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Abstract 

Understanding the dynamical transformation of neural activity to behavior requires modeling this 

transformation while both dissecting its potential nonlinearities and dissociating and preserving its 

nonlinear behaviorally relevant neural dynamics, which remain unaddressed. We present RNN PSID, a 

nonlinear dynamic modeling method that enables flexible dissection of nonlinearities, dissociation and 

preferential learning of neural dynamics relevant to specific behaviors, and causal decoding. We first 

validate RNN PSID in simulations and then use it to investigate nonlinearities in monkey spiking and 

LFP activity across four tasks and different brain regions. Nonlinear RNN PSID successfully dissociated 

and preserved nonlinear behaviorally relevant dynamics, thus outperforming linear and non-preferential 

nonlinear learning methods in behavior decoding while reaching similar neural prediction. Strikingly, 

dissecting the nonlinearities with RNN PSID revealed that consistently across all tasks, summarizing 

the nonlinearity only in the mapping from the latent dynamics to behavior was largely sufficient for 

predicting behavior and neural activity. RNN PSID provides a novel tool to reveal new characteristics of 

nonlinear neural dynamics underlying behavior.  
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Introduction 

Understanding the dynamics of neural population activity and how they give rise to behavior is a 

major goal across diverse domains of neuroscience and neuroengineering. Toward this goal, dynamic 

models of neural population activity describe it in terms of a low-dimensional latent state embedded in 

the high-dimensional space of neural recordings, while also describing the temporal structure of the 

state evolution in its low-dimensional subspace and subsequently relating the latent state to behavior1–6. 

This approach ultimately models a dynamical transformation from neural activity to behavior. However, 

precise modeling remains quite challenging because the dynamical transformation of neural activity to 

behavior can exhibit nonlinearities, these nonlinearities may be introduced in one or more different 

elements within this transformation—e.g., in the evolution of the state or in its embedding—, and finally 

these dynamics may relate to a multitude of behaviors and/or internal states simultaneously7,8. To date, 

developing a unified dynamic modeling framework that can capture nonlinearities in behaviorally 

relevant neural dynamics, dissect and discover the origin of these nonlinearities, and finally 

preferentially learn and dissociate these nonlinear behaviorally relevant dynamics from other neural 

dynamics has remained elusive. 

Prior dynamic models of neural population dynamics have often been linear or generalized linear1,4,9–

12. Thus, recently there has been growing interest toward models that support piece-wise linear13, 

switching linear5,14, or nonlinear2,15–18 neural dynamics, especially in applications such as single trial 

smoothing of neural population activity2 and decoding behavior15,16,18. However, two major challenges 

have remained unaddressed in modeling the dynamical transformation of neural activity to behavior. 

First, these nonlinear models do not dissect the origin of nonlinearities in this transformation. Indeed, 

this transformation can be decomposed into several interpretable elements (Fig. 1a,b): the mapping 

from neural activity to the latent subspace (neural drive), the state dynamics in this subspace 

(recursion), and finally the mappings of the state to neural activity and behavior (neural and behavior 

readouts). Dissecting the origin of nonlinearity requires novel dynamic modeling methods that can 

explicitly represent each of these interpretable elements and flexibly make each individual element 

linear or nonlinear. Second, given that neural activity can simultaneously be related to multiple 
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behaviors and/or internal states7,8, understanding this transformation requires learning models of 

nonlinear neural dynamics while also prioritizing the learning of those dynamics that are related to the 

specific behavior of interest and dissociating them from other neural dynamics1. To date, this prioritized 

dissociation has only been possible for linear dynamic models through a method termed PSID that uses 

linear algebraic subspace identification principles1, but remains unaddressed for nonlinear models. 

Here, we address both challenges within a novel unified nonlinear dynamic modeling framework using 

recurrent neural networks (RNNs), while also enabling causal and efficient nonlinear decoding of the 

latent states and behavior from neural dynamics.  

RNNs provide an especially potent architecture for building nonlinear dynamic models2,15,16,19. A 

major part of the appeal of RNNs is that regardless of the computational graph of the model, model 

parameters can always be learned from the training data using general numerical optimization 

approaches20, which can enable easy exploration of different model structures. Several prior works 

have used RNNs to build nonlinear dynamic models, either causally15,16 or non-causally2,3. However, 

none of these works aim to enable dissociation of behaviorally relevant neural dynamics from other 

neural dynamics or dissect nonlinearities to probe characteristics such as the origin of nonlinearities, 

leaving both of the above challenges unaddressed. 

Here, we develop a new nonlinear dynamic modeling method termed RNN preferential system 

identification (PSID), or RNN PSID, that addresses both challenges while enabling causal decoding. 

Three key ideas enable these capabilities in RNN PSID. First, we use RNNs trained using numerical 

optimization, which results in a flexible nonlinear dynamic model whose components correspond to 

different interpretable elements within the dynamical transformation of neural activity to behavior, and 

can each be flexibly chosen to have various nonlinear or linear structures (Fig. 1b-e). This flexibility 

enables dissecting the type and origin of nonlinearity and thus addresses the first challenge. Second, 

we devise a two-stage learning approach1 where two stacked RNNs are learned with appropriate 

distinct optimization objectives, such that one RNN learns behaviorally relevant neural dynamics with 

priority, and then the other RNN learns any remaining neural dynamics (Fig. 1a and S Fig. 1). This 

allows dissociation of behaviorally relevant neural dynamics from other dynamics while simultaneously 
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enabling the learning of all neural dynamics, thus addressing the second challenge. Third, we formulate 

the problem in predictor form21 such that the inference model is directly learned as the RNNs, thus 

enabling causal and computationally efficient nonlinear decoding.  

We first validate RNN PSID in numerical simulations with known nonlinearities and demonstrate that 

it successfully learns the nonlinearity in behaviorally relevant dynamics and correctly determines the 

origin of nonlinearities. We next use RNN PSID to investigate nonlinearities in the dynamics of 

population spiking activity and local field potential (LFP) modalities in monkeys during four diverse 

behavioral tasks with recordings from different brain regions. Across all tasks, brain regions, and neural 

modalities, nonlinear RNN PSID models explain the behaviorally relevant neural dynamics significantly 

more accurately than linear PSID models, thus suggesting that nonlinearity exists and can be captured 

by RNN PSID. Moreover, RNN PSID not only extracts the behaviorally relevant neural dynamics more 

accurately than nonlinear RNN models without prioritization, but also at least as accurately describes 

the overall neural dynamics regardless of their relevance to behavior. We next dissect the nonlinearities 

and find their origin in each dataset by comparing RNN PSID models with nonlinearity in different 

interpretable model components. Strikingly, despite the diversity of tasks and neural recordings and 

modalities, models that summarize all nonlinearities in the behavior readout from the latent state best 

explain all four datasets in terms of predicting behavior and neural activity. Together, these results 

highlight RNN PSID as a novel tool to model, dissociate and prioritize, and dissect nonlinear 

behaviorally relevant neural dynamics, and reveal consistent new insights about the nonlinearity in 

these dynamics across four behavioral tasks. 
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Fig. 1 | High-level view of RNN PSID. 
(a) RNN PSID aims to learn the mapping of neural activity (𝑦𝑦𝑘𝑘) to latent states (𝑥𝑥𝑘𝑘), learn the temporal structure of the latent 
states (i.e. state dynamics), dissociate the behaviorally relevant latent states that are relevant to any measured behavior (𝑧𝑧𝑘𝑘) 
from other states, and learn the mapping of the latent states to behavior and to neural activity, while allowing flexible linear 
or nonlinear mappings in any of these elements. RNN PSID additionally aims to prioritize the learning of behaviorally relevant 
neural dynamics while also optionally allowing the learning of other neural dynamics. (b) Computation graph of the RNN PSID 
model consists of an RNN with neural activity at the current time step as the input and with the behavior and neural activity 
in the next time step as the outputs (Methods). Each mapping element from (a) has a corresponding parameter in the model 
indicated by the same colors and termed neural drive, recursion, behavior readout, and neural readout. For the complete 
two-stage computation graph see S Fig. 1. (c) PSID learns all model parameters using training neural and behavior data. After 
a model is learned, only past neural activity is used to decode behavior and predict neural activity using the computation 
graph in (b). (d,e) Any one or all of the model parameters from (b) can be either a linear matrix (panel d), or in general an 
arbitrary multilayer feed-forward neural network (panel e). The example feed-forward network in (e) has one hidden layer 
with ℎ units and uses a rectified linear unit (ReLU) activation function for the hidden layer.  
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Results 

Overview of RNN PSID 

As a nonlinear generalization of linear state-space models (Methods, S Note 1), we model neural 

activity and behavior jointly as  

 �
𝑥𝑥𝑘𝑘+1 =  𝐴𝐴′(𝑥𝑥𝑘𝑘) + 𝐾𝐾(𝑦𝑦𝑘𝑘)
   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦(𝑥𝑥𝑘𝑘) + 𝑒𝑒𝑘𝑘      
   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧(𝑥𝑥𝑘𝑘) + 𝜖𝜖𝑘𝑘       

 (1) 

where 𝑘𝑘 is the time index, 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 and 𝑧𝑧𝑘𝑘 ∈ ℝ𝑛𝑛𝑧𝑧 denote the neural activity and behavior time series 

respectively, 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥 is the latent state, and 𝑒𝑒𝑘𝑘 and 𝜖𝜖𝑘𝑘 denote neural and behavior dynamics that are 

unpredictable from past neural activity. Multi-input-multi-output functions 𝐴𝐴′, 𝐾𝐾, 𝐶𝐶𝑦𝑦, and 𝐶𝐶𝑧𝑧 are model 

parameters that fully specify the model, and have interpretable descriptions (Methods, Fig. 1a-b): 𝐾𝐾 is 

the neural drive and specifies the mapping from neural observations to the latent subspace over which 

the state evolves. 𝐴𝐴′ (recursion) specifies how the latent state moves from one time step to the next, 

thus specifying its recurrent dynamics. 𝐶𝐶𝑦𝑦 and 𝐶𝐶𝑧𝑧 are the neural and behavior readouts, specifying the 

mapping from the latent states to neural and behavior observations, respectively. We learn the model 

parameters using training neural and behavior data via numerical optimization (Methods, Fig. 1c). This 

allows the flexibility of being able to design each of the model parameters (e.g. 𝐶𝐶𝑧𝑧) to be an arbitrary 

multi-layer neural network (Fig. 1e), which as universal approximators can approximate any smooth 

nonlinear function22–24. Overall, equation (1) formulates an RNN (Fig. 1b), which under mild conditions 

can approximate any state-space dynamics25. As a special case, if all parameters are set to be linear 

matrix multiplications (i.e. a fully connected neural network with no-hidden layer, Fig. 1d), equation (1) 

reduces to a standard linear state-space model written in the predictor form21 where 𝑥𝑥𝑘𝑘 is the Kalman 

estimation of the latent states (S Note 1). Critically, since the RNN in equation (1) is a nonlinear 

generalization of this predictor form, once the RNN model parameters are learned from training data, 

the decoding problem of estimating the latent states from the neural activity is readily solved by iterating 

through equation (1) and can thus be done causally (Methods).  
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Our goal is to learn both the nonlinear dynamical transformation of neural population activity to 

behavior and the nonlinear neural dynamics that are unrelated to the measured behavior. As such, we 

need a new learning algorithm for the nonlinear state-space model above that enables the dissociation 

and prioritized learning of behaviorally relevant neural dynamics (Fig. 1a) while also being able to 

describe any other residual neural dynamics. Thus, we devise a two-stage learning procedure 

consisting of two stacked RNNs (S Fig. 1). In the first stage, we learn behaviorally relevant neural 

dynamics by fitting an RNN model as in equation (1), but by finding the model parameters with the sole 

objective of numerical optimization being the maximization of the behavior prediction accuracy. The 

latent state of this RNN, denoted by 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1, learns the behaviorally relevant neural dynamics. We 

then learn the mapping between this state and neural activity (denoted by 𝐶𝐶𝑦𝑦
(1)) as a feed-forward 

neural network that optimizes the neural prediction accuracy (Methods). In the second stage, which is 

optional, we learn any other residual neural dynamics not learned in the first stage by fitting a second 

RNN, this time with the input being not only the neural activity 𝑦𝑦𝑘𝑘 but also the extracted latent state of 

the first RNN (i.e. 𝑥𝑥𝑘𝑘
(1)). Model parameters of the second RNN are found with the sole objective of 

numerical optimization being to maximize the prediction accuracy of those neural dynamics that are not 

predicted by the first RNN (Methods). We then learn the mapping (𝐶𝐶𝑧𝑧
(2)) between the latent state of the 

second RNN denoted by 𝑥𝑥𝑘𝑘
(2) ∈ ℝ𝑛𝑛𝑥𝑥−𝑛𝑛1 and any behavior dynamics not already predicted by the first 

RNN as a feed-forward neural network that optimizes the behavior prediction accuracy—this step may 

be needed if the first RNN state dimension is desired to be very small, or to just perform modeling of all 

neural dynamics without prioritization using stage 2 alone. Together, the two stages learn two stacked 

RNNs that predict both behavior and neural activity using past neural activity (S Fig. 1). Importantly, 

either stage could also be used alone depending on the desired goal. If desired, the first stage alone 

could be used (i.e. 𝑛𝑛1 = 𝑛𝑛𝑥𝑥) to only learn behaviorally relevant neural dynamics. Alternatively, the 

special case in which only the second stage is used (i.e. 𝑛𝑛1 = 0) reduces to nonlinear neural dynamic 

modeling (NDM)1 that models neural dynamics irrespective of relevance to behavior, i.e. is non-

preferential. We refer to the latter case with only the second stage as RNN NDM. 
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The flexibility over which model parameters are nonlinear, and further the direct interpretability of 

these parameters in the process of generating neural and behavior dynamics enables two important 

capabilities. First, we can search over various combinations of nonlinearities to find the best model 

according to the training data and use it in the test data (Methods). This will be referred to as flexible 

nonlinearity and allows us to automatically select the best model for each dataset and get an estimate 

of the peak performance. Second, we can dissect nonlinearities by comparing alternative models that 

each set a different individual parameter to be nonlinear or linear independently of other parameters. 

This analysis finds the single parameter that best summarizes most nonlinearities in the data, and can 

use the interpretation of this parameter to test hypotheses about where nonlinearities lie in the process 

of generating neural and behavior dynamics. As a baseline to interpret the nonlinear results, we can set 

all parameters to be linear, which we refer to as linear RNN PSID or linear PSID for short.  

Model assessment and dissection 

To quantify how accurately a learned model describes the behaviorally relevant neural dynamics, we 

use the model to causally decode behavior using past neural activity. Similarly, to quantify how 

accurately the model describes the neural activity in general, we use the model to causally predict the 

neural activity at each time point using past neural activity, which will be referred to as neural self-

prediction. Both performance measures are always computed with cross-validation (Methods). 

When comparing models, for example to find the best individual nonlinearity to determine the origin 

of nonlinearity, those models that reach both better behavior decoding and better neural self-prediction 

will be considered as more accurate representations of data. There may be trade-off cases where one 

model has better behavior decoding and the other has better neural self-prediction. In such cases, there 

may not be any clear best model for the data overall, and either model may be more useful depending 

on the application. To interpret such cases, we use the term “performance frontier” to refer to the range 

of performances achievable by all the models that are in some sense better than or at least equivalent 

to every other model. More precisely, when comparing a group ℳ of models, model 𝒜𝒜 ∈ℳ will be 

described as reaching the performance frontier when compared with every other model ℬ ∈ ℳ, 𝒜𝒜 is 

significantly better than ℬ in decoding, or self-prediction, or is comparable to ℬ in both. Note that 𝒜𝒜 may 
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be better than some model ℬ1 ∈ ℳ in decoding while being better than another model ℬ2 ∈ ℳ in self-

prediction, nevertheless it will be on the frontier as long as in every comparison, there is at least one 

measure for which 𝒜𝒜 is being more performant or it is at least equally performant in both measures.      

Numerical simulations validate RNN PSID 

We first validated RNN PSID with numerical simulations. To confirm the validity of the two-stage 

numerical optimization approach, we started by focusing on the case where all RNN parameters were 

linear functions. We generated random realizations from 100 random linear models and used linear 

RNN PSID to learn the models given the training data time series. In each random model, only a subset 

of state dimensions contributed to generating behavior and thus were behaviorally relevant (Methods). 

We computed the behavior decoding and neural self-prediction performance measures for the true 

models to quantify ideal prediction performances and compared with the learned models.  

We found that with a state dimension equal to that of the true model, RNN PSID achieved ideal 

prediction for both the behavior and neural signals (S Fig. 2a,c). Moreover, even given a minimal state 

dimension equal to the true number of behaviorally relevant state dimensions, RNN PSID still achieved 

ideal prediction for behavior (S Fig. 2b). These results show that for linear models, similar to the 

analytical subspace-based PSID from our earlier work1, the linear RNN PSID using numerical 

optimization can also learn behaviorally relevant neural dynamics using low-dimensional latent states. 

Further, if learning of all neural dynamics regardless of relevance to behavior is of interest, linear RNN 

PSID can do so given enough state dimensions. We next found that the performance of linear RNN 

PSID and subspace-based PSID1 were similar across various regimes of training samples, with 

subspace-based PSID1 very slightly outperforming linear RNN PSID when learning models with low-

dimensional states with very small sample sizes on the order of 1000 (S Fig. 2b). Given this similar 

performance, for simplicity and better consistency hereon after we use linear RNN PSID as our linear 

modeling method and refer to it simply as linear PSID. 

We next validated RNN PSID in numerical simulations with nonlinear models and confirmed that it 

can be used to successfully dissect the origin of nonlinearity in the data. We simulated random systems 
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where only one of the model parameters were set to a random nonlinear function (Methods). We then 

used RNN PSID to fit models with the nonlinearities isolated in different parameters and compared 

them. We found that the RNN PSID model that achieved the best behavior decoding and neural self-

prediction was the model that had the nonlinearity in the correct model parameter (S Fig. 3), suggesting 

that RNN PSID could be used to determine the origin of nonlinearity. We will thus use a similar 

approach in real datasets to dissect nonlinearities and interpret them. 

Nonlinear modeling of behaviorally relevant neural dynamics across four tasks 

We used RNN PSID to study the behaviorally relevant neural dynamics in neural data from four 

monkeys performing four different tasks and having recordings across different brain regions (Fig 2, 

Methods). In the first task, the monkey made naturalistic 3D reach, grasp and return movements while 

the joint angles in the arm, elbow, wrist, and fingers were tracked as the behavior (Fig. 2a)1,26. In the 

second task, the monkey made saccadic eye movements to a randomly selected target out of eight 

possible targets on a screen, with the 2D eye position tracked as the behavior (Fig. 2e)1,27. In the third 

task, which was from a publicly available dataset28,29, the monkey made sequential 2D reaches on a 

screen using a cursor controlled with a manipulandum, while the 2D cursor position and velocity were 

tracked as the behavior (Fig. 2i). In the fourth task, which was from another publicly available dataset30, 

the monkey made 2D reaches to random targets in a grid via a cursor that mirrored the monkey’s 

fingertip movements, for which the 2D position and velocity were tracked as the behavior (Fig. 2m). In 

tasks 1 and 4, primary motor cortical activity was modeled. For tasks 2 and 3, prefrontal cortex and 

dorsal premotor cortical activities were modeled, respectively. In all datasets, we took the Gaussian 

smoothed spike counts as the neural signal to be modeled (Methods). Similar results also held for LFP 

activity as will be shown in a later section, showing the generality across neural signal modalities.  

We modeled the neural activity and behavior in each dataset using nonlinear RNN PSID with 

different latent state dimensions and computed the cross-validated accuracy of causally decoding 

behavior from past neural activity (Fig. 2b,f,j,n). We then compared the peak behavior decoding with 

that of linear PSID to assess the level of nonlinearity in each dataset (Fig. 2c,g,k,o). We found that in 

all datasets, nonlinear RNN PSID achieved significantly more accurate decoding than linear PSID, 
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suggesting that there is nonlinearity in behaviorally relevant dynamics (Fig. 2c,g,k,o). In addition, 

across all datasets, nonlinear RNN PSID reached within 5% of peak decoding using only 4-8 latent 

state dimensions (Fig. 2b,f,j,n), suggesting that behaviorally relevant neural dynamics are largely low-

dimensional, with much smaller dimension than what would be implied with non-preferential NDM 

methods (16-32). Using the same low latent state dimensions, linear and nonlinear RNN NDM achieved 

much lower behavior decoding accuracy than nonlinear RNN PSID (Fig. 2d,h,l,p), suggesting that 

neural dynamics are not dominated by behaviorally relevant dynamics and thus these latter dynamics 

can be missed or confounded if not prioritized during learning. This highlights the capability of RNN 

PSID as a nonlinear dynamic modeling and dimensionality reduction approach that preferentially 

preserves behaviorally relevant neural dynamics.  
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Fig. 2 | RNN PSID reveals more accurate models of behaviorally relevant neural dynamics by capturing nonlinearity while 
also being preferential. 
(a) The 3D reach task, along with example true and decoded behavior dimensions, decoded using RNN PSID. (b) Cross-
validated decoding accuracy (CC) achieved by variations of linear/nonlinear RNN PSID/NDM, for different latent state 
dimensions. For nonlinear RNN PSID/NDM, the nonlinearities are selected automatically based on the training data to 
maximize behavior decoding accuracy (flexible nonlinearity; Methods). Solid lines show the average across sessions and folds 
(N = 35) and the shaded areas show the s.e.m. The latent state dimension at which each method reaches the average decoding 
accuracy that is within 5% of the shown peak decoding accuracy is marked with a cross. (c) Peak decoding accuracy achieved 
by nonlinear and linear RNN PSID, by choosing the state dimension in each session and fold as the smallest that reaches peak 
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decoding. Bars show the mean, whiskers show the s.e.m., and dots show all data points (N = 35). Asterisks show significance 
level for a one-sided Wilcoxon signed-rank test (*: P < 0.05, **: P < 0.005, and ***: P < 0.0005). (d) Decoding accuracy of 
nonlinear RNN PSID versus linear/nonlinear RNN NDM, at the latent state dimension for which RNN PSID reaches within 5% 
of its peak. Notation is as in (c). (e-h) Same as (a-d) for the second dataset, with saccadic eye movements (N = 35). (i-l) Same 
as (a-d) for the third dataset, with sequential cursor reaches controlled via a 2D manipulandum (N = 15). (m-p) Same as (a-d) 
for the fourth dataset, with random grid virtual reality cursor reaches controlled via fingertip position (N = 35). For all PSID 
methods, only the first stage was used (i.e. 𝑛𝑛1 = 𝑛𝑛𝑥𝑥). 
 

Overall neural dynamics could also be learned by RNN PSID 

The optional second stage of RNN PSID can learn any additional neural dynamics that were not 

predicted using the latent states from the first stage, which are extracted to be relevant to the specific 

measured behavior (Methods). Thus, we next used both stages of RNN PSID to also learn other neural 

dynamics beyond the behaviorally relevant ones learned in the first stage. To evaluate the model, we 

found the best self-prediction that could be achieved by increasing the latent state dimension and also 

the corresponding behavior decoding (Methods). A model that has higher accuracy for both behavior 

decoding and neural self-prediction provides a better explanation of the data overall.  

We found that in all datasets, compared with linear/nonlinear RNN NDM or linear PSID, nonlinear 

RNN PSID reached better behavior decoding accuracy while being as accurate or better in terms of 

peak neural self-prediction (Fig. 3). More specifically, in nonlinear RNN PSID, we use the training data 

to learn models with various combinations of nonlinearities. Then among these learned models, we can 

select one model based on training data to be used in the test data (Methods). The criteria for this 

model selection can be based on achieving either better behavior decoding or better neural self-

prediction (Methods). Note that the criteria for selecting among the learned models with different 

nonlinearities is independent of the internal objective functions used in RNN PSID to learn each model, 

which are always fixed (S Fig. 1; Methods). We found that RNN PSID with nonlinearity selected based 

on neural self-prediction was better in reaching the best performance frontier and simultaneously 

achieving accurate behavior decoding and neural self-prediction (Fig. 3). Selection of nonlinearity 

based on behavior decoding resulted in statistically significant improvement in decoding only in one of 

the datasets (S Fig. 4h,i), in which case both selection criteria led to models on the performance 

frontier (Fig. 3f).  
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Fig. 3 | RNN PSID more accurately learns the behaviorally relevant neural dynamics while also capturing the overall neural 
dynamics as accurately as other methods.  
(a) The 3D reach task. (b) Peak neural self-prediction accuracy achieved by each method shown on the horizontal axis versus 
the corresponding behavior decoding accuracy on the vertical axis. Latent state dimension for each method in each session 
and fold is chosen as the smallest that reaches peak neural self-prediction. The plus on the plot shows the mean self-
prediction and decoding accuracy across sessions and folds (N = 35), and the horizontal and vertical whiskers show the s.e.m. 
for these measures, respectively. Models whose paired (self-prediction, decoding) measure leads to a plus toward the most 
upper-right corner of the plot lie on the best performance frontier as they have better performance in both measures and 
thus better explain the data (for definition of frontier see results). (c-d) Same as (a-b) for the second dataset, with saccadic 
eye movements (N = 35). (e-f) Same as (a-b) for the third dataset, with sequential cursor reaches controlled via a 2D 
manipulandum (N = 15). (g-h) Same as (a-b) for the fourth dataset, with random grid virtual reality cursor reaches controlled 
via fingertip position (N = 35). For all RNN PSID variations, the first 16 latent state dimensions are learned using stage 1 and 
the remaining are learned using stage 2 (i.e. n1 = 16). For more details, see S Figs. 3-4.  
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Neural self-prediction benefited from nonlinear modeling at low dimensions 

Comparing nonlinear RNN PSID and nonlinear RNN NDM with their linear counterparts across 

dimensions, we further found that at low dimensions nonlinearity was needed both for accurate 

behavior decoding (S Fig. 4) and for accurate neural self-prediction (S Fig. 5). However, in terms of 

peak neural self-prediction, given sufficiently high latent state dimensions, linear methods reached 

similar peak performance to nonlinear methods (Fig. 3, and S Fig. 5). In contrast, in terms of behavior 

decoding, nonlinear RNN PSID significantly outperformed linear methods even at high dimensions (Fig. 

3 and S Fig. 4). These results suggest that while there likely exist some nonlinear dynamics in neural 

activity, with high enough latent state dimensions, linear models can become good approximations of 

the overall neural dynamics as long as performing neural self-prediction alone is of interest. However, 

even with such high latent state dimensions, linear models cannot achieve as accurate of a description 

for behaviorally relevant neural dynamics as evident from their inferior peak behavior decoding. To 

further understand the nature of this nonlinearity, we next investigated the model parameters whose 

nonlinearity was most essential for describing these behaviorally relevant neural dynamics.  

Nonlinear behaviorally relevant neural dynamics could largely be explained with a 
nonlinear behavior readout model parameter 

Given the flexibility of RNN PSID in selectively allowing nonlinearity in each model parameter, we 

next used it to dissect nonlinearities and investigate the origin of nonlinearity in each dataset. To do so, 

we used the same hypothesis testing procedure that was validated in our simulations to correctly find 

the origin of nonlinearity (S Fig. 3). We built alternative models with different individual model 

parameters being nonlinear and compared the resulting models in terms of behavior decoding and 

neural self-prediction to each other and to fully nonlinear models that could have nonlinearity in all or 

any combination of parameters (flexible nonlinearity; Methods). Strikingly, we found that having 

nonlinearity only in the behavior readout parameter 𝐶𝐶𝑧𝑧 was sufficient for achieving high decoding and 

self-prediction accuracy across all datasets despite their diverse behavioral tasks and neural recordings 

(Fig. 4). First, models with nonlinearity only in the behavior readout parameter 𝐶𝐶𝑧𝑧 reached the best 

behavior decoding accuracy compared with models with other individual nonlinearities (Fig. 4b,f,j,n), 
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while reaching almost the same decoding accuracy as fully nonlinear models with flexible selection of 

nonlinearity in all or any combination of parameters (Fig. 4b,f,j,n). Second, in terms of reaching the 

best neural self-prediction, again models with nonlinearity only in the behavior readout reached a peak 

self-prediction accuracy that was unmatched by other types of individual nonlinearity (Fig. 4c,g,k,o). 

Taken together, models with nonlinearity in the behavior readout parameter 𝐶𝐶𝑧𝑧 achieved the best 

behavior decoding accuracy, while simultaneously matching the best of all other linear or nonlinear 

models in terms of neural self-prediction (Fig. 4d,h,l,p). These results suggests that across all four 

datasets with their diverse array of behavioral tasks, the origin of nonlinearity is not necessarily in the 

dynamics of low-dimensional states themselves, but could be mostly confined to how these neural 

dynamics are mapped to behavior (i.e. in the behavior readout).  

Given these results, we next investigated whether an end-to-end learning of a dynamic model that 

only has nonlinearity in the behavior readout parameter 𝐶𝐶𝑧𝑧 has any benefits compared with a linear 

model that is upgraded in a post-hoc step to have a nonlinear behavior readout. To compare these 

cases, we took the already-learned latent states from linear PSID models, learned a nonlinear mapping 

from these latent states to behavior, and replaced behavior readout of the linear models with this 

nonlinear mapping that was learned post-hoc. We used the exact same neural network architecture as 

was used for the behavior readout parameter 𝐶𝐶𝑧𝑧 in the previous results, so the final model had identical 

structure to the model that was learned end-to-end, with their only difference being in their learned 

network weights. We found that in all datasets, the final behavior decoding accuracy from the post-hoc 

learning was significantly worse than the accuracy from the end-to-end learning of a model with 

nonlinear behavior readout parameter 𝐶𝐶𝑧𝑧 (𝑃𝑃 ≤ 0.0027, one-side signed-rank, 𝑁𝑁 ≥ 15). This is because 

despite having the same architecture, the model that is initially fully linear would extract different latent 

states that are learned based on the assumption of a linear behavior readout, so they may not find and 

fully exploit the low-dimensional neural subspaces that are informative of behavior with a nonlinear 

behavior readout. These results highlight the importance of RNN PSID being able to directly learn 

models with nonlinearities in arbitrary sets of parameters, even in datasets where nonlinearity in only 

the behavior readout may be sufficient for accurate modeling. 
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Fig. 4 | RNN PSID reveals that across datasets, nonlinearities can be largely captured by the behavior readout of the model. 
(a) The 3D reach task. (b) Peak cross-validated decoding accuracy (CC) achieved by variations of RNN PSID with different 
nonlinearities. RNN PSID variations that have only one nonlinear parameter (e.g. 𝐶𝐶𝑧𝑧) use a fixed network structure with one 
64-unit hidden layer for that parameter and keep all other parameters linear (Methods). Linear and flexible nonlinear results 
are as in S Fig. 4. State dimension in each session and fold is chosen as the smallest that reaches peak decoding. Bars, whiskers, 
and dots are defined as in Fig. 2b (N = 35). (c) Same as (b), showing the peak cross-validated neural self-prediction accuracy 
(CC) for each nonlinearity (linear and flexible nonlinear results are as in S Fig. 5). (d) The corresponding decoding accuracy for 
each peak neural self-prediction (linear and flexible nonlinear results are as in Fig. 3). Notation is as in Fig. 3. (e-h) Same as 
(a-d) for the second dataset, with saccadic eye movements (N = 35). (i-l) Same as (a-d) for the third dataset, with sequential 
cursor reaches controlled via a 2D manipulandum (N = 15). (m-p) Same as (a-d) for the fourth dataset, with random grid 
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virtual reality cursor reaches controlled via fingertip position (N = 35). For all RNN PSID variations, the first 16 latent state 
dimensions are learned using stage 1 and the remaining are learned using stage 2 (i.e. n1 = 16). 

 

Similar results held for raw LFP and LFP band power activity, with raw LFP activity 
showing the largest gain from nonlinear modeling 

In three of the four tasks, LFP activity was also available. We thus performed similar analyses for two 

types of features from LFP activity. First, we used the raw LFP activity, downsampled to the sampling 

rate of the behavior (i.e. 50ms time steps), as the neural feature (Methods). In the context of the motor 

cortex, downsampled raw LFP is also referred to as the local motor potential (LMP)31–33, and has 

previously been used to decode behavior1,31–34. Second, we extracted signal power in standard 

frequency bands from delta (0.1-4 Hz) to high gamma (130-170 Hz) as the neural feature (Methods). 

We found that across all tasks and for both types of LFP features, RNN PSID more accurately learned 

behaviorally relevant neural dynamics than linear PSID or non-preferential RNN NDM (S Figs. 6-7), 

while also achieving similar or higher accuracy in neural self-prediction (S Figs. 6-7). Moreover, 

interestingly, for both LFP features, having nonlinearity only in the behavior readout parameter was 

again largely sufficient for learning neural dynamics (S Figs. 8-9). These results suggest that our earlier 

results on neural population spiking activity generalize to dynamics in other neural modalities such as 

raw LFP activity and LFP band power activity.  

We next compared the nonlinear RNN PSID and linear PSID results across neural modalities to 

quantify the amount of nonlinearity in each neural modality (Fig. 5). We found that in all three tasks, raw 

LFP activity had the highest gain in behavior decoding accuracy by going from linear to nonlinear 

modeling. Notably, when using RNN PSID to find the best nonlinear modeling and transformation, raw 

LFP activity reached more accurate behavior decoding accuracy than LFP band powers in all tasks 

(Fig. 5b,e,h). In the task with saccadic eye movements, raw LFP activity even significantly surpassed 

the decoding accuracy of spiking activity (Fig. 5e). These results suggest that equipped with a model 

that can learn flexible nonlinear dynamics, behaviorally relevant information that exists in LFP activity 

but may normally be missed can be more accurately learned. Further, computing LFP powers involves 

a pre-specified nonlinear transformation on raw LFP. As such, these results show that nonlinear RNN 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.03.458628doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458628


19/56 
 

PSID automatically finds the dynamical nonlinear transformation on raw LFP that does better in 

explaining neural/behavior data than the transformation to compute these pre-specified power band 

features. 

 

 

 
Fig. 5 | Raw LFP activity benefits the most from nonlinear modeling, compared with LFP bands or spiking activity.  
(a) The 3D reach task. (b) Peak cross-validated decoding accuracy (CC) achieved by variations of nonlinear RNN PSID and linear 
PSID. Results are shown for spiking activity, raw LFP activity, and LFP band power activity (Methods), as also shown in Fig. 3 
and S Figs. 6-7. For nonlinear RNN PSID, the nonlinearity is selected automatically based on the training data to maximize 
behavior decoding accuracy (Methods). Bars, whiskers, and dots are defined as in Fig. 2c. (c) The difference between the 
nonlinear and linear results from (b). When doing flexible nonlinear modeling with RNN PSID, raw LFP activity achieves better 
decoding than the LFP power bands that are pre-specified nonlinear transformations of a more wideband version of this raw 
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activity (Methods). (d-f) Same as (a-c) for the second dataset, with saccadic eye movements. (g-i) Same as (a-c) for the fourth 
dataset, with random grid virtual reality cursor reaches controlled via fingertip position. 

 

Preferential modeling of behaviorally relevant neural dynamics uncovered distinct low 
dimensional representations for these dynamics 

Given that RNN PSID can prioritize learning of behaviorally relevant neural dynamics, it can be used 

to perform dimensionality reduction while preserving these dynamics. To demonstrate this, we learned 

models with 2-dimensional latent states and visualized their latent state trajectory during different 

epochs and conditions of each task. In each dataset, we averaged the latent states across trials with 

similar movement conditions (Fig. 6d,g,j, Methods) and then compared the obtained average 

trajectories across movement conditions. We found that consistently, RNN PSID extracted latent states 

from neural activity that were clearly different depending on the behavior condition (Fig. 6b,e,h,k), 

whereas RNN NDM extracted latent states that did not as clearly dissociate different conditions (Fig. 

6c,f,i,l). Moreover, quantitively, states extracted using RNN PSID could more accurately decode 

behavior than those extracted using RNN NDM (see Fig. 2b,f,j,n for state dimension of 2). Notably, for 

the first dataset, in our earlier work1, we had compared the latent trajectories for subspace-based linear 

PSID versus linear NDM and had found that PSID shows distinct reverse-rotational patterns across 

reach and return movement conditions, as is also the case here for RNN PSID versus RNN NDM (Fig. 

2b-c). These results thus complement our prior work1 by showing that even nonlinear NDM models are 

not able to uncover the distinct behaviorally relevant dynamics that reverse their rotation direction in this 

dataset. Together, these results show that even including nonlinearity in NDM methods cannot help 

uncover these dissociated behaviorally relevant states but that extracting these states critically requires 

the preferential element of RNN PSID. Moreover, these results suggest RNN PSID uncovers distinct 

low-dimensional neural dynamics that are more behaviorally relevant but may be missed by even 

nonlinear NDM methods, which do not prioritize behaviorally relevant neural dynamics. 
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Fig. 6 | Nonlinear RNN PSID extracted distinct low dimensional latent states for all datasets, which were more 
behaviorally relevant than those extracted using nonlinear RNN NDM. 
(a) The 3D reach task. (b) The latent state trajectory for 2D states extracted from spiking activity using nonlinear RNN PSID, 
averaged across all reach and return epochs across sessions and folds. RNN PSID revealed latent states with rotational 
dynamics that reversed direction during reach versus return epochs, which is consistent with the behavior roughly reversing 
direction. (c) Same as (b), for 2D states extracted using nonlinear RNN NDM. In contrast to RNN PSID, latent state extracted 
using RNN NDM showed rotational dynamics that did not reverse direction during reach versus return periods, thus were less 
congruent with behavior. (d) Saccadic eye movement task. Trials are averaged depending on the eye movement direction. (e) 
The latent state trajectory for 2D states extracted using RNN PSID, averaged across all trials of the same movement direction 
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condition across sessions and folds. (e) Same as (d), for 2D states extracted using nonlinear NDM. (g-i) Same as (d-f), for the 
third dataset, with sequential cursor reaches controlled via a 2D manipulandum. (j-l) Same as (d-f) for the fourth dataset, with 
random grid virtual reality cursor reaches controlled via fingertip position. Overall, latent states extracted by RNN PSID were 
clearly different depending on the behavior condition (c,e,h,k), whereas RNN NDM extracted latent states did not as clearly 
dissociate different conditions (c,f,I,l). 

 

Discussion 

Here, we developed a new modeling approach termed RNN PSID that enables nonlinear dynamic 

modeling with causal decoding, can dissect the origin of nonlinearity through its flexible nonlinearity, 

and can dissociate and prioritize behaviorally relevant neural dynamics from other neural dynamics. 

These attributes make RNN PSID uniquely suitable for investigations of the nature of nonlinearity in the 

dynamical neural encoding of behavior across diverse domains of neuroscience, and for developing 

real-time brain-machine interfaces (BMIs) across applications. 

 Here, by comparing various types of nonlinearities, we found that models with only nonlinearity in the 

behavior readout best described behaviorally relevant and overall neural dynamics across all four 

distinct tasks. We found this by devising a hypothesis testing procedure that was enabled via the 

flexible nonlinearity of RNN PSID, and by first validating this procedure within simulations with known 

origins for nonlinearity (Fig. 1b). This is an interesting finding since as demonstrated in the simulations 

(Fig. 1b), technically the origin of nonlinearity in RNN PSID could also be in any one (or more) of the 

following four options (Fig. 1a): the neural drive (mapping from neural activity to the low-dimensional 

subspace), the recurrent dynamics (mapping from latent state from one time step to the next), and the 

neural or behavioral readout (mapping from latent state to neural or behavioral observations). The fact 

that of these four types of nonlinearities, a nonlinearity in behavior readout is largely sufficient for 

explaining the data across tasks suggests the following interesting possibility: that across all four tasks, 

neural dynamics in the recorded brain areas are largely describable with linear dynamics (given large 

enough latent state dimensions), but additional nonlinearities are introduced somewhere along the 

neuromuscular pathway that goes from the recorded area to the measured behavior. This is also 

consistent with our finding that given enough latent state dimensions, linear models are sufficient for 
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accurate neural self-prediction, but they still fail to reach behavior decoding that is as accurate as RNN 

PSID with a nonlinear behavior readout (Fig. 4d,l,p).  

It is important to note that in general, in some cases it may be mathematically possible to equivalently 

explain the same neural or behavior data with multiple types of nonlinearities (e.g. either with a 

nonlinear neural drive, or a nonlinear readout). However, in numerical simulations, we find that when 

both neural and behavior data are considered together, usually only the correct type of nonlinearity 

explains the data best (S Fig. 3). It is also possible that the best model describing the data requires two 

or more of the four parameters to be nonlinear. But in our datasets, models with nonlinearity only in 

behavior readout were always on the performance frontier and could not be considerably outperformed 

by models with more than one nonlinearity in terms of both the decoding and neural self-prediction 

measures (Fig. 4). Only in one dataset a flexible search over nonlinearities achieved significantly better 

decoding from population spiking activity than having the nonlinearity only in the behavior readout (Fig. 

4j), but even in that dataset the latter explained the overall neural dynamics more accurately (Fig. 4j).  

We found similar results for three neural modalities: spiking activity, LFP band power activity, and 

raw LFP activity. For all three data types, RNN PSID more accurately learned behaviorally relevant 

neural dynamics compared with linear PSID and non-preferential RNN NDM as reflected in its better 

decoding, while also achieving similar or more accurate neural self-prediction. Moreover, for all three 

data types, having nonlinearity only in the behavior readout was largely sufficient to explain the data. 

These results demonstrate the general applicability of RNN PSID to both spiking and LFP activity and 

its general utility in testing hypotheses about the origin of nonlinearity. Notably, the raw LFP activity 

benefited the most from nonlinear modeling using RNN PSID and outperformed LFP powers in all tasks 

in terms of decoding, suggesting that equipped with an automatic learning of nonlinear models as 

enabled by RNN PSID, the benefit of manually extracting traditionally used features such as LFP band 

powers may be limited and better nonlinear mappings may be automatically learned.  

An important challenge in nonlinear dynamic modeling is building a decoder that can take neural 

observations and produce their latent representation and predict behavior. Here, we directly learn the 

model in predictor form such that after learning, the decoder is readily available, rather than requiring 
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expensive computations such as an iterative expectation maximization3,13. Moreover, decoding is done 

using an RNN, without the need for computationally expensive sampling and averaging that is needed 

by variational sequential autoencoders2. More importantly, unlike sequential autoencoders, the 

decoding is fully causal and uses only past neural information, rather than using future data that would 

not be recorded yet. These characteristics make RNN PSID an attractive model for real-time closed-

loop BMI applications where fast feedback is necessary to maintain natural interaction with the BMI35. 

Recent work has used sequential autoencoder RNNs to smooth single-trial neural activity via 

nonlinear dynamic modeling2. However, this approach does not consider behavior during the learning of 

the dynamics, and thus does not dissociate or prioritize the learning of behaviorally relevant neural 

dynamics resulting in their potentially less accurate learning1. Other prior works have used RNNs for 

causal decoding of behavior from neural activity15,16. These works have similarities to the first 

optimization in the first stage of RNN PSID in that they optimize the behavior prediction, but they do not 

learn the mapping from the RNN latent states to neural activity, which is done using a second 

optimization in the first stage of RNN PSID to enable neural self-prediction using the behaviorally 

relevant dynamics (S Fig. 1). In addition, unlike what the second stage of RNN PSID enables, these 

prior works do not model additional neural dynamics beyond those that decode behavior, and thus do 

not aim to dissociate the two types of neural dynamics. Moreover, each of these works15,16, including 

those with non-causal sequential autoencoders2, use specific nonlinear RNN structures whereas in 

RNN PSID the nonlinear structure is automatically selected in a way that best suits the training data 

within an inner cross-validation (Methods). Finally, importantly, here unlike prior works, we further 

dissect the nonlinearity and explore how one can isolate the nonlinearity in specific parameters of the 

nonlinear RNN, each of which has interpretable roles. These new advances make RNN PSID a 

comprehensive framework for understanding nonlinear neural dynamics that give rise to behavior. 

Beyond enabling prioritized learning of behaviorally relevant neural dynamics with support for 

nonlinear dynamics, RNN PSID also supports several other applications by incorporating new 

innovations that we will fully present in our future work19. First, given the numerical optimization 

approach, RNN PSID is also applicable if behavior or neural signals are intermittently sampled, such as 
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when modeling sparsely measured behaviors such as mood questionnaires36, which will be needed 

toward understanding neuropsychiatric conditions and developing new therapies for them12,37. Second, 

RNN PSID supports modeling neural activity with non-Gaussian (e.g. Poisson) distributions, which 

could benefit the modeling of some data types such as spiking activity sampled at millisecond bins and 

lead to better closed-loop BMI performance35,38. Third, RNN PSID can support modeling behavior with 

non-Gaussian (e.g. categorical) distributions, such as decision choices. These additional capabilities 

will make RNN PSID of potential benefit in various additional neuroscience and neurotechnology 

applications as we will show in our future work19.  

Taken together, RNN PSID is a general new approach for preferentially modeling behaviorally 

relevant neural dynamics that supports nonlinear dynamics, enables flexible exploration of their origin 

while also allowing for causal decoding of latent dynamics and behavior.   
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Methods 

Model formulation 

The model used by RNN PSID is provided in equation (1). We write this model as a nonlinear 

generalization of the predictor form21,39 of the linear models such that we can enable flexible and 

interpretable dissection of nonlinearities and causal prediction. For a full description of the motivation 

for the model formulation and its relation to linear models in predictor form please refer to S Note 1. 

Equation (1) corresponds to an RNN computation graph (Fig. 1b) and thus its parameters can be 

learned using standard tools for numerical optimization20. For this RNN, neural activity 𝑦𝑦𝑘𝑘 constitutes 

the input and predictions of neural and behavioral signals are the outputs (Fig. 1b) given by  

 �
𝑦𝑦�𝑘𝑘 = 𝐶𝐶𝑦𝑦(𝑥𝑥𝑘𝑘)
𝑧̂𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧(𝑥𝑥𝑘𝑘) . (2) 

We learn the model parameters by minimizing the mean squared error in the predictions of neural and 

behavioral signals, which constitute our neural and behavioral losses defined as 

 𝐿𝐿𝑦𝑦 = ∑ ‖𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘‖𝑘𝑘 2
2  (3) 

and  

 𝐿𝐿𝑧𝑧 = ∑ ‖𝑧𝑧𝑘𝑘 − 𝑧̂𝑧𝑘𝑘‖𝑘𝑘 2
2  (4) 

where the sum is over all available samples of 𝑦𝑦𝑘𝑘 and 𝑧𝑧𝑘𝑘, respectively. Importantly, since a key goal of 

RNN PSID is to dissociate and prioritize the learning of the behaviorally relevant neural dynamics, we 

devise a two-stage approach for optimizing the above objective functions such that the first stage can 

prioritize the learning of behaviorally relevant dynamics and the second stage can then learn additional 

dynamics. We will explain this learning approach in the next section. Once the model parameters are 

learned, the extraction of latent states 𝑥𝑥𝑘𝑘 involves iteratively applying the first line from equation (1), 

and predicting behavior or neural activity involves applying equation (2) to the extracted 𝑥𝑥𝑘𝑘. 

A more general formulation for the optimization objective in both stages of RNN PSID can be written 

as 
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 𝐿𝐿 = 𝐿𝐿𝑧𝑧 + 𝜆𝜆𝐿𝐿𝑦𝑦 = ∑ ‖𝑧𝑧𝑘𝑘 − 𝑧̂𝑧𝑘𝑘‖𝑘𝑘 2
2 + 𝜆𝜆 ∑ ‖𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘‖𝑘𝑘 2

2  (5) 

where 𝜆𝜆 determines how much attention is paid to each of the two terms. Here, we use the extreme 

cases of 𝜆𝜆 = 0 and 𝜆𝜆 → ∞ for extraction of latent states in stages one and two, respectively. More 

generally, if dissociation of dynamics is not of interest, one could modify stage one to also incorporate 

some dynamics beyond the behaviorally relevant dynamics by using a non-zero 𝜆𝜆.  

Learning: Two-stage numerical optimization approach 

To enable dissociation and prioritization of the behaviorally relevant neural dynamics, we devise a 

novel two-stage procedure for training the RNN and extracting the latent states. This approach is similar 

in spirit to our two-stage approach in prior work on dissociating these dynamics for linear dynamic 

models using subspace-PSID, but is distinct in that subspace-PSID is based on analytical linear 

algebraic projections1 unlike the RNN approach here that is for nonlinear models. The two-stage RNN 

training approach aims to prioritize the extraction and learning of the behaviorally relevant dynamics in 

the first stage while also enabling the learning of the rest of the neural dynamics in the second stage 

such that the latter do not mask or confound the former. We separate the latent states into behaviorally 

relevant and irrelevant parts (i.e. 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2)), which will be learned in the first and second stages of 

RNN PSID, respectively. Given state dimension hyperparameters 𝑛𝑛1 and 𝑛𝑛𝑥𝑥, we separate the latent 

states into two parts as 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
�
𝑥𝑥𝑘𝑘+1

(1)

𝑥𝑥𝑘𝑘+1
(2) � = �

𝐴𝐴′(1) �𝑥𝑥𝑘𝑘
(1)�

𝐴𝐴′(2) �𝑥𝑥𝑘𝑘
(2)�

� + �
𝐾𝐾(1)(𝑦𝑦𝑘𝑘)

𝐾𝐾(2) �𝑦𝑦𝑘𝑘 , 𝑥𝑥𝑘𝑘+1
(1) �

�

   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦
(1) �𝑥𝑥𝑘𝑘

(1)� + 𝐶𝐶𝑦𝑦
(2) �𝑥𝑥𝑘𝑘

(2)� + 𝑒𝑒𝑘𝑘

   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧
(1) �𝑥𝑥𝑘𝑘

(1)� + 𝐶𝐶𝑧𝑧
(2) �𝑥𝑥𝑘𝑘

(2)� + 𝜖𝜖𝑘𝑘

 (6) 

where 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1 denotes the latent states to be extracted in the first stage and 𝑥𝑥𝑘𝑘

(2) ∈ ℝ𝑛𝑛2, with 𝑛𝑛2 =

𝑛𝑛𝑥𝑥 − 𝑛𝑛1, denotes those to be extracted in the second stage. The computation graph for equation (6) is 

provided in S Fig. 1. Note that the recursions for computing 𝑥𝑥𝑘𝑘
(1) are not dependent on 𝑥𝑥𝑘𝑘

(2), thus 

allowing the former to be computed without the latter. In contrast, 𝑥𝑥𝑘𝑘
(2) can depend on 𝑥𝑥𝑘𝑘

(1) and this 

dependence is modeled via 𝐾𝐾(2) (S Note 1).  Note that such dependence of 𝑥𝑥𝑘𝑘
(2) on 𝑥𝑥𝑘𝑘

(1) via 𝐾𝐾(2) does 
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not introduce new dynamics to 𝑥𝑥𝑘𝑘
(2) because it doesn’t involve the recursion parameter 𝐴𝐴′(2), which 

describes the dynamics of 𝑥𝑥𝑘𝑘
(2). 

In the first stage, the objective is to learn behaviorally relevant latent states 𝑥𝑥𝑘𝑘
(1) and their associated 

parameters. This stage consists of two numerical optimizations. In the first optimization, we learn the 

parameters 𝐴𝐴′(1), 𝐶𝐶𝑧𝑧
(1), and 𝐾𝐾(1) of the following RNN 

 �
𝑥𝑥𝑘𝑘+1

(1) = 𝐴𝐴′(1) �𝑥𝑥𝑘𝑘
(1)� + 𝐾𝐾(1)(𝑦𝑦𝑘𝑘)

   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧
(1)  �𝑥𝑥𝑘𝑘

(1)� + 𝜖𝜖𝑘𝑘            
 (7) 

and estimate its latent state 𝑥𝑥𝑘𝑘
(1) while minimizing the behavior loss 𝐿𝐿𝑧𝑧 (equation (4)). The second 

optimization uses the extracted latent state 𝑥𝑥𝑘𝑘
(1) from the RNN and fits the parameters 𝐶𝐶𝑦𝑦

(1) in 

 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦
(1) �𝑥𝑥𝑘𝑘

(1)� + 𝑒𝑒𝑘𝑘 (8) 

while minimizing the neural loss 𝐿𝐿𝑦𝑦 (equation (3)). Equation (8) can be thought of as a regression model 

from 𝑥𝑥𝑘𝑘
(1) to neural activity 𝑦𝑦𝑘𝑘. This stage concludes the extraction and modeling of behaviorally relevant 

latent states 𝑥𝑥𝑘𝑘
(1). 

In the second stage, the objective is to learn any additional dynamics in neural activity that were not 

learned in the first stage, i.e. 𝑥𝑥𝑘𝑘
(2) and its associated parameters. To do so, we learn the parameters 

𝐴𝐴′(2), 𝐶𝐶𝑦𝑦
(2), and 𝐾𝐾(2) of the following RNN 

 �
𝑥𝑥𝑘𝑘+1

(2) = 𝐴𝐴′(2) �𝑥𝑥𝑘𝑘
(2)� + 𝐾𝐾(2) �𝑦𝑦𝑘𝑘 , 𝑥𝑥𝑘𝑘+1

(1) �   

   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦
(2)  �𝑥𝑥𝑘𝑘

(2)� + 𝐶𝐶𝑦𝑦
(1) �𝑥𝑥𝑘𝑘

(1)� + 𝑒𝑒𝑘𝑘
 (9) 

while minimizing the neural loss 𝐿𝐿𝑦𝑦 (equation (3)). Note that in this RNN, 𝑦𝑦𝑘𝑘 and 𝑥𝑥𝑘𝑘+1
(1)  jointly have the 

role of input and 𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑦𝑦
(1) �𝑥𝑥𝑘𝑘

(1)� (with the previously learned parameter 𝐶𝐶𝑦𝑦
(1)) is the output. If we 

assume the second set of states 𝑥𝑥𝑘𝑘
(2) do not contain any information about behavior, we could stop the 

modeling. However, this may not be the case if the dimension of the states extracted in the first stage 

(i.e. 𝑛𝑛1) is selected to be very small such that some behaviorally relevant neural dynamics are not 
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learned in the first stage. To be robust to such selections of 𝑛𝑛1, we can use another numerical 

optimization to determine based on the data whether and how 𝑥𝑥𝑘𝑘
(2) should affect behavior prediction. 

Thus, a second optimization in the second stage uses the extracted latent state in both stages and fits 

𝐶𝐶𝑧𝑧 in 

 𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 �𝑥𝑥𝑘𝑘
(1), 𝑥𝑥𝑘𝑘

(2)� + 𝜖𝜖𝑘𝑘 (10) 

while minimizing the behavior loss 𝐿𝐿𝑧𝑧 (equation (4)). This parameter will replace both 𝐶𝐶𝑧𝑧
(1) and 𝐶𝐶𝑧𝑧

(2) in 

equation (6). This concludes the learning of all model parameters in equation (6). In this work, when 

both stages are used together, we do not perform the additional optimization in equation (10), and the 

prediction of behavior is done solely using the 𝑥𝑥𝑘𝑘
(1) states extracted in the first stage. When only the 

second stage is used (i.e. 𝑛𝑛1 = 0), which we refer to as RNN NDM, the optimization to learn 𝐶𝐶𝑧𝑧 in the 

second stage is essential and is how the mapping from the latent states to behavior is learned in the 

RNN NDM case (note in this case we simply have a unified state 𝑥𝑥𝑘𝑘 as there is no dissociation 

involved). 

Finally, the first line of equations (7) and (9), can also be written more generally as  

 𝑥𝑥𝑘𝑘+1
(1) = 𝐴𝐴′′(1) �𝑥𝑥𝑘𝑘

(1),𝑦𝑦𝑘𝑘� (11) 

and  

 𝑥𝑥𝑘𝑘+1
(2) = 𝐴𝐴′′(2) �𝑥𝑥𝑘𝑘

(2),𝑦𝑦𝑘𝑘 , 𝑥𝑥𝑘𝑘+1
(1) � (12) 

where instead of an additive relation between the two terms of the right-hand side, both terms are 

combined in nonlinear functions 𝐴𝐴′′(1) and 𝐴𝐴′′(2), which as a special case can still learn the additive 

relation in equations (7) and (9). Whenever both 𝐴𝐴 and 𝐾𝐾 are specified to be nonlinear, we use the 

more general architecture in equations (11) and (12), and if any one of 𝐴𝐴 or 𝐾𝐾 or both are linear, we use 

equations (7) and (9). 

Once the learning is complete, we also compute the covariances of the neural and behavior residual 

time series 𝑒𝑒𝑘𝑘 and 𝜖𝜖𝑘𝑘 as Σe and Σϵ, respectively. This allows the learned model to be usable in 
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applications where generating new simulated data from the model is desired. This application is not 

discussed in this work, but an explanation of how new simulated data can be generated form the model 

in equation (1) is provided in the method section on numerical simulations. 

Behavior decoding and neural self-prediction evaluation metrics 

To evaluate the learning, we perform a cross-validation with 5 folds (unless otherwise noted). 

Specifically, we cut the data from the recording session into five equal segments, leave these segments 

out one by one as the test data, and train the model only using the data in the remaining segments. 

Once the model is trained using the neural and behavior training data, we pass the neural test data to 

the model to get the latent states during the test data using the first line of equation (1). We then pass 

the extracted latent states to equation (2) to get the one-step ahead prediction of the behavior and 

neural test data, which we refer to as behavior decoding and neural self-prediction, respectively. Note 

that only past neural data is used to get behavior and neural predictions and the behavior test data is 

never used. Given the predicted behavior and neural time series in the data, we then compute the 

correlation coefficient (CC) between each dimension of these time series and the actual behavior and 

neural test data. We then take the mean of CC across dimensions of behavior and neural data to get 

one final cross-validated CC value for behavior decoding and one final CC value for neural self-

prediction in this cross-validation fold. After all cross-validation folds are performed, we will have one 

accuracy value for each fold.  

To find the peak behavior decoding (Fig. 2c,g,k,o, Fig. 4b,f,j,n and S Fig. 4) or neural self-prediction 

(Fig. 4c,g,k,o and S Fig. 5) accuracy in a given cross-validation fold, we fit models with various latent 

state dimensions with 𝑛𝑛𝑥𝑥 being different powers of 2 from 1 to 128, and then pick the latent state 

dimension that achieves the best behavior decoding or neural self-prediction, respectively. Ideally, we 

want to select a model that simultaneously explains behavior and neural data well as a more accurate 

representation of both the neural and the behavior data. To do so, given that state dimensions required 

for reaching peak neural self-prediction are typically higher than the state dimensions required for 

reaching peak behavior decoding, we find the state dimension that reaches peak neural self-prediction, 
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and report both the neural self-prediction and the corresponding behavior decoding accuracy for the 

same model (Fig. 3 and Fig. 4d,h,l,p). 

RNN PSID with flexible nonlinearity: automatic determination of appropriate nonlinearity 

Each parameter in the RNN PSID model represents an operation in the computation graph of RNN 

PSID (Fig. 1b, S Fig. 1). We solve the numerical optimizations involved in model learning via stochastic 

gradient descent20, which remains applicable for any modification of the computation graph that 

remains acyclic. Thus, the operation associated with each model parameter (e.g. 𝐴𝐴′, 𝐾𝐾, 𝐶𝐶𝑦𝑦, and 𝐶𝐶𝑧𝑧), can 

be replaced with any multi-layer neural networks with arbitrarily number of hidden units and layers and 

the model remains trainable with the same approach. Of course, given that the training data is finite, the 

typical trade-off between model capacity and generalization error remains40. Given that neural networks 

can approximate any continuous function (with a compact domain)41, replacing model parameters with 

neural networks should have the capacity to learn any nonlinear function in their place. In this work, we 

use multi-layer feed-forward networks with 1 or 2 hidden layers, each with 64 or 128 units. For all 

hidden layers we always use a rectified linear unit (ReLU) nonlinear activation (Fig. 1e). 

We devise a procedure for automatically determining the most suitable combination of nonlinearities 

for the data, which we refer to as RNN PSID with flexible nonlinearity. In this procedure, for each cross-

validation fold in each recording session of each dataset, we try a series of nonlinearities within the 

training data and select one based on an inner cross-validation within the training data. Specifically, we 

consider the following options for the nonlinearity. First, each of the four main parameters (i.e. 𝐴𝐴′, 𝐾𝐾, 𝐶𝐶𝑦𝑦, 

and 𝐶𝐶𝑧𝑧) can be linear or nonlinear, resulting in 16 cases (i.e. 24). In the cases with nonlinearity, we 

consider four network structures for the parameters, i.e. having 1 or 2 hidden layers and having 64 or 

128 units in each hidden layer (Fig. 1e), resulting in 61 cases (i.e. 15 × 4 + 1, where 1 is for the fully 

linear model) overall. Finally, specifically for the recursion parameter 𝐴𝐴′, we also consider modeling it as 

an LSTM, with the other parameters still having the same nonlinearity options as before, resulting in 

another 29 cases for when this LSTM recursion is used (i.e. 7 × 4 + 1, where 1 is for the case where 

the other 3 model parameters are all linear), bringing the total number of considered cases to 90. For 

each of these 90 considered linear or nonlinear architectures, we perform a two-fold inner cross-
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validation within the training data to compute an estimate of the behavior decoding and neural self-

prediction of each architecture using the training data. We then select one final architecture purely 

based on training data to be used for that cross-validation fold based on one of two criteria: 1) decoding 

focused: pick the architecture with the best neural self-prediction in training data among all those that 

reach within 1 s.e.m. of the best behavior decoding. 2) self-prediction focused: pick the architecture with 

the best behavior decoding in training data among all those that reach within 1 s.e.m. of the best neural 

self-prediction. The first criteria prioritizes good behavior decoding in the selection and the second 

criteria prioritizes good self-prediction. Note that these two criteria that are used when selecting among 

different learned models with different nonlinearities are completely independent of the internal 

objective functions used in learning the parameters for a given model (S Fig. 1). For example, in stage 

one of RNN PSID, RNN model parameters for a given model are always optimized to achieve good 

behavior decoding. But when selecting among different learned models with different combinations of 

nonlinearities, if desired one could perform that selection based on neural self-prediction. Thus, 

whenever neural self-prediction is also of interest, we report the results for both criteria (e.g. Figs. 3 

and 4 and S Figs. 3 and 4).  

When comparing models with nonlinearity in different individual parameters to find the parameter that 

is largely sufficient for compressing nonlinearities (Fig. 4), we only consider one network architecture 

for the nonlinearity and that is having one hidden layer with 64 units.  

Numerical simulations 

To validate RNN PSID in numerical simulations, we perform two sets of simulations one validating 

linear modeling and to show the correctness of the two-stage learning approach with numerical 

optimization and one validating nonlinear modeling. In the linear simulation, we randomly generate 100 

linear models with various dimensionality and noise statistics, as described in our prior work1. Briefly, 

the neural and behavior dimensions are selected from 5 ≤ 𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 ≤ 10, the state dimension is selected 

from 1 ≤ 𝑛𝑛𝑥𝑥 ≤ 10, and the number of latent state dimensions driving behavior is selected from 1 ≤ 𝑛𝑛1 ≤

𝑛𝑛𝑥𝑥, with all selections being random with uniform probability. Eigenvalues of the state transition matrix 

are selected randomly as complex conjugate pairs with uniform probability within the unit disk. Each 
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element in the behavior and neural readout matrices is generated as a random Gaussian variable. 

State and neural observation noise covariances are generated as random positive definite matrices, 

and then scaled randomly with a number between 0.01 to 100 to obtain a wide range of relative noises 

across random models. A separate random linear state-space model with up to 10 latent state 

dimensions is generated to produce the behavior readout noise 𝜖𝜖𝑘𝑘, representing the behavior dynamics 

that are not encoded in the recorded neural activity. Finally, the behavior readout matrix is scaled to set 

the ratio of the signal s.d. to noise s.d. in each behavior dimension to a random number from 1 to 100. 

We perform model learning and evaluation with 2-fold cross-validation (S Fig. 2). 

In the nonlinear simulations that are used to validate both RNN PSID and the hypothesis testing 

procedure it enables to find the origin of nonlinearity, we generate 20 random linear scalar models with 

𝑛𝑛𝑦𝑦 = 𝑛𝑛𝑧𝑧 = 𝑛𝑛𝑥𝑥, and then replace one of the four model parameters (i.e. 𝐴𝐴′, 𝐾𝐾, 𝐶𝐶𝑦𝑦, and 𝐶𝐶𝑧𝑧) with a 

nonlinear trigonometric function, such that roughly one period of the trigonometric function is visited by 

the model. To do this, we first scale the latent state in the initial random scaler linear model to find a 

similarity transform for it where the latent state has a 95% confidence interval range of 2𝜋𝜋. We then add 

a sine function to the original parameter that is to be changed to nonlinear and scale the amplitude of 

the sine such that the amplitude of sine function reaches roughly 0.25 of the range of the outputs from 

the original linear parameter. This was done to reduce the chance of generating unrealistic unstable 

nonlinear models that produce outputs with infinite energy, which is likely when 𝐴𝐴′ is nonlinear. 

Changing one parameter to nonlinear can change the range of the statistics of the latent states in the 

model, thus we generate some simulated data from the model and redo the scaling of the nonlinearity 

until ratio conditions are met.  

To generate data from the nonlinear model in equation (1), we first generate a neural noise time 

series 𝑒𝑒𝑘𝑘 based on its covariance Σ𝑒𝑒 in the model and initialize the state as 𝑥𝑥0 = 0. We then iteratively 

apply the second and first lines of equation (1) to get the simulated neural activity 𝑦𝑦𝑘𝑘 from line 2 and 

then the next state 𝑥𝑥𝑘𝑘+1 from line 1, respectively. Finally, once the state time series is produced, we 

generate a behavior noise time series 𝜖𝜖𝑘𝑘 based on its covariance Σ𝜖𝜖 in the model, and apply the third 
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line of equation (1) to get the simulated behavior 𝑧𝑧𝑘𝑘. Similar to linear simulations, we perform the 

modeling and evaluation of nonlinear simulations with 2-fold cross-validation (S Fig. 3). 

Neural datasets and behavioral tasks 

We investigate the nonlinearities in four datasets with different behavioral tasks, brain regions, and 

neural recording modalities to show the generality of our methods and conclusions. Across all datasets, 

the spiking activity was binned with 10 ms nonoverlapping bins, smoothed with a Gaussian kernel with 

a 50 ms s.d., and then downsampled to 50 ms to be used as the neural signal to be modeled. The 

behavior time series was also downsampled to a matching 50 ms before modeling. In the three 

datasets where LFP activity was also available, we also studied two types of features extracted from 

LFP. As the first LFP feature, we considered raw LFP activity itself, which was low-pass filtered below 

10 Hz (i.e. anti-aliasing) and downsampled to the behavior sampling rate of 50 ms timestep (i.e. 20 Hz). 

As the second feature, we computed the LFP log-powers in 8 standard frequency bands (delta: 0.1-4 

Hz, theta: 4-8 Hz, alpha: 8-12 Hz, low beta: 12-24 Hz, high beta: 24-34 Hz, low gamma: 65-95 Hz, and 

high gamma: 130-170 Hz), in sliding 300 ms windows at a time step of 50 ms using Welch’s method 

(using 8 subwindows with 50% overlap)1. 

First dataset: 3D reaches to random targets 

In the first dataset, the monkey (monkey J) performed reaches to a target randomly positioned in 3D 

space within the reach of the monkey, grasped the target, and then retuned its hand to resting 

position1,26. Angles of 27 joints in the shoulder, elbow, wrist, and fingers in the active hand (right hand) 

were tracked using 3D markers and taken as the behavior signal1,26. Neural activity was recorded with a 

137-electrode microdrive (Gray Matter Research), out of which 28 electrodes were in the contralateral 

primary motor cortex M1. The multiunit spiking activity in these M1 electrodes was used as the neural 

signal. For LFP analyses, LFP features were also extracted from the same M1 electrodes. We analyzed 

the data from 7 recording sessions.  

To visualize the low-dimensional latent state trajectories for each behavioral condition (Fig. 6), we 

determined the periods of reach and return movements in the data, resampled them to have similar 
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number of time samples and averaged the latent states across those resampled trials. Given the 

redundancy in latent descriptions (i.e. any scaling, rotation, etc. on the latent states still gives an 

equivalent model), before averaging trials across cross-validation folds and sessions we devised the 

following procedure to standardize the latent states for each fold in the case of 2D latent states (Fig. 6): 

1) We z-score all state dimensions to have zero mean and unit variance. 2) We rotate the 2D latent 

states such that the average 2D state trajectory for the first condition (here the reach epochs) starts 

from an angle of 0. 3) We estimate the direction of the rotation for the average 2D state trajectory of the 

first condition, and if it is not counterclockwise, we multiply the second state dimension by -1 to make it 

so. Note that in each step, the same mapping is applied to the latent states during the whole test data, 

regardless of condition, so this procedure does not alter the relative differences in the state trajectory 

across different conditions. The procedure also does not change the learned model and simply 

corresponds to a similarity transform that changes the basis of the model. All in all, this procedure only 

removes the redundancies for describing a 2D latent state-space model and standardizes the extracted 

latent states so that trials across different test sets can be averaged together. 

Second dataset: saccadic eye movements 

In the second dataset, the monkey (monkey A) performed saccadic eye movements to one of eight 

targets on a display28,29. The 2D position of the eye was tracked and taken as the behavior signal. 

Neural activity was recorded with a 32-electrode microdrive (Gray Matter Research) covering the 

prefrontal cortex1,27. The single unit activity from these electrodes, ranging from 34 to 43 units across 

different recording sessions was used as the neural signal. For LFP analyses, LFP features were also 

extracted from the same 32 electrodes. We analyzed the data from the first 7 days of recordings. We 

only included data from successful trials where the monkey performed the task correctly by making a 

saccadic eye movement to the specified target. To visualize the low-dimensional latent state trajectories 

for each behavioral condition (Fig. 6), we grouped the trials based on their target position. 

Standardization across folds before averaging was done as in the first dataset.  
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Third dataset: sequential reaches with a 2D cursor controlled with a manipulandum 

In the third dataset, which was collected and made publicly available by the Miller lab28,29, the 

monkey (monkey T) controlled a cursor on a 2D screen using a manipulandum and performed a 

sequential reach task28,29. The 2D cursor position and velocity were taken as the behavior signal. 

Neural activity was recorded using a 100-electrode microelectrode array (Blackrock Microsystems, Salt 

Lake City, UT) in the dorsal premotor cortex (PMd)28,29. The single unit activity, recorded from 37 to 49 

units across recording sessions, was used as the neural signal. This dataset did not include any LFP 

recordings, so LFP features could not be considered. We analyzed the data from all 3 recording 

sessions. To visualize the low-dimensional latent state trajectories for each behavioral condition (Fig. 

6), we grouped trials into 8 different conditions based on the angle of the direction of movement (i.e. 

end position minus starting position) during the trial, with each condition covering movement directions 

within a 45 (i.e. 360/8) degree range. Standardization across folds before averaging was done as in the 

first dataset. 

Fourth dataset: random reaches with a 2D cursor displayed in virtual reality and 
controlled with the fingertip 

In the fourth dataset, which was collected and made publicly available by the Sabes lab30, the 

monkey (monkey I) controlled a cursor on a 2D surface within a 3D virtual reality environment18,30. The 

cursor was controlled based on the fingertip position of the monkey18,30. The 2D cursor position and 

velocity were taken as the behavior signal. Neural activity was recorded with a 96-electorde 

microelectrode array (Blackrock Microsystems, Salt Lake City, UT)18,30 covering M1. We selected a 

random subset of 32 of these electrodes, which had 77 to 99 single units across the recording sessions, 

as the neural signal. For LFP analyses, LFP features were also extracted from the same 32 electrodes. 

We analyzed the data for the first seven sessions for which the wideband activity was also available 

(sessions 20160622/01 to 20160921/01). Grouping into conditions for visualization of low-dimensional 

latent state trajectories (Fig. 6) was done as in the third dataset. Standardization across folds before 

averaging was done as in the first dataset. 
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Statistics 

We used the Wilcoxon signed-rank test for all paired statistical tests. 

Data availability 

Two of the datasets used in this work are publicly available28–30. The other datasets used to support 

the results are available upon reasonable request from the corresponding author. 

Code availability 

The code for RNN PSID will be online at https://github.com/ShanechiLab/PyPSID. 
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Supplementary Figures 

 
S Fig. 1 | Detailed computation graph for both stages of RNN PSID. 
When both stages of RNN PSID are used, the computation graph is as shown in the figure. The learning consists of 4 numerical 

optimization problems (Methods): 1) Learn 𝐴𝐴′(1), 𝐾𝐾(1), and 𝐶𝐶𝑧𝑧
(1) by fitting an RNN that minimizes behavior prediction error; 

2) Learn 𝐶𝐶𝑦𝑦
(1) by fitting a feed-forward neural network that minimizes neural prediction error when using the RNN states 𝑥𝑥𝑘𝑘

(1) 

as input; 3) Learn 𝐴𝐴′(2), 𝐾𝐾(2), and 𝐶𝐶𝑦𝑦
(2) by fitting an RNN that minimizes the error in neural prediction when using the past 

neural activity and the states extracted from the first RNN 𝑥𝑥𝑘𝑘
(1) as input (note that 𝑥𝑥𝑘𝑘

(1) is computed in stage 1 and has known 

values for stage 2); and 4) Learn 𝐶𝐶𝑧𝑧
(2) by fitting a feed-forward neural network that minimizes neural prediction error when 

using the second RNN states 𝑥𝑥𝑘𝑘
(2) as input. Stage 1 consists of the first two and stage 2 consists of the latter two optimization 

problems. The dimension of 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2) are hyperparameters that need to be determined by the user. The architecture of 
the feed-forward neural network that constructs each model parameter (Fig. 1d-e) can either be determined exactly by the 
user (e.g. for linear PSID and for individual nonlinearities in Fig. 4) or can be automatically selected among a range of 
architectures using an inner-cross-validation within the training data (e.g. flexible nonlinearity in Figs. 3-4, Methods). 
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S Fig. 2 | RNN PSID dissociates and prioritizes the behaviorally relevant neural dynamics while also learning the other 
neural dynamics in numerical simulations of linear models. 
(a) Cross-validated behavior decoding accuracy (correlation coefficient, CC) for each method as a function of the number of 
training samples when we use a state dimension equal to the total state dimension in the true model. Performance for the 
true model is shown in black. Solid lines show the mean across 100 random models and the shaded area shows the s.e.m. (b) 
Same as (a), but when learned models have low-dimensional latent states with enough dimensions just for the behaviorally 
relevant latent states (i.e. 𝑛𝑛𝑥𝑥= 𝑛𝑛1). (c-d) Same as (a-b), showing the cross-validated neural self-prediction accuracy. Linear 
RNN PSID, just like subspace-based PSID1, achieves almost ideal behavior decoding even with low-dimensional latent states 
(panel b) showing that it correctly dissociates and prioritizes behaviorally relevant dynamics, while still being able to learn 
overall neural dynamics accurately if state dimension is high enough (panel c).  
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S Fig. 3 | RNN PSID successfully identifies the origin of nonlinearity and learns it in numerical simulations. 
(a) Example true value for nonlinear recursion parameter 𝐴𝐴′ and the nonlinear value that RNN PSID learned for a random 
model for which only 𝐴𝐴′ was nonlinear. (b) Behavior decoding and neural self-prediction accuracy achieved by each type of 
nonlinearity when the true random models only had nonlinearity is in the recursion parameter 𝐴𝐴′. The performance measures 
for each random model are normalized by their ideal values that were achieved by the true model itself. Horizontal and 
vertical whiskers show the s.e.m. for neural self-prediction and behavior decoding, respectively. The model whose (neural 
self-prediction, behavior decoding) performance pair is at the upper-right corner of the plots has both the best behavior 
decoding and the best neural self-prediction and is thus chosen as the model that specifies the origin of nonlinearity. Among 
all types of nonlinearities, the correct one (i.e. 𝐴𝐴′) achieves the best performance overall, suggesting that by fitting and 
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comparing RNN PSID models with different nonlinearities we can correctly find the origin of nonlinearity in the data. (c-d) 
Same as (a-b), for models that only have nonlinearity in the neural drive parameter 𝐾𝐾. (e-f) Same as (a-b), for models that 
only have nonlinearity in the behavior readout parameter 𝐶𝐶𝑦𝑦. (g-h) Same as (a-b), for models that only have nonlinearity in 
the neural readout parameter 𝐶𝐶𝑧𝑧. 
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S Fig. 4 | Behavior decoding of RNN PSID when using both stages shows that nonlinear RNN PSID outperforms linear PSID 
and other methods across all latent state dimensions, including high dimensions.  
(a) The 3D reach task. (b) Cross-validated behavior decoding accuracy (CC) achieved by variations of nonlinear and linear RNN 
PSID/NDM, for different latent state dimensions. Notation is as in Fig. 2b. Across latent state dimensions, the statistical 
significance of a one-sided pairwise comparison between nonlinear PSID/NDM (with best nonlinearity for decoding) vs linear 
PSID/NDM is shown with a horizontal green/red line with asterisks next to it (N = 35). For all latent state dimensions, nonlinear 
modeling results in significantly more accurate behavior decoding. (c) Peak behavior decoding accuracy achieved by each 
method, by choosing the state dimension in each session and fold as the smallest that reaches peak decoding accuracy. Bars, 
whiskers, and dots are defined as in Fig. 2c. (d-f) Same as (a-c) for the second dataset, with saccadic eye movements (N = 35). 
(g-i) Same as (a-c) for the third dataset, with sequential cursor reaches controlled via a 2D manipulandum (N = 15). (j-l) Same 
as (a-c) for the fourth dataset, with random grid virtual reality cursor reaches controlled via fingertip position (N = 35). For all 
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RNN PSID variations, the first 16 latent state dimensions are learned using stage 1 and the remaining are learned using stage 
2 (i.e. n1 = 16). 
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S Fig. 5 | Neural self-prediction of RNN PSID when using both stages demonstrates that linear models can reach similar 
neural self-prediction accuracy as nonlinear models but only with high enough latent state dimensions.  
(a) The 3D reach task. (b) Cross-validated neural self-prediction accuracy (CC) achieved by variations of nonlinear and linear 
RNN PSID/NDM, for different latent state dimensions. Notation is as in Fig. 2b. Across latent state dimensions, the statistical 
significance of a one-sided pairwise comparison between nonlinear PSID/NDM (with best nonlinearity for self-prediction) vs 
linear PSID/NDM is shown with a horizontal black/orange line with asterisks next to it (N = 35). For low dimensional latent 
states, nonlinear modeling results in significantly more accurate neural self-prediction. (c) Peak neural self-prediction 
accuracy achieved by each method when choosing the state dimension in each session and fold as the smallest that reaches 
peak neural self-prediction. Bars, whiskers, and dots are defined as in Fig. 2c. (d-f) Same as (a-c) for the second dataset, with 
saccadic eye movements (N = 35). (g-i) Same as (a-c) for the third dataset, with sequential cursor reaches controlled via a 2D 
manipulandum (N = 15). (j-l) Same as (a-c) for the fourth dataset, with random grid virtual reality cursor reaches controlled 
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via fingertip position (N = 35). For all RNN PSID variations the first 16 latent state dimensions are learned using stage 1 and 
the remaining are learned using stage 2 (i.e. n1 = 16). 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.03.458628doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458628


50/56 
 

 
S Fig. 6 | For raw LFP activity, RNN PSID more accurately learns behaviorally relevant neural dynamics while also reaching 
similar neural self-prediction accuracy as RNN NDM. 
Figure content is parallel to S Fig. 4 and Fig. 3, shown for raw LFP activity. (a) The 3D reach task. (b) Cross-validated behavior 
decoding accuracy (CC) achieved by variations of nonlinear and linear RNN PSID/NDM, for different latent state dimensions. 
Notation is as in S Fig. 4b. (c) Peak behavior decoding accuracy achieved by each method, by choosing the state dimension in 
each session and fold as the smallest that reaches peak decoding accuracy. Bars, whiskers, and dots are defined as in Fig. 2c. 
(d) Peak neural self-prediction accuracy achieved by each method shown on the horizontal axis versus the corresponding 
behavior decoding accuracy on the vertical axis. Latent state dimension for each method in each session and fold is selected 
as the smallest that reaches peak neural self-prediction, thus peak decoding accuracies are not exactly the same as in (c). 
Notation is as in Fig. 3, with the plus on the plot showing the mean self-prediction and decoding accuracy across sessions and 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.03.458628doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458628


51/56 
 

folds (N = 35), and the horizontal and vertical whiskers showing the s.e.m. (e-h) Same as (a-d) for the second dataset, with 
saccadic eye movements (N = 35). (i-l) Same as (a-d) for the fourth dataset, with random grid virtual reality cursor reaches 
controlled via fingertip position (N = 35). 
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S Fig. 7 | For LFP band power activity, RNN PSID more accurately learns behaviorally relevant neural dynamics while also 
reaching similar neural self-prediction accuracy as RNN NDM. 
Figure content is exactly parallel to S Fig. 6, shown for LFP band power activity. 
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S Fig. 8 | For raw LFP activity, RNN PSID again reveals that nonlinearities can be largely captured by the behavior readout 
of the model across datasets. 
Figure content is exactly parallel to Fig. 4, shown for raw LFP activity. The behavior readout nonlinearity does better than 
every other individual nonlinearity and comparable to when nonlinearity is flexibly chosen to be in all or any combination of 
parameters. 
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S Fig. 9 | For LFP band power activity, RNN PSID again reveals that nonlinearities can be largely captured by the behavior 
readout of the model across datasets. 
Figure content is exactly parallel to Fig. 4, shown for LFP band power activity. The behavior readout nonlinearity does better 
than every other individual nonlinearity and comparable to when nonlinearity is flexibly chosen to be in all or any combination 
of parameters. 
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Supplementary Notes 

S Note 1: Relation of RNN PSID to linear state-space models in predictor form 

The model used by RNN PSID is provided in equation (1). Here, we expand on the motivation behind 

this model formulation and its relation to linear state-space models. As a general linear model, neural 

activity 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 and behavior 𝑧𝑧𝑘𝑘 ∈ ℝ𝑛𝑛𝑧𝑧 can be jointly modeled as  

 �
𝑥𝑥𝑘𝑘+1′ =  𝐴𝐴  𝑥𝑥𝑘𝑘′ + 𝑤𝑤𝑘𝑘′

   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘′ + 𝑣𝑣𝑘𝑘′

   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘′ + 𝜖𝜖𝑘𝑘′
 (13) 

where 𝑥𝑥𝑘𝑘′ ∈ ℝ𝑛𝑛𝑥𝑥  is a latent variable, 𝑤𝑤𝑘𝑘′  and 𝑣𝑣𝑘𝑘′  are Gaussian white noises, and 𝜖𝜖𝑘𝑘′  is a general random 

process that is independent of neural activity and represents any behavior dynamics that are not 

encoded in neural activity1. Given the above linear model, the latent states can be estimated from the 

neural activity 𝑦𝑦𝑘𝑘 using a Kalman filter 

 𝑥𝑥�𝑘𝑘+1|𝑘𝑘   =  𝐴𝐴 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 + 𝐾𝐾 �𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑦𝑦 𝑥𝑥�𝑘𝑘|𝑘𝑘−1� (14) 

where 𝐾𝐾 is the Kalman gain21,39. Equation (13) can be equivalently written in terms of the Kalman 

estimated states 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 as 

 �
𝑥𝑥𝑘𝑘+1  =  𝐴𝐴  𝑥𝑥𝑘𝑘 + 𝐾𝐾𝑒𝑒𝑘𝑘

   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘 + 𝑒𝑒𝑘𝑘 
   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘 + 𝜖𝜖𝑘𝑘  

 (15) 

where 𝑥𝑥𝑘𝑘 ≜ 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 and 𝑒𝑒𝑘𝑘 and 𝜖𝜖𝑘𝑘 are respectively the parts of neural and behavior signals that cannot 

be predicted from past neural activity (i.e. {𝑦𝑦𝑘𝑘′ ∈ ℝ𝑛𝑛𝑦𝑦 : 0 ≤ 𝑘𝑘′ <  𝑘𝑘}). Equivalently, by replacing 𝑒𝑒𝑘𝑘 from 

the first line with its value from the second line, we can also write equation (15) as 

 �
𝑥𝑥𝑘𝑘+1 = 𝐴𝐴′ 𝑥𝑥𝑘𝑘 + 𝐾𝐾𝑦𝑦𝑘𝑘
   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘 + 𝑒𝑒𝑘𝑘  
   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘 + 𝜖𝜖𝑘𝑘   

 (16) 

where 𝐴𝐴′ ≜ 𝐴𝐴 − 𝐾𝐾𝐶𝐶𝑦𝑦. Equations (13) and (16) describe the same second order statistics for the 

observed times series 𝑦𝑦𝑘𝑘 and 𝑧𝑧𝑘𝑘 and thus are equivalent21,39. These two formulations are referred to as 

the stochastic and predictor forms, respectively21,39.  
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In equation (16), each multiplication between a model parameter and a vector (e.g. 𝐴𝐴′𝑥𝑥𝑘𝑘) can be 

thought of as a multi-input-multi-output linear function applied to an input vector (e.g. function 𝐴𝐴′(. ), 

applied to 𝑥𝑥𝑘𝑘). Rewriting all matrix multiplications as multi-input-multi-output functions we get   

 �
𝑥𝑥𝑘𝑘+1 =  𝐴𝐴′(𝑥𝑥𝑘𝑘) + 𝐾𝐾(𝑦𝑦𝑘𝑘)
   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦(𝑥𝑥𝑘𝑘) + 𝑒𝑒𝑘𝑘      
   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧(𝑥𝑥𝑘𝑘) + 𝜖𝜖𝑘𝑘       

 (17) 

where each function (e.g. 𝐴𝐴′(. )) is a parameter to be learned. This gives the model form for the RNN 

PSID model in equation (1). Unlike the linear state-space model, however, RNN PSID has the 

additional generalization that we can allow any subset of the parameters in its model to be general 

nonlinear functions. 

Given that the model in equation (1) is constructed in the predictor form, even when parameters are 

nonlinear, the model can still be readily used to estimate the latent states 𝑥𝑥𝑘𝑘 given the neural 

observations 𝑦𝑦𝑘𝑘, and to decode behavior 𝑧𝑧𝑘𝑘. To do this, we run the first line of equation (1) to estimate 

the latent state and then pass this state through the learned 𝐶𝐶𝑦𝑦 or 𝐶𝐶𝑧𝑧 functions in the second or the third 

line to predict neural activity or decode behavior, respectively. 
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