance of the PID in Graf et al. (2011), we believe the
discrepancy was caused by data preprocessing. We were not able to replicate the
data preprocessing steps described in Graf et al. (2011) precisely, since the original
code has been lost.

5.2 Scientific implications

Previous studies, such as Graf et al. (2011) and Stringer et al. (2021), have used
correlation-blind and correlation-aware decoders to investigate the effects of cor-
relations on decoding performance. In all cases, they have found that correlation-
aware decoders outperform correlation-blind decoders. However, the performance
difference could be due to the lack of regularization in the correlation-blind de-
coders. In the sample-poor data regimes typically studied, the ideal weights of
correlation-blind decoders are often corrupted by substantial amounts of noise.
Our results show that the performance difference between correlation-blind and
correlation-aware decoders is fundamental, and not just a result of regularization.
The correlation-aware decoders consistently perform better than even the regular-
ized correlation-blind decoders (fig. 3), though regularization does narrow the gap
significantly.
To characterize the effects of correlations on decoding performance, we visualized
the decoding separatrices given by a correlation-blind model, the GPPID, and a
correlation-aware model, the GPMD, on the third monkey dataset (fig. 6A). To
reduce the 147 neural dimensions to two dimensions for visualization, we first
selected a model to visualize, and two classes 𝑖 and 𝑗. Then, we formed a two-
dimensional basis by orthogonalizing the decoding weight vectors𝑊𝑖∗ and𝑊𝑗∗. Us-
ing this basis, we were able to plot the data for classes 𝑖 and 𝑗; the source model’s
separatrix, which lay in the basis span; and approximate separatrices from other
models, which had to be projected onto the basis. We performed this procedure
both the GPMD and GPPID models, since each two-dimensional basis could ex-
actly represent only the separatrix from its source weight matrix.
We first wished to determine whether the data deviated significantly from the inde-

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

pendent Poisson model assumed by the GPPID. To do this, we generated an uncor-
related dataset using a Poisson distribution that matched the data’s empirical mean
(referred to in the figure as the “Poisson surrogate” dataset) and plotted both it and
the real dataset in the same basis. Compared to the real data, the Poisson surrogate
data exhibit much less variance and tilt relative to the basis vectors, showing that
the correlations in the real data can significantly affect decoding. However, in the
GPMD basis, the differences between the real and surrogate datasets are much less
pronounced, implying that the GPMD’s weight matrix incorporates a linear trans-
form that “decorrelates” the data somewhat.
Next, we plotted the class separatrices along with the data. The separatrix given by
the GPPID successfully separated the Poisson surrogate data, but failed to separate
the real dataset because of correlation-induced distortions. However, as expected,
the GPMD separatrix successfully took the data’s correlations into account.
To visualize how the entire set of 72 classes related to each other, we plotted each
class’s correlation ellipse on the basis given by the zero- and five-degree basis vec-
tors from each model (fig. 6B). The GPPID’s basis did a poor job of separating
the classes, but the GPMD’s basis separated them fairly well. In the GPMD’s ba-
sis, the ellipses from classes 180 degrees apart appear in nearly identical locations,
confirming that that the GPMD identified grating angles more precisely than grat-
ing drift direction, a phenomenon previously observed in our performance bench-
marks (fig. 3C).
Finally, we used each decoder to form a spatial map of each neuron’s preferred
decoding angle, calculated for the neuron 𝑖 as the argmax of the weight matrix
column 𝑊∗𝑖. We found that the GPMD decoder clustered the ferret neurons into
direction-selective columns, but not themouseneurons (fig. 7). This result is consis-
tent with previous studies on direction selectivity in mouse and ferret visual cortex,
which have discovered column structure in ferret visual cortex, but not in mouse
(Rochefort et al., 2011).

6 Conclusion

Linear decoders are a natural way to characterize the information in neural popula-
tions. While all linear decoders share the same basic classification rule, they make
differing assumptions about the neural population that affect both accuracy and
parameter inference. Decoders with restrictive assumptions, like correlation-blind
decoders based on independent generative models, generally have the worst perfor-
mance. More accurate linear decoders (e.g., GLMNET)model dependencies across
neurons, and the most accurate (e.g., the SND and GPMD) take into account—at
least implicitly—dependencies across both neurons and stimuli.
In this paper, we present a suite of new decoders which share a common regular-
ization strategy. The correlation-aware decoder in the suite, the GPMD, explicitly
models correlations across neurons and stimuli. We find that it matches or out-

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

performs all other decoders on three real world datasets, from monkey, ferret and
mouse. Furthermore, it scales to the very largest datasets using a combination of
approximate Bayesian inference, spectral methods, and GPU acceleration.
We investigated the effect of neural correlations on decoding by comparing the per-
formance of the regularized correlation-aware and correlation-blind decoders. We
found that the performance gap between correlation-aware and correlation-blind
decoders is fundamental—that is, it is not an artifact of the sophisticated regulariza-
tion schemes commonly used by correlation-aware decoders. This confirmed the
results of previous studies. Even with sophisticated regularization, the correlation-
blind decoders still performed worse than the correlation-aware decoders. Thus,
we may conclude that exploiting neural correlations can significantly improve de-
coding performance.
Visualizations of the decoding separatrices produced by each decoder indicate that
the real datasets differ significantly from the assumptionsmade by correlation-blind
decoders. The correlation-aware decoders discovered low-dimensional subspaces
that “decorrelated” the data, making the transformed data match independence
assumptions more closely.
Finally, we note that our decoder discovered the cortical column structure (or lack
therof) in ferret and mouse visual cortex.

Acknowledgements

This work was supported by grants from the Simons Collaboration on the Global
Brain (SCGBAWD543027), theNIHBRAIN initiative (NS104899 andR01EB026946),
and a U19 NIH-NINDS BRAIN Initiative Award (5U19NS104648). Jacob L. Yates
is supported by the NIH (K99EY032179). Benjamin Scholl is supported by the NIH
(K99EY031137) and thanks the Max Planck Society and Max Planck Florida Insti-
tute for their generous support. We thank A. B. A. Graf, Al Kohn, M. Jazayeri, and
J. A. Movshon for providing the primate datasets; and C. Stringer, M. Michaelos,
and M. Pachitariu for providing the publicly available mouse datasets.

References
Abbott, L. F. (1994).Decodingneuronal firing andmodelling neural networks.Quar-

terly reviews of biophysics, 27(3), 291–331. https://doi.org/10.1017/s0033583500003024
Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population

coding and computation. Nature Reviews Neuroscience, 7(5), 358–366.
Azevedo-Filho, A., & Shachter, R. D. (1994). Laplace’s method approximations for

probabilistic inference in belief networks with continuous variables. In
R. L. de Mantaras & D. Poole (Eds.), Uncertainty proceedings 1994 (pp. 28–
36). Morgan Kaufmann. https : / /doi .org/10 .1016/B978- 1 - 55860- 332 -
5.50009-2

25

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1017/s0033583500003024
https://doi.org/10.1016/B978-1-55860-332-5.50009-2
https://doi.org/10.1016/B978-1-55860-332-5.50009-2
https://doi.org/10.1101/2021.08.26.457795

Bartolo, R., Saunders, R. C., Mitz, A. R., & Averbeck, B. B. (2020). Information-
limiting correlations in large neural populations. Journal of Neuroscience,
40(8), 1668–1678.

Beck, J., Ma, W., Latham, P., & Pouget, A. (2007). Probabilistic population codes
and the exponential family of distributions. Progress in brain research, 165,
509–519.

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias-variance trade-off. Proceedings of
the National Academy of Sciences of the United States of America, 116(32),
15849–15854. https://doi.org/10.1073/pnas.1903070116

Berens, P., Ecker, A. S., Cotton, R. J., Ma, W. J., Bethge, M., & Tolias, A. S. (2012). A
fast and simple population code for orientation in primate V1. The Journal
of neuroscience: the official journal of the Society for Neuroscience, 32(31),
10618–10626. https://doi.org/10.1523/JNEUROSCI.1335-12.2012

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Blei, D.M., Kucukelbir, A., &McAuliffe, J. D. (2017). Variational inference:A review

for statisticians. Journal of the American Statistical Association, 112(518),
859–877. https://doi.org/10.1080/01621459.2017.1285773

Ecker, A. S., Berens, P., Tolias, A. S., & Bethge, M. (2011). The effect of noise cor-
relations in populations of diversely tuned neurons. The Journal of Neuro-
science, 31(40), 14272–14283.

Földiák, P. (1993). The ‘ideal homunculus’: Statistical inference from neural pop-
ulation responses. In F. H. Eeckman & J. M. Bower (Eds.), Computation
and neural systems (pp. 55–60). Springer.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for general-
ized linear models via coordinate descent. Journal of statistical software,
33(1), 1–22.

Graf, A. B. A., Kohn, A., Jazayeri, M., & Movshon, J. A. (2011). Decoding the ac-
tivity of neuronal populations in macaque primary visual cortex. Nature
neuroscience, 14(2), 239–245. https://doi.org/10.1038/nn.2733

Hiner, M. C., Rueden, C. T., & Eliceiri, K. W. (2017). Imagej-matlab: A bidirectional
framework for scientific image analysis interoperability. Bioinformatics,
33(4), 629–630.

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational
inference. Journal of machine learning research: JMLR, 14, 1303–1347.

Kanitscheider, I., Coen-Cagli, R., &Pouget, A. (2015).Origin of information-limiting
noise correlations.Proceedings of theNationalAcademyof Sciences, 112(50),
E6973–E6982.

Kohn, A., Coen-Cagli, R., Kanitscheider, I., & Pouget, A. (2016). Correlations and
neuronal population information.Annual reviewof neuroscience, 39(1), 237–
256. https://doi.org/10.1146/annurev-neuro-070815-013851

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with
probabilistic population codes. Nature Neuroscience, 9, 1432–1438.

MacKay, D. J. C. (1992). Bayesian interpolation. Neural computation, 4(3), 415–447.
https://doi.org/10.1162/neco.1992.4.3.415

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1523/JNEUROSCI.1335-12.2012
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1038/nn.2733
https://doi.org/10.1146/annurev-neuro-070815-013851
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1101/2021.08.26.457795

Moreno-Bote, R., Beck, J., Kanitscheider, I., Pitkow, X., Latham, P., & Pouget, A.
(2014). Information-limiting correlations.NatNeurosci, 17(10), 1410–1417.
https://doi.org/10.1038/nn.3807

Neal, R. M. (1996). Bayesian learning for neural networks. Springer, New York, NY.
https://doi.org/https://doi-org.ezproxy.princeton.edu/10.1007/978-1-
4612-0745-0

Nelder, J. A., &Mead, R. (1965). A simplexmethod for functionminimization.Com-
puter Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308

Nirenberg, S., & Latham, P. E. (2003). Decoding neuronal spike trains: How impor-
tant are correlations? PNAS, 100, 7348–7353.

Park,M.,Weller, J. P., Horwitz, G. D., & Pillow, J.W. (2014). Bayesian active learning
of neural firing ratemapswith transformed gaussian process priors.Neural
Computation, 26(8), 1519–1541. http://www.mitpressjournals .org/doi/
abs/10.1162/NECO_a_00615

Peirce, J. W. (2007). Psychopy—psychophysics software in python. Journal of neu-
roscience methods, 162(1-2), 8–13.

Pnevmatikakis, E. A., & Giovannucci, A. (2017). Normcorre: An online algorithm
for piecewise rigid motion correction of calcium imaging data. Journal of
neuroscience methods, 291, 83–94.

Pologruto, T. A., Sabatini, B. L., & Svoboda, K. (2003). Scanimage: Flexible software
for operating laser scanning microscopes. Biomedical engineering online,
2(1), 1–9.

Rad, K. R., & Paninski, L. (2010). Efficient, adaptive estimation of two-dimensional
firing rate surfaces via gaussian process methods. Network: Computation
in Neural Systems, 21(3-4), 142–168.

Rasmussen, C. E., &Williams, C. K. I. (2006).Gaussian processes for machine learn-
ing. MIT Press.

Rochefort, N. L., Narushima, M., Grienberger, C., Marandi, N., Hill, D. N., & Kon-
nerth, A. (2011). Development of direction selectivity in mouse cortical
neurons. Neuron, 71(3), 425–432. https://doi.org/10.1016/j.neuron.2011.
06.013

Schneidman, E., Bialek, W., & Berry, M. J. (2003). Synergy, redundancy, and inde-
pendence in population codes. J Neurosci, 23(37), 11539–11553.

Scholl, B.,Wilson, D. E., & Fitzpatrick, D. (2017). Local orderwithin global disorder:
Synaptic architecture of visual space. Neuron, 96(5), 1127–1138.

Stringer, C., Michaelos, M., Tsyboulski, D., Lindo, S. E., & Pachitariu, M. (2021).
High-precision coding in visual cortex. Cell, 184(10), 2767–2778.e15. https:
//doi.org/10.1016/j.cell.2021.03.042

Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal dis-
charge rate and its implications for psychophysical performance. Nature,
370(6485), 140–143. https://doi.org/10.1038/370140a0

Zou, H., &Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2), 301–320.

27

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1038/nn.3807
https://doi.org/https://doi-org.ezproxy.princeton.edu/10.1007/978-1-4612-0745-0
https://doi.org/https://doi-org.ezproxy.princeton.edu/10.1007/978-1-4612-0745-0
https://doi.org/10.1093/comjnl/7.4.308
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00615
http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00615
https://doi.org/10.1016/j.neuron.2011.06.013
https://doi.org/10.1016/j.neuron.2011.06.013
https://doi.org/10.1016/j.cell.2021.03.042
https://doi.org/10.1016/j.cell.2021.03.042
https://doi.org/10.1038/370140a0
https://doi.org/10.1101/2021.08.26.457795

A Linearity of the PID and GID decoders

Both the GID and the PID decoders, under appropriate assumptions, have linear
decision boundaries. To derive both decision boundaries at the same time, let us
consider themore general case of a naïveBayes decoder as described in section 3.1.1,
but with an exponential family likelihood (Bishop, 2006). That is, the likelihood of
the 𝑑th element of the feature vector x𝑑 can be written as

𝑃(x𝑑 ∣ 𝑦 = 𝑘; 𝜂𝑘𝑑) = ℎ(x𝑑)𝑔(𝜂𝑘𝑑) exp (𝜂𝑘𝑑𝑢(x𝑑)) (46)

where 𝜂 is the natural parameter and the sufficient statistic 𝑢 ∶ ℝ → ℝ is a function
of x𝑑.
With this likelihood in mind, we can begin solving for the decision boundary. Our
class prediction ̂𝑦 for a given example x is

̂𝑦 = argmax
𝑘∈{1,…,𝐾}

𝑃(𝑦 = 𝑘 ∣ x) (47)

= argmax
𝑘∈{1,…,𝐾}

𝑃(x ∣ 𝑦 = 𝑘)𝑃(𝑦 = 𝑘)
∑𝐾

𝑘′=1 𝑃(x ∣ 𝑦 = 𝑘′)𝑃(𝑦 = 𝑘′)
(48)

If we assume that the prior probabilities are constant, i.e. 𝑃(𝑦 = 𝑘) = 𝑃(𝑦 = 𝑘′) for
every 𝑘, 𝑘′ ∈ {1, … , 𝐾}, then this simplifies to

= argmax
𝑘∈{1,…,𝐾}

𝑃(x ∣ 𝑦 = 𝑘)
∑𝐾

𝑘′=1 𝑃(x ∣ 𝑦 = 𝑘′)
(49)

Introducing a log under the argmax, dropping terms that don’t depend on 𝑘, and
substituting 𝑃(x) = ∏𝐷

𝑑=1 𝑃(x𝑑), we simplify further:

= argmax
𝑘∈{1,…,𝐾}

log𝑃(x ∣ 𝑦 = 𝑘) − log
𝐾
∑
𝑘′=1

𝑃(x ∣ 𝑦 = 𝑘′) (50)

= argmax
𝑘∈{1,…,𝐾}

𝐷
∑
𝑑=1

log𝑃(x𝑑 ∣ 𝑦 = 𝑘) (51)

Writing out the exponential family form, we have

= argmax
𝑘∈{1,…,𝐾}

𝐷
∑
𝑑=1

log (ℎ(x𝑑)𝑔(𝜂𝑘𝑑) exp (𝜂𝑘𝑑𝑢(x𝑑))) (52)

= argmax
𝑘∈{1,…,𝐾}

𝐷
∑
𝑑=1

logℎ(x𝑑) + log 𝑔(𝜂𝑘𝑑) + 𝜂𝑘𝑑𝑢(x𝑑) (53)

= argmax
𝑘∈{1,…,𝐾}

𝐷
∑
𝑑=1

log 𝑔(𝜂𝑘𝑑) + 𝜂𝑘𝑑𝑢(x𝑑) (54)

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

This will simplify to the form of a linear decoder as long as the sufficient statistic of
the exponential distribution 𝑢(x𝑑) of the form 𝑢(x𝑑) = 𝛼x𝑑 where 𝛼 is a scalar. In
that case, the entries of the weight matrix are given by the natural parameters

𝑊𝑘𝑑 = 𝛼𝜂𝑘𝑑 (55)

and the entries of the intercept vector b are given by

b𝑘 =
𝐷
∑
𝑑=1

log 𝑔(𝜂𝑘𝑑) (56)

Using these definitions, we can write

̂𝑦 = argmax
𝑘∈{1,…,𝐾}

(𝑊x + b)𝑘 (57)

which is the form of a linear decoder.
In the case of the Poisson IndependentDecoder, the sufficient statistic is the identity
function, the natural parameter of the Poisson distribution is given by 𝜂𝑘𝑑 = log 𝜆𝑘𝑑
and 𝑔(𝜂𝑘𝑑) = 𝑒−𝜆𝑘𝑑 . Thus, for the PID,

𝑊𝑘𝑑 = log 𝜆𝑘𝑑 (58)

b𝑑 = −
𝐾
∑
𝑘=1

𝜆𝑘𝑑 (59)

The case of the Gaussian Independent Decoder is slightly more complicated, since
the Gaussian sufficient statistic only takes the proper form if the variance 𝜎2 can
be incorporated into ℎ(x𝑑), a term we dropped from the argmax. For this dropping
to be valid, we must constrain 𝜎𝑘𝑑 = 𝜎𝑘′𝑑 for all 𝑘, 𝑘′ ∈ {1, … , 𝐾}. If this is true,
then the sufficient statistic is 𝑢(x𝑑) = x𝑑/𝜎𝑑, the natural parameter is given by
𝜂𝑘𝑑 = 𝜇𝑘𝑑/𝜎𝑑, and 𝑔(𝜂𝑘𝑑) = exp (− 𝜇2𝑘𝑑

2𝜎2𝑘𝑑
). Thus, for the GID,

𝑊𝑘𝑑 =
𝜇𝑘𝑑
𝜎2𝑑

(60)

b𝑑 = −
𝐾
∑
𝑘=1

𝜇2𝑘𝑑
2𝜎2𝑑

(61)

B Spectral GP regression

B.1 With Gaussian noise

In this section we demonstrate how to solve a 1-D GP regression problem in the
spectral domain. Consider a regression dataset {𝑥𝑡, 𝑦𝑡}⊤𝑡=1 with 𝑦 ∈ ℝ and, without

29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

loss of generality, 𝑥 ∈ [−𝜋, 𝜋]. Note that we do not require the 𝑥 values to lie on a
grid. We can concatenate the training examples and labels into vectors as follows:
x = (𝑥1, … , 𝑥𝑡)⊤ and y = (𝑦1, … , 𝑦𝑡)⊤.
We assume that the values of y are noisy observations of a zero-mean Gaussian
process 𝑧 where z𝑖 = 𝑧(x𝑖), i.e. y𝑖 = z𝑖 + 𝜖 where 𝜖 ∼ 𝒩(0, 𝜎2). Our probability
model can be written:

𝑝(y, z) = 𝑝(y ∣ z)𝑝(z) (62)
= 𝒩(y; 𝜇 = z, Σ = 𝜎2𝐼)𝒩(z, 𝜇 = 0, Σ = 𝐾𝜃(x, x)) (63)

Here 𝐾𝜃(x, x) is the kernel matrix between x and x. If 𝜅𝜃(⋅) is the stationary kernel
function with hyperparameters 𝜃, then 𝐾𝜃(x, x)𝑖𝑗 = 𝜅𝜃(x𝑖 − x𝑗). To infer the GP
hyperparameters using type-II maximum likelihood, we wish to maximize the log
evidence given by

log𝑝(y ∣ 𝜃) = log∫𝑝(y ∣ z, 𝜃)𝑝(z ∣ 𝜃) 𝑑z (64)

= −12y
⊤(𝐾 + 𝜎2𝐼)−1y − 1

2 log |𝐾 + 𝜎2𝐼| − 𝑇
2 log 2𝜋 (65)

However, each evaluation of this expression has cost ∼ 𝑛3, which is intractable for
large 𝑛. Our goal is to decorrelate z so that the prior covariance becomes diagonal,
dropping the cost to ∼ 𝑛.
To achieve this we will represent the GP 𝑧(𝑥) using a Fourier series:

𝑧(𝑥) = 1
√𝑁

𝑁/2
∑

𝑘=−𝑁/2+1
𝐹𝑘 exp(𝑖𝑘Ω𝑥) (66)

where Ω = 2𝜋/𝑁 and the 𝐹𝑘 are the Fourier series coefficients. Our goal is to find
the distribution of𝐹𝑘 such that 𝑧 is a real zero-meanGaussianwithCov[𝑧(𝑥), 𝑧(𝑥′)] =
𝜅𝜃(𝑥, 𝑥′).
To ensure that 𝑧(𝑥) is real, we require 𝐹𝑘 = 𝐹∗−𝑘. This requirement can be verified by
expanding equation 66 in terms of sines and cosines. To ensure that 𝑧(𝑥) is Gaus-
sian, we require that the 𝐹𝑘 are independent Gaussian random variables, which
implies that they are jointly Gaussian. Since 𝑧(𝑥) is a linear combination of the 𝐹𝑘s,
this implies it is also Gaussian. To ensure that 𝑧(𝑥) is zero mean, we require that
each 𝐹𝑘 is zero mean. Because expectation is a linear operator, this ensures that
𝑧(𝑥) is also zero mean.
The trickiest task is finding the variance of the 𝐹𝑘s that induces the proper GP dis-
tribution on 𝑧. We can construct an equation to solve for it as follows: given a lag

30

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

𝜏 = 𝑠 − 𝑡 between two 𝑥 values, we have the covariance

𝜅(𝜏) = 𝔼[𝑧(𝑠)𝑧(𝑡)∗] (67)

𝜅(𝜏) = 1
𝑁 𝔼[

𝑁/2
∑

𝑘=−𝑁/2+1
𝐹𝑘 exp(𝑖𝑘Ω𝑠)

𝑁/2
∑

𝑘′=−𝑁/2+1
𝐹∗𝑘′ exp(−𝑖𝑘′Ω𝑡)] (68)

𝜅(𝜏) = 1
𝑁

𝑁/2
∑

𝑘,𝑘′=−𝑁/2+1
𝔼[𝐹𝑘𝐹∗𝑘′] exp(𝑖Ω(𝑘𝑥 − 𝑘′𝑡)) (69)

Because the Fourier coefficients are independent, we have 𝔼[𝐹𝑘𝐹∗𝑘′] = 0 for all 𝑘 ≠
𝑘′.

𝜅(𝜏) = 1
𝑁

𝑁/2
∑

𝑘=−𝑁/2+1
𝔼[𝐹𝑘𝐹∗𝑘] exp(𝑖𝑘Ω𝜏) (70)

This is just a Fourier series. Thus, we can use the Fourier coefficient formula to
invert the equation and solve for 𝔼[𝐹𝑘𝐹∗𝑘]:

𝔼[𝐹𝑘𝐹∗𝑘] =
1

2𝜋√𝑁
∫

𝜋

−𝜋
𝜅(𝜏) exp (−2𝜋𝑖 𝑘2𝜋𝜏) 𝑑𝜏 (71)

At this point, we are done. However, many implementations use the Fourier trans-
form of 𝜅 rather than the Fourier coefficient expression given above. The equiva-
lence can be derived by extending the bounds of integration to [−∞,∞]. This is a
reasonable approximation as long as 𝜅(𝜏) is close to zero outside [−𝜋, 𝜋]—which is
true for the RBF and Matern kernels as long as the lengthscale is short. Extending
the bounds of integration, we have

𝔼[𝐹𝑘𝐹∗𝑘] ≈
1
√𝑁

ℱ[𝜅] (𝑘2𝜋) (72)

For notational simplicity, letw be the vector of frequency-domain coefficients and s
be the vector of associated covariances. Then the log evidencewewish tomaximize
is

𝑝(y ∣ 𝜃) = 𝑝(y ∣ z, 𝜃)𝑝(z ∣ 𝜃) 𝑑z (73)

= ∫𝒩(y; 𝜇 = Ψw, Σ = 𝜎2𝐼)𝒩(w; 𝜇 = 0, Σ = diag(s)) 𝑑w (74)

= −𝑇2 log(2𝜋) −
𝑇
2 log(𝜎

2) − 1
2𝜎2 y

⊤y − 1
2 log |𝐴|

+ 1
2b

⊤𝐴−1b − 1
2 log |diag(s)| (75)

where 𝐴 = Ψ⊤Ψ
𝜎2

+ diag(s)−1 and b = 1
𝜎2
Ψ⊤y. If Ψ is unitary, which is true if x

lies on a grid, then 𝐴 will be diagonal, which simplifies the gradient and Hessian
calculations somewhat.

31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

B.2 With Poisson noise

Consider the same regression problem as in §B.1, but with Poisson observation
noise. We wish to fit the hyperparameters by maximizing the log evidence

log𝑝(y ∣ 𝜃) = log∫𝑝(y ∣ z, 𝜃)𝑝(z ∣ 𝜃) 𝑑z (76)

Since 𝑝(y ∣ z, 𝜃) = ∏⊤
𝑡=1 Poiss(y𝑡; 𝜃𝑡) the integral is not analytically tractable.

Define ℎ(z) = 𝑝(y ∣ z, 𝜃)𝑝(z ∣ 𝜃) and its argmax as z∗. Using the Laplace Ap-
proximation (Azevedo-Filho & Shachter, 1994), we can approximate the integral in
eq. 76 as

log𝑝(𝑦) = ℎ(z∗) + 𝑁
2 log(2𝜋) − 1

2 log | − ∇2ℎ(z∗)| (77)

Since evaluating this quantity requires finding z∗ via an optimization procedure, it
is difficult to maximize it using a derivative-based optimization algorithm, an issue
pointed out by Rasmussen andWilliams (2006). We use a derivative-free technique,
the Nelder-Mead algorithm (Nelder & Mead, 1965).

C Dataset and preprocessing details

For each of the five monkey datasets provided by Graf et al. (2011), we chose the
feature ({x}) exactly as in Graf et al. (2011). The stimuli grating angles were selected
from a five-degree grid, so to get 𝑦𝑡 we simply mapped the angles {0, 5, 10, … , 360}
to the integers {0, 1, 2, … , 72}.
Unlike Graf et al., we did not drop noisy neurons from the dataset, since we found
it made little to no difference in decoding accuracy (see Figure TODO).
For the threemouse datasets, we chose the feature ({x}) vectors exactly as in Stringer
et al. (2021). For the class values (𝑦) values, we binned the stimulus angles using
2-degree bins and used the bin index as the class label.
For the ferret dataset, all procedures were performed according to NIH guidelines
and approved by the Institutional Animal Care and Use Committee at Max Planck
Florida Institute for Neuroscience. Surgical procedures and acute preparations
were performed as described in Scholl et al. (2017). To preform calcium imaging of
cellular populations, AAV1.Syn.GCaMP6s (UPenn) was injected at multiple depths
(total volume 500 nL). Visual stimuli were generated using Psychopy (Peirce, 2007).
Themonitor was placed 25 cm from the animal, centered in the receptive field loca-
tions for the cells of interested. Square-wave drifting gratings (0.10 cycles per degree
spatial frequency, 4Hz temporal frequency) were presented at 2 degree increments
across the full range of directions (1 second duration, 1 second ISI, 11 trials). Two
photon imaging was performed on a Bergamo II microscope (Thorlabs) running
Scanimage (Pologruto et al., 2003) (Vidrio Technologies) with 940nm dispersion-
compensated excitation provided by an Insight DS+ (Spectraphysics). Power af-
ter the objective was 40 mW. Images were collected at 30 Hz using bidirectional

32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

scanning with 512x512 pixel resolution. The full field of view was 1 x 1 mm. Raw
images were corrected for in-plane motion via a non-rigid motion correction algo-
rithm (Pnevmatikakis & Giovannucci, 2017). Regions of interest were drawn in
ImageJ. Mean pixel values for ROIs were computed over the imaging time series
and imported into MATLAB (Hiner et al., 2017). Δ𝐹/𝐹𝑜 was computed by comput-
ing 𝐹𝑜 with time-averaged median or percentile filter. Δ𝐹/𝐹𝑜 traces were synchro-
nized to stimulus triggers sent from Psychopy and collected by Spike2. Response
amplitudes for each stimulus on each trial was calculated as the sum of the Fourier
mean and modulation (𝐹0 + 𝐹1). These values for each neuron were used to gener-
ate the feature ({x}) vectors. Class values (𝑦) were the stimulus angles presented (at
2-degree increments), using the bin index as the class label

33

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

D Supplementary figures

0.0 0.2 0.4 0.6 0.8

GPMD
SND

GLMNET
ELD

GPGID
GID_LINEAR

GID
GPPID

PID

Monkey

0.00 0.05 0.10 0.15
Proportion correct

Ferret

0.0 0.2 0.4 0.6

Mouse

Figure 8: The same benchmark as in Figure 3, but calculated using proportion cor-
rect (i.e. proportion with 0∘ error) instead of mean absolute error. This is the same
criterion as in Graf et al., 2011. Using it, we qualitatively replicate the results of
Graf et al.

34

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

0 15 30 45 60

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Monkey 1

0 8 16 24 32

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Monkey 2

0 15 30 45

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Monkey 3

0 10 20 30 40

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Monkey 4

0 10 20 30 40

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Monkey 5

0 6 12 18 24

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Ferret

0 3 6 9 12

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Mouse 1

0 3 6 9 12

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Mouse 2

0 2 4 6 8

VGPMD
SND

GLMNET
ELD

GPGID
GID

GPPID
PID

Mouse 3

Figure 9: The same benchmark as in Figure 3, but without averaging across ani-
mals.

35

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

PID
GPPID

GID
GPGID

ELD
GLMNET

SND
GPMD

0 100 101 102

0.5

1.0
Monkey 1

0 100 101 102

0.5

1.0
Monkey 2

0 100 101 102

0.5

1.0
Monkey 3

0 100 101 102

0.5

1.0

C
D

F

Monkey 4

0 100 101 102

0.5

1.0
Monkey 5

0 100 101 102
0.0

0.5

1.0
Ferret

0 100 101 102

0.5

1.0
Mouse 1

0 100 101 102

Absolute Error (°)

0.5

1.0
Mouse 2

0 100 101 102

0.5

1.0
Mouse 3

Figure 10: The same benchmark as in Figure 3B, but without averaging across ani-
mals.

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

All neurons
Noisy neurons removed

0 15 30 45 60

GPMD
SND

GLMNET
ELD

GPGID
GID_LINEAR

GID
GPPID

PID

Monkey 1

0 10 20 30 40 50

GPMD
SND

GLMNET
ELD

GPGID
GID_LINEAR

GID
GPPID

PID

Monkey 2

0 10 20 30 40 50

GPMD
SND

GLMNET
ELD

GPGID
GID_LINEAR

GID
GPPID

PID

Monkey 3

0 8 16 24 32 40
Mean Abs. Err. (°)

GPMD
SND

GLMNET
ELD

GPGID
GID_LINEAR

GID
GPPID

PID

Monkey 4

0 8 16 24 32 40
Mean Abs. Err. (°)

GPMD
SND

GLMNET
ELD

GPGID
GID_LINEAR

GID
GPPID

PID

Monkey 5

Figure 11: A comparison of model performance on the monkey datasets from Graf
et al. (2011), both with and without noisy neurons included. Noisy neurons were
dropped using the procedure detailed in the supplementary information of Graf
et al. (2011). We thought that this filtering step would make the models perform
better (matching the performance reported in Graf et al. (2011)), but it did not. We
suspect that the issue lies in the initialization of our nonlinear curve fitting code,
but we were not able to compare our implementation with the original, since the
original code has been lost.

37

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

Linear
Affine

0 5 10 15 20 25

VGPMD
SND

GLMNET

Monkey 1

0 6 12 18 24 30

VGPMD
SND

GLMNET

Monkey 2

0 10 20 30 40 50

VGPMD
SND

GLMNET

Monkey 3

0 5 10 15 20 25

VGPMD
SND

GLMNET

Monkey 4

0 8 16 24 32 40

VGPMD
SND

GLMNET

Monkey 5

0 3 6 9 12 15

VGPMD
SND

GLMNET

Ferret

0.0 0.5 1.0 1.5 2.0 2.5

VGPMD
SND

GLMNET

Mouse 1

0.0 0.4 0.8 1.2 1.6 2.0
Mean Abs. Err.

VGPMD
SND

GLMNET

Mouse 2

0.0 0.5 1.0 1.5 2.0 2.5
Mean Abs. Err.

VGPMD
SND

GLMNET

Mouse 3

Figure 12: A comparison of model performance using linear (𝑦 = 𝑊x) and affine
(𝑦 = 𝑊𝑥 + 𝑏) model formulations. One would expect the affine models to fit the
data better, but the difference in performance is negligible. This is likely due to
the relatively high dimensionality of the datasets, since separating hyperplanes are
quite easy to find in high dimensions whether or not they are restricted to pass
through the origin. We expect a larger performance difference on datasets with
smaller feature dimensions (< 10).

38

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457795doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.26.457795

	Introduction
	The neural decoding problem
	Review of existing decoders
	Correlation-blind decoders
	The Poisson Independent Decoder (PID)
	The Gaussian Independent Decoder (GID)

	Correlation-aware decoders
	Multinomial logistic regression with an elastic-net penalty (GLMNET)
	The Empirical Linear Decoder (ELD)
	The Super Neuron Decoder (SND)

	Proposed methods: GP-regularized decoders
	The GP-regularized Poisson Independent Decoder (GPPID)
	The GP-regularized Gaussian Independent Decoder (GPGID)
	The Gaussian Process Multiclass Decoder (GPMD)
	Scaling GPMD inference

	Results
	Evaluation and performance
	Scientific implications

	Conclusion
	Linearity of the PID and GID decoders
	Spectral GP regression
	With Gaussian noise
	With Poisson noise

	Dataset and preprocessing details
	Supplementary figures

