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Abstract

Convolutional neural networks trained on object recognition derive inspiration from the
neural architecture of the visual system in primates, and have been used as models of
the feedforward computation performed in the primate ventral stream. In contrast to
the deep hierarchical organization of primates, the visual system of the mouse has a
shallower arrangement. Since mice and primates are both capable of visually guided
behavior, this raises questions about the role of architecture in neural computation. In
this work, we introduce a novel framework for building a biologically constrained
convolutional neural network model of the mouse visual cortex. The architecture and
structural parameters of the network are derived from experimental measurements,
specifically the 100-micrometer resolution interareal connectome, the estimates of
numbers of neurons in each area and cortical layer, and the statistics of connections
between cortical layers. This network is constructed to support detailed task-optimized
models of mouse visual cortex, with neural populations that can be compared to specific
corresponding populations in the mouse brain. Using a well-studied image classification
task as our working example, we demonstrate the computational capability of this
mouse-sized network. Given its relatively small size, MouseNet achieves roughly 2/3rds
the performance level on ImageNet as VGG16. In combination with the large scale
Allen Brain Observatory Visual Coding dataset, we use representational similarity
analysis to quantify the extent to which MouseNet recapitulates the neural
representation in mouse visual cortex. Importantly, we provide evidence that optimizing
for task performance does not improve similarity to the corresponding biological system
beyond a certain point. We demonstrate that the distributions of some physiological
quantities are closer to the observed distributions in the mouse brain after task training.
We encourage the use of the MouseNet architecture by making the code freely available.

Author summary

Task-driven deep neural networks have shown great potential in predicting functional
responses of biological neurons. Nevertheless, they are not precise biological analogues,
raising questions about how they should be interpreted. Here, we build new deep neural
network models of the mouse visual cortex (MouseNet) that are biologically constrained
in detail, not only in terms of the basic structure of their connectivity, but also in terms
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of the count and hence density of neurons within each area, and the spatial extent of
their projections. Equipped with the MouseNet model, we can address key questions
about mesoscale brain architecture and its role in task learning and performance.We
ask, and provide a first set of answers, to: What is the performance of a mouse
brain-sized – and mouse brain-structured – model on benchmark image classification
tasks? How does the training of a network on this task affect the functional properties
of specified layers within the biologically constrained architecture – both overall, and in
comparison with recorded function of mouse neurons? We anticipate much future work
on allied questions, and the development of more sophisticated models in both mouse
and other species, based on the freely available MouseNet model and code which we
develop and provide here.

Introduction 1

Convolutional neural networks (CNNs) trained on object recognition derive some 2

inspiration from the neuroscience of the visual system in primates, and have been used 3

as models of feedforward computation performed in the primate ventral stream [1–3]. 4

Indeed, the activity in these networks often resembles activity recorded from areas of the 5

primate visual system, from oriented Gabor-like features in early layers [4] to responses 6

to curves and more complex geometries [5] and even functional, or representational, 7

similarity at the population level [6,7]. Task-trained artificial neural networks have been 8

shown to produce similar neural representations or develop predictive models of neural 9

activity in visual [8–10], auditory [11], rodent whisker areas [12], and more [13–15]. 10

Despite these successes and the clear power of CNNs to solve machine learning problems 11

in the visual domain, among others [4, 16], they are not structural or architectural 12

analogues for the underlying biological circuits. Recent endeavors [17,18] show that 13

imposing brain like structure such as shallowness and recurrence in network models can 14

improve their functional similarity to the primate brain. The interplay of architecture 15

and computation remains an open problem in both machine learning and neuroscience. 16

This issue is especially pronounced for studies of mouse visual cortex, a field 17

undergoing explosive growth. Large scale tract tracing data sets have revealed 18

neuro-anatomical structure in unprecedented detail [19–22]. From these efforts we have 19

learned, in contrast to the hierarchical organization of primates, that the visual system 20

of the mouse has a much more parallel structure [23]. Since rodents are capable of 21

visually guided behavior including invariant object recognition [24,25], this raises 22

questions about the role of architecture in neural computation. Recently, data from a 23

large-scale physiological survey of neural activity in the mouse visual system [26] was 24

used to compare the representations of visual stimuli in cortex with those of modern 25

deep networks [27–29]. It was found that even purportedly “early” regions such as V1 in 26

mouse cortex are more similar at the level of representation to middle layers of networks 27

such as VGG16, rather than to early layers that respond optimally to simple visual 28

features and bear more resemblance to the “simple” and “complex” cells normally 29

supposed to describe the early visual pathway. However, the profound difference in 30

architecture between modern CNNs and the mouse cortex raises significant challenges in 31

interpreting these findings. To begin, many modern computational models of vision (in 32

particular CNNs, which often have a high input resolution) have a larger number of 33

units than the number of neurons in mouse visual cortex. Moreover, CNNs from 34

computational vision are largely of feedforward type, either purely so or with some skip 35

connections (e.g., in ResNet architectures), which ignores the large amount of 36

recurrence present in real neural circuits. Furthermore, the mouse thalamo-cortical 37

system is quite shallow [23]. Most importantly, as stated above and detailed more below, 38

the mouse visual cortex has an intriguing parallel structure. 39
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Here we introduce a novel framework for incorporating these data to build a 40

biologically constrained convolutional neural network model of the mouse visual cortex 41

— the CNN MouseNet. Convolutional neural networks share weights across the visual 42

field, and thus form an approximation of the functional properties that may be imposed 43

by translation invariance of natural stimuli leading to equivariant representations in 44

neural systems [1–3]. This weight sharing makes them much easier to train, which is an 45

important practical consideration for model development. The structural parameters of 46

MouseNet are derived from experimental measurements, specifically estimates of 47

numbers of neurons in each area and cortical layer, the 100-micrometer resolution 48

interareal connectome, and the statistics of connections between cortical layers. 49

MouseNet is constructed to support detailed task-optimized models of mouse visual 50

cortex, with neural populations that can be compared to specific corresponding 51

populations in the mouse brain. To demonstrate the usage of MouseNet, we use 52

standard image classification tasks as working examples; specifically, we train MouseNet 53

to perform classification using the ImageNet Large Scale Visual Recognition Challenge 54

2012 (ILSVRC2012) [30] as well as the CIFAR10 [31] data sets. 55

We find that, although MouseNet is much smaller than a typical CNN and has 56

specific architectural differences, it can reach above 90% validation accuracy on 57

CIFAR10, and roughly 2/3rds of the performance level of a typical CNN (VGG16) on 58

the more challenging ImageNet classification benchmark. 59

Next, using the large-scale functional data sets from the Allen Brain 60

Observatory [26] on visual responses of neurons across visual cortex, we investigate the 61

functional properties of the MouseNet architecture after training on the ImageNet 62

dataset. We use representational similarity analysis [27,32,33] to investigate the relative 63

effects of task-training on the different computational layers in the model. We see that 64

ImageNet classification training of MouseNet makes responses in its corresponding level 65

of layers more similar to responses recorded from the mouse brain. 66

We then contrast these results for the biologically constrained MouseNet with those 67

for a standard CNN network, VGG16, trained on the same task. We show that the 68

representational similarity of MouseNet to the mouse brain is comparable to that of 69

VGG16, even though VGG16 produces significantly higher task performance. 70

We study the training process for both networks, and find that the highest SSM 71

values between a model neural network and the mouse brain areas are not necessarily 72

achieved by the best performing models, rather at early or intermediate points during 73

the training process. We take this as an indication that image classification using 74

ImageNet is not the appropriate task to describe the mouse visual cortex (or at least 75

those regions measured in the Allen Brain Observatory) rather than a failure of the 76

task-training approach. This conclusion is perhaps to be expected. However, we feel 77

that the use of object recognition is an important baseline in comparison with 78

established results in primate. 79

Furthermore, in addition to broad measures of representational similarity across 80

images, we also demonstrate the effect of image classification training on MouseNet by 81

showing how it affects the other functional properties such as lifetime sparseness and 82

orientation selectivity index [26]. We find that training drives both of these properties 83

to become more similar between MouseNet and the biological mouse brain. Finally, by 84

comparing both VGG16 and MouseNet representations in individual layers before and 85

after training, we find that the image classification task makes MouseNet layers more 86

diverse after training, a phenomenon we attribute to the parallel pathways in the 87

MouseNet architecture. 88

Overall, we describe an open framework for constructing MouseNet that is general 89

and can be easily modified to incorporate new data on the structure of the mouse 90

brain [34]. Likewise, MouseNet can be readily trained on other tasks, including those 91
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corresponding more closely to natural behavior. We encourage future research along 92

these lines by making the Python code publicly available at 93

https://github.com/mabuice/Mouse CNN, together with the step-by-step description 94

of the model construction that we present next. 95

Construction of CNN MouseNet 96

In this section, we introduce our framework for constructing the CNN MouseNet. Fig 1 97

shows an overview of this framework. The basic idea is to use available sources of 98

anatomical data (e.g. tract tracing data, cell counts, and statistics of short-range 99

connections) to constrain the CNN network structure and architectural 100

hyperparameters. We discuss the details of each step below. 101

Projection

Allen Mouse Brain Atlas

ArchitectureMeta-parameters

Interareal 
Connection 
Probability

Neuron 
Number

Interlaminar 
Connection 
probability Harris & Mihalas 2019

Hierarchy

+

Data

MouseNet

Fig 1. Modeling framework. Framework for constructing MouseNet from biological
constraints on anatomy, via publicly available data from large-scale experiments. The
CNN architecture is set by the analysis of hierarchy [23] on the Allen Mouse Brain
Connectivity Atlas [20] (Image credit: Allen Institute); and the meta-parameters are
mostly fixed by the combination of the 100-micrometer resolution interareal
connectome [21] with detailed estimates of neuron density [35], and the statistics of
connections between cortical layers from the literature [36–38].

Network architecture 102

MouseNet spans the dorsal lateral geniculate nucleus (dLGN) and six visual areas 103

(Fig 2A). Input to the network passes first through dLGN, and then to the primary 104

visual area VISp. After VISp, the architecture branches into five parallel pathways, 105

representing five secondary lateral visual areas: VISl (lateral visual area), VISal 106

(anterolateral), VISpl (posterolateral), VISli (laterointermediate), and VISrl 107

(rostrolateral). Finally, the output of VISp together with all five lateral visual areas 108

provide input to VISpor (postrhinal). We include only the lateral areas because they 109
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are more associated to object recognition while the medial areas are more involved in 110

multimodal integration [39]. The three-level architecture among the VIS areas was 111

derived from an analysis of the hierarchy of mouse cortical and thalamic areas (Fig. 6e 112

in [23]), which considered feedforward and feedback connection structures in each area. 113

In this analysis, VISp was clearly low in the hierarchy, and VISpor was clearly high, but 114

the other lateral visual areas had similar intermediate positions. 115

In the MouseNet model, each VIS area is represented by three separate cortical 116

layers: layer 4 (L4), layer 2/3 (L2/3) and layer 5 (L5). We call a specific cortical layer 117

within a specific area a “region”. Here we only consider the feedforward pathway, 118

thought in primate to drive responses within ≈ 100ms of stimulus presentation [2, 8]. 119

Following depictions of the canonical microcircuit (e.g. as summarized in Fig 5 in [40]), 120

we consider the feedforward pathway to consist of laminar connections from L4 to L2/3, 121

and from L2/3 to L5. Input from other areas feed into L4 and all of L4, L2/3 and L5 122

output to downstream areas, as shown in Fig 2B. This is consistent with broad 123

connectivity among visual areas from each of these layers (Fig. 2f of [23]). Fig 2C shows 124

the MouseNet architecture in full detail, including all 22 regions and associated 125

connections.

VISp

Input

VISl VISrl VISal VISli VISpl

VISpor

dLGN

VISp VISl

L4

L2/3 

L5

L4

L2/3

L5

C

VISp4

Input

dLGN

VISp2/3

VISp5

VISl4

VISl2/3

VISl5

VISrl4

VISrl2/3

VISrl5

VISal4

VISal2/3

VISal5

VISli4

VISli2/3

VISli5

VISpl4

VISpl2/3

VISpl5

VISpor4

VISpor2/3

VISpor5

Fig 2. Illustration of MouseNet architecture. Only feedforward connections are
included. (A) High-level organization of MouseNet, based on analysis of the hierarchy of
lateral visual areas ( [23]). (B) Connection patterns at the level of cortical layers. (C)
Full MouseNet architecture.

126

From architecture to convolutional neural net 127

Similar to the CALC model for the primate visual cortex by one of the authors [41], the 128

general idea is to use convolution (Conv) operations to model the projections between 129

different regions in the mouse visual cortex. Conv operations are linear combinations of 130
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many inputs, so they impose the assumption of linear synaptic integration. They are 131

widely used in machine learning, because they run efficiently on graphical processing 132

units, and they share parameters across the visual field, leading to reduced memory 133

requirements and faster learning, relative to general linear maps. 134

Each connection from source brain region i to target brain region j is modelled with 135

a Conv operation, Convij . The input to Convij corresponds to the neural activities in 136

source region i, and the output of Convij drives neural activities in the target region j. 137

For example, as shown in Fig 3A, the projection from Region 1 to Region 2 (Proj 1→2) 138

is modeled by Conv12. The neural activities in Region 1 correspond to the input to 139

Conv12, while the neural activities in Region 2 are a nonlinear function (ReLU, as 140

shown in Fig 3C) of the output of Conv12. In MouseNet, L4 of all areas except VISp 141

receive multiple converging inputs, similar to Region 4 in Fig 3A. In this case, each 142

projection (Proj 2→4 and Proj 3→4) is modeled by a separate Conv layer (Conv24 and 143

Conv34), and a nonlinear function (ReLU) is applied to the sum of the output from 144

both of the Conv layers, to produce the neural activities in Region 4. 145

Finding meta-parameters consistent with mouse data 146

After fixing the architecture, we need to determine the meta-parameters for 147

constructing the kernels for each Conv operation (Fig 3). The standard Conv operation 148

is defined in terms of a four-dimensional kernel. The output of the kernel is a 149

three-dimensional tensor of activations for region j, Aj , which pass through 150

element-wise ReLU nonlinearities to produce non-negative rates. Element Ajαβγ is the 151

activation of the neuron at the αth vertical and βth horizontal position in the visual 152

field, in the γth channel (or feature map). The γth channel of the activation tensor for 153

region j, Ajγ , depends on inbound connections as, 154

Ajγ =
∑
i∈Ij

∑
δ

Cijγδ ∗A
i
δ, (1)

where Ij is the set of regions that provide input to region j. Note that both Cijγδ and Ajδ 155

are two-dimensional, and they undergo standard two-dimensional convolution. The 156

meta-parameters of kernel Cij are: number of input channels cijin, number of output 157

channels cijout, stride sij , padding pij , and finally kernel size kij , i.e. the height and 158

width (which are set equal) of Cijγδ. To make the connections realistically sparse, we add 159

a binary Gaussian mask on the Conv operations, whose parameters are also estimated 160

from data. See Fig 3B for an illustration of Conv operation with Gaussian mask. We 161

constrain these meta-parameters with quantitative data whenever possible, and 162

reasonable assumptions indicated by experimental observations otherwise, as indicated 163

below. 164

Cortical population constraints 165

Assumptions about area output size We set the horizontal and vertical 166

resolution of the input (in pixels) based on mouse visual acuity. According to [42], the 167

upper bound for visual acuity in mice is 0.5 cycles/degree, corresponding to a Nyquist 168

sampling rate of 2 pixels/cycle x 0.5 cycles/degree = 1.0 pixel/degree. According to 169

retinotopic map studies [43], V1 included a visual coverage range of ∼ 60◦ in altitude 170

and ∼ 90◦ in azimuth, we further simplified this to square input size of 64 by 64 pixels. 171

The resolution of the other regions depends on both the resolution of the input, and 172

strides of the connections. The stride of a connection is the sampling period with 173

respect to its input. For example, a Conv with a stride of one samples every element of 174

its input, whereas a Conv with a stride of two samples every other element (both 175
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Fig 3. From mouse brain to CNN model. (A) From mouse brain hierarchy to
CNN architecture. (B) An example of Conv operation with Gaussian mask. (C) ReLU
operation in the CNN architecture. (D) The binary Gaussian mask is generated by a
Gaussian shaped probability whose peak and width are meta-parameters.

horizontally and vertically), leading to output of half the size in each dimension. 176

Because cortical neurons are not organized into discrete channels in the same way as 177

convolutional network layers, there is no strong anatomical constraint on the stride. 178

However, the mean stride has to be somewhat less than two; there are ten steps in the 179

longest path through MouseNet, but if only six of them had a stride of two, the 64x64 180

input would be reduced to 1x1 in VISpor, with no remaining topography. Lacking 181

strong constraints, for simplicity, we first attempted to set all the strides to one, but 182

this left very few channels in some of the smaller regions (due to an interaction between 183

channels and strides that we describe below). We therefore set the strides of the 184

connections outbound from VISp to two, and others to one. The feature maps of dLGN 185

and VISp were therefore 64x64 (the same as the input), and all others were 32x32. 186

Given the resolutions of the channels in each region, the numbers of channels are 187

constrained by the number of neurons. Specifically, Let ni be the number of neurons in 188

region i and (lix, l
i
y) be the size of the output in area i, then the number of channels in 189

area i is determined by ci = ni/(lix ∗ liy). 190

Estimating number of neurons in each area from data We only model the 191

excitatory neural population in our model, consistent with the fact that all neurons in 192

the model project to other visual areas. In fact, neurons in convolutional networks are 193

neither excitatory or inhibitory, but have both positive and negative output weights. 194

However, past modelling work [44,45] has shown that such mixed-weight projections can 195

be transformed so that the original neurons are all excitatory, and an additional 196

population of inhibitory neurons recovers the functional effects of the original weights. 197

According to [46], the estimated number of excitatory neurons in dLGN is 21200. For 198
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VISp, VISal, VISl, VISpl, we use estimated density for excitatory neurons given by [35]1, 199

which is summarized in Tabel 1. Note that we use neuron density instead of counts to 200

get a more stable estimation of number of neurons out of different versions of brain 201

parcellations. For the remaining areas VISrl, VISli and VISpor, we approximate their 202

density by taking the average across the above four areas with separated cortical layers. 203

Table 1. Exitatory population density [mm−3] [35].

L4 L2/3 L5
VISp 106114.7 86668.2 86643.4
VISal 93176.9 79070.6 78540.9
VISl 86559.9 73937.9 66215.6
VISpl 106783.0 87368.3 82538.1
Average 98158.6 81761.1 78484.5

Combined with the number of 10µm voxels counted in the Allen Mouse Brain 204

Common Coordinate Framework (CCFv3) [47] (Table 2), we summarize the estimated 205

number for all the regions in our model in Table 3. 206

Table 2. Number of 10µm voxels in each region.

L4 L2/3 L5
VISp 1023640 1999040 1552688
VISal 104152 199314 202942
VISl 179084 301588 314522
VISpl 36638 205150 242812
VISrl 146294 276390 244294
VISli 57256 117252 147946
VISpor 60632 373972 385168

Table 3. Estimated number of exitatory neurons in each region.

L4 L2/3 L5 Total
dLGN 21200
VISp 108623 173253 134530
VISal 9705 15760 15939
VISl 15501 22299 20826
VISpl 3912 17924 20041
VISrl 14360 22598 19173
VISli 5620 9587 11611
VISpor 5952 30576 30230

Cortical connection constraints 207

Neurons tend to receive relatively dense inputs from other neurons that are above or 208

below them, in other cortical layers, and the connection density decreases with 209

increasing horizontal distance. Similarly, inputs from other cortical areas tend to have a 210

point of highest density, with smoothly decreasing density around that point. We 211

approximate such connection-density profiles with two-dimensional Gaussian functions. 212

Specifically, the fan-in connection probability from source region i to target region j at 213

1https://bbp.epfl.ch/nexus/cell-atlas/
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position (x, y) (position offset from center in µm) is modeled as, 214

P ij(x, y) = dijp exp

(
− x2

2(dijx )2
− y2

2(dijy )2

)
. (2)

where dijp is the peak probability at the center and dijx and dijy are the widths in the x 215

and y directions. For simplicity, we assume dijx = dijy , dijw and let r =
√
x2 + y2 denote 216

the offset from the center of the source layer, the above equation then simplifies to, 217

P ij(r) = dijp exp

(
− r2

2(dijw )2

)
, (3)

where dijw (µm) is the Gaussian width. 218

Both dijp and dijw are estimated from mouse data. The parameters for interlaminar 219

connections are estimated from statistics of connections between cortical layers in paired 220

electrode studies (Section Estimating dijw , d
ij
p for interlaminar connections), and the 221

parameters for interareal connections are estimated from the mesoscale mouse 222

connectome (Section Estimating dijw and dijp for interareal connections). 223

Conv layer with Gaussian mask 224

To translate our Gaussian models of connection density into network meta-parameters, 225

we apply a binary mask to the weights of the Conv layers (Fig 3B). To do that, we first 226

change the unit of dijw in Eq.3 from micrometers to source area-dependent “pixels” (unit 227

of output size of source area i) by multiplying it with σi =
√

(lix ∗ liy)/ai (pixel/µm), 228

where ai denotes the surface size of area i, estimated from the voxel model (See 229

Estimating dijw and dijp for interareal connections). We then have, 230

P ij(r̃) = dijp exp

(
− r̃2

2(d̃ijw )2

)
, d̃ijw = σid

ij
w , (4)

where both r̃ and d̃ijw are in the “pixel” unit. The kernel size of the Conv layer is set to 231

be kij = 2× bd̃ijwc+ 1, with padding calculated by pij = (kij − sij)/2, where sij is the 232

stride of the Conv layer.During initialization, a mask containing zeros and ones is 233

generated for each Conv layer, with size (cijout, c
ij
in, k

ij , kij). The probability of each 234

element being one is P ij(r̃), where r̃ (pixel) is the offset from the center of mask. The 235

weights of the Conv layer are then multiplied by the mask. This gives the connections 236

realistic densities (or sparsities), with realistic spatial profiles. 237

Estimating dijw , d
ij
p for interlaminar connections 238

For the interlaminar connections, we estimate the Gaussian width dijw from multiple 239

experimental resources. Firstly, from Table 3 in [37], we get the estimation of dijw to be 240

114 micrometers for functional connections between pairs of L4 pyramidal cells in mouse 241

auditory cortex. Secondly, manually extracted from [38] Fig 8B, we obtain the variation 242

of the Gaussian width depending on source and target layer from cat V1. Finally, we 243

use this variation to scale the L4 to L4 width of 114 µm to other layers in the mouse 244

cortex. We summarize the Gaussian widths from cat cortex, along with corresponding 245

scaled estimates for mouse cortex, in Table 4. Note that in the current model, we only 246

use the values for connections from L4 to L2/3 and from L2/3 to L5 (Fig 2B). 247
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Table 4. Estimated Gaussian width dijw for interlaminar excitatory
connections. The values outside of the parenthesis are extracted from [38]; the values
inside the parenthesis are scaled to mouse cortex, using the width 114 µm for L4-to-L4
connections in mouse auditory cortex [37]. Units are micrometers (µm).

Target
L2/3 (scaled) L4 (scaled) L5 (scaled)

L2/3 225 (142.5) 50 (31.67) 100 (63.33)
Source L4 220 (139.33) 180 (114) 140 (88.67)

L5 150 (95) 100 (63.33) 210 (133)

To estimate the Gaussian peak probability dijp , we first collect the connection 248

probability between excitatory populations offset at 75 micrometer dij75 (Fig. 4A in [36]). 249

We then get the peak probability dijp by the relation 250

dijp = dij75/ exp

(
− 752

2(dijw )
2

)
(5)

We summarize the probability at 75 micrometers dij75 along with the peak probability 251

dijp in Table 5.

Table 5. The connection probability between excitatory populations offset
at 75 micrometer dij75 The numbers are from Fig 4A in [36]). The calculated
Gaussian peak probability dijp are given in parenthesis.

Target
L2/3 (peak) L4 (peak) L5 (peak)

L2/3 0.160 (0.184) 0.016 (0.264) 0.083 (0.167)
Source L4 0.140 (0.162) 0.243 (0.302) 0.104 (0.149)

L5 0.021 (0.029) 0.007 (0.014) 0.116 (0.136)

252

Estimating dijw and dijp for interareal connections 253

To estimate interareal connection strengths and spatial profiles, we use the mesoscale 254

model of the mouse connectome [21,22]. This model estimates connection strengths 255

between 100 micrometer resolution voxels, based on 428 individual anterograde tracing 256

experiments mapping fluorescent labeled neuronal projections in wild type C57BL/6J 257

mice. 258

Flat map The voxel model is in 3 dimensional space. For the purpose of our 259

analysis, we need to map the 3 dimensional structure into 2 dimensions. First, we fit 260

the visual area positions by a sphere with center c ∈ R3 and radius r. Each position 261

x ∈ R3 is then mapped to x̄ ∈ R2 with relation 262

x̄1 = v · r · arctan

(
x1 − c1
x2 − c2

)
, (6)

x̄2 = v · r · arctan

(
x3 − c3√

(x1 − c1)2 + (x2 − c2)2

)
(7)

where v = 100µm is the size of the voxel. 263

Area size Approximations of the surface area for each brain region are needed to 264

convert the widths of connection profiles (see Conv layer with Gaussian mask) from 265

voxels in the mesoscale model to convolutional-layer pixels in MouseNet. For this 266

October 4, 2021 10/32



purpose, each region’s surface area size is approximated by the area of a convex hull of 267

its mapped two-dimensional positions. These estimates are summarized in Table 6.

Table 6. Area size (mm2) estimated from the voxel model.

VISp VISal VISl VISli VISpl VISrl VISpor
L4 4.3271 0.4909 0.8793 0.3355 0.2865 0.6182 0.5264
L2/3 4.7406 0.5477 0.9279 0.4356 0.6659 0.6980 1.3937
L5 4.2511 0.4972 0.8651 0.4039 0.6785 0.6748 1.2445

268

Estimating dijw For each connection from source region i to target region j, we 269

estimate dijw from the mesoscale model. The first step is to estimate the widths of 270

connections to individual voxels in j. The incoming width dijk for target voxel k in j is 271

estimated by the standard deviation of the connection strength about its center of mass. 272

Specifically, dijk = (
∑
l wlkd

2
l /
∑
l wlk)1/2, where l indexes the voxels in source region j, 273

wlk is the connection weight between source and target voxels l and k in the mesoscale 274

model, and dl is the distance from voxel l to the center of mass of these connection 275

weights. We then estimate dijw as the average of these widths over the voxels in j. We 276

omit from this average any target voxels that have multi-modal input profiles. This 277

procedure provides an upper bound for dijw , because a target voxel may include multiple 278

neurons with partially overlapping input areas. 279

Estimating dijp The mesoscale model provides estimates of relative densities of 280

connections between pairs of voxels. But an additional factor is needed to convert these 281

relative densities into neuron-to-neuron connection probabilities. For this purpose, we 282

assumed that each neuron received inputs from 1000 neurons in other areas (we call this 283

number the extrinsic in-degree, e). This is on the order of the estimate from Fig S9 M 284

in [48]. Given this assumption, we calculated dijp by the relation, 285

e · wij∑
i wij

= 2π(d̃ijw )2 · dijp · ci, (8)

where wij is the connection strength from source area i to target area j, estimated from 286

integrating the connection weights of the corresponding areas in the mesoscale model. 287

The estimated values for dijw and dijp are given in Table 12 in S1 Table. 288

Conv kernel size for dLGN 289

The above methods allowed us to set kernel sizes for intracortical connections, but not 290

subcortical ones. We set the kernel sizes for inputs to dLGN and VISp L4 according to 291

receptive field sizes in these regions. Receptive fields are about 9 degrees in dLGN and 292

11 degrees in VISp [49]. As mentioned in Section Cortical population constraints, mouse 293

visual acuity is approximately 1 pixel/degree, therefore we set kernel size of the 294

connection from input to dLGN to 9x9. We then set the kernel size of the connection 295

from dLGN to VISp to 3x3, such that the receptive field size for VISp is 11x11 pixels. 296

Summary tables 297

In Table 7, we summarize the calculated number of channels in each area (in 298

parenthesis) and the kernel size for each Conv layer. 299

The parameters used in the model based on biological sources and assumptions are 300

summarized in Table 8 and the formulae for calculating the Conv layer meta-parameters 301

are sumarized in Table 9. 302
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Table 7. The calculated meta-parameters for the Conv layers.

Source(#channel) Target kernel size
input(3) LGNv 9× 9
dLGN(5) VISp4 3× 3

VISp2/3 9× 9
VISal4 17× 17
VISl4 19× 19

VISp4(26) VISli4 19× 19
VISpl4 19× 19
VISrl4 19× 19
VISpor4 17× 17
VISp5 3× 3
VISal4 15× 15
VISl4 19× 19

VISp2/3(42) VISli4 17× 17
VISpl4 17× 17
VISrl4 21× 21
VISpor4 19× 19
VISal4 15× 15
VISl4 19× 19

VISp5(32) VISli4 19× 19
VISpl4 17× 17
VISrl4 19× 19
VISpor4 19× 19

VISpor4(5) VISpor2/3 13× 13
VISpor2/3(29) VISpor5(29) 3× 3

Source(#channel) Target kernel size
VISal4(9) VISal2/3 13× 13

VISpor4 3× 3
VISal2/3(15) VISal5 5× 5

VISpor4 1× 1
VISal5(15) VISpor4 1× 1
VISl4(15) VISl2/3 9× 9

VISpor4 15× 15
VISl2/3(21) VISl5 5× 5

VISpor4 15× 15
VISl5(20) VISpor4 15× 15
VISli4(5) VISli2/3 17× 17

VISpor4 17× 17
VISli2/3(9) VISli5 7× 7

VISpor4 17× 17
VISli5(11) VISpor4 15× 15
VISpl4(3) VISpl2/3 19× 19

VISpor4 3× 3
VISpl2/3(17) VISpl5 5× 5

VISpor4 5× 5
VISpl5(19) VISpor4 5× 5
VISrl4(14) VISrl2/3 11× 11

VISpor4 7× 7
VISrl2/3(22) VISrl5 5× 5

VISpor4 9× 9
VISrl5(18) VISpor4 9× 9

Table 8. Parameters from data or assumptions

Notation CNN parameter Biological source or assumptions
ni Number of neurons in area i Based on [35] combined with the voxel model [21]
ai Two dimensional area size for area i Estimated from voxel model data [21]
e Total fan-in connections for all areas Set to be 1000 based on [48]
(l0x, l

0
y) Input size to the model Set to be 64x64 based on mouse visual acuity [42]

(lix, l
i
y) Output size of area i Set to be 64x64 up to VISp, 32x32 after VISp (Assumption)

dijw Gaussian width (interlaminar) Estimated from mouse [37] and cat [38] cortical properties
Gaussian width (interareal) Estimated from voxel model [21]

dijp Guassian peak (interlaminar) Based on statistics of connections in paired electrode studies [36]
Gaussian peak (interareal) Estimated from voxel model [21]

Table 9. Meta-parameters for Conv layer connecting source area i to target area j

Notation CNN parameter Formula
ci number of channels in area i ci = ni/(lix · liy)

kij kernel size kij = 2× bd̃ijwc+ 1
sij stride sij = lix/l

j
x = liy/l

j
y

pij padding pij = (kij − sij)/2
d̃ijw Gaussian width d̃ijw =

√
(lix · liy)/ai · dijw

dijp Gaussian peak dijp
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Results 303

In this section, we use a well established image classification task as a working example 304

to demonstrate the usage of the CNN MouseNet and to derive novel findings relating 305

architecturally constrained CNNs and the mouse brain. We first assess the 306

computational performance of this mouse-architecture network on an image 307

classification task. Then, through systematic comparisons with the large scale Allen 308

Brain Observatory dataset, we show how MouseNet can be used to probe the effect of a 309

CNN’s specific task training and architecture on its similarities and differences with 310

responses in the biological brain. 311

Implementation of MouseNet 312

To enable training of MouseNet on a standard image classification task, we implemented 313

the MouseNet structure in PyTorch [50]. Each Conv layer was followed by a batch 314

normalization layer and a ReLU non-linearity. For regions such as VISpor L4 that 315

receive input from multiple Conv layers, the outputs of the Conv layers are summed 316

before being fed into the batch normalization layer and ReLU non-linearity. 317

To train the MouseNet model on an image classification task, we added a simple 318

classifier. Specifically, in order to include the final processing output from each 319

individual area such that the information is not bottlenecked by the relatively small 320

VISpor area, we took the L5 output from all seven areas and reduce them to 4x4 by an 321

average pooling layer. We then flattened, concatenated, and fed this to a linear 322

fully-connected layer, which reduced the dimension to the number of classes of the task. 323

The outputs were then transformed to probabilities by the softmax function, and the 324

cross-entropy loss of the predicted probabilities (determined from the categorical 325

distribution where individual class probabilities are from the output of the softmax) 326

relative to the ground truth labels was used to train on the image classification task. 327

Computational Performance of MouseNet on image 328

classification 329

We trained MouseNet end-to-end using stochastic gradient decent with momentum, 330

adapting the training script from the imagenet example script from the PyTorch 331

examples github repository2. Full training details and scripts are available on the 332

MouseNet github repo: https://github.com/mabuice/Mouse CNN. 333

We first found that MouseNet achieved above 90% validation accuracy on 334

CIFAR10 [31], a simple classification of 32x32 images into 10 categories. Interestingly, 335

this is close to state of the art performance of modern networks, suggesting that mouse 336

sized networks are fully capable of performing this simple task. 337

We then moved to the more challenging image classification benchmark of 338

ImageNet [51], which requires classification of higher resolution images into 1000 339

categories. We found that, even for input images downsampled to a resolution of 340

(64x64), MouseNet can still be trained to perform above 37% top-1 validation accuracy 341

on ImageNet [51]. Below, we contrast representations in MouseNet to those in VGG16 342

trained with the same downsampled input size (64x64), which achieved above 60% top-1 343

validation accuracy on ImageNet. We contrast the number of parameters in MouseNet 344

and VGG16 in Table 10. Note that the number of parameters of MouseNet Conv layers 345

without the Gaussian masks is about 14% of that for VGG16, while the number 346

parameters of MouseNet Conv layers with Gaussian masks is less than 1% of that for 347

VGG16. Our simulation results are all based on MouseNet models with Gaussian masks. 348

2https://github.com/pytorch/examples/tree/master/imagenet
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Table 10. Number of parameters for MouseNet and VGG16 for 1000-class
ImageNet classification task.

Conv layers Conv with mask Classifier
VGG16 14.7M 14.7M 123M
MouseNet 2.1M 87K 2.3M

The Effects of Task Training on Functional Properties 349

To examine the effect of the image classification task training on the functional 350

similarity of the MouseNet and the biological mouse brain, we make use of the 351

large-scale, publicly available Allen Brain Observatory dataset [26]. We study 352

representational similarity of MouseNet and the biological mouse brain across a set of 353

natural images, along with the basic functional properties of sparsity and orientation 354

selectivity. 355

The Allen Brain Observatory data set 356

The Allen Brain Observatory data set is a large-scale standardized in vivo survey of 357

physiological activity in the mouse visual cortex, featuring representations of visually 358

evoked calcium responses from GCaMP6f-expressing neurons. In this work, we use the 359

population neural responses to a set of 118 natural image stimuli, each presented 50 360

times. The images were presented for 250ms each, with no inter-image delay or 361

intervening “gray” image. The neural responses we use are events detected from 362

fluorescence traces using an L0 regularized deconvolution algorithm, which deconvolves 363

pointwise events assuming a linear calcium response for each event and penalizes the 364

total number of events included in the trace. Full information about the experiment is 365

and database given in [26]. 366

The Allen Brain Observatory includes data from six different brain areas, namely 367

VISp, VISal, VISl, VISpm, VISam and VISrl. The number of neurons in the dataset, for 368

each of the regions we use, is summarized in Table 11.

Table 11. Number of neurons recorded from each mouse brain region.

VISp VISal VISl VISpm VISam VISrl
Total 14173 4396 8748 4771 2040 5189
L2/3 4079 1042 2259 1544 610 1168
L4 6735 2967 4163 1905 1179 3626
L5 3003 387 1874 973 251 395

369

The Similarity of Similairy Matrices metric (SSM) 370

To compare functional similarity betweeen two representations – in MouseNet, and in 371

the biological mouse brain – of a set of images, we use the Similarity of Similarity 372

matrices (SSM) [27,32] metric. We begin with a matrix of neural activities, in which 373

each row contains the population activities for a certain image. We calculate the 374

Pearson correlation coefficient between every pair of rows within one representation 375

matrix, to form an n by n “similarity matrix” for this representation, where each entry 376

describes the similarity of the population response to a pair of images. Next, to 377

compare two similarity matrices, we flatten the matrices to vectors and compute the 378

Spearman rank correlation between these vectors. Like the Pearson correlation 379

coefficient, the rank correlation lies in the range [−1, 1] indicating how similar (close to 380

1) or dissimilar (close to -1) the two representations are. Rather than examining one 381

neuron at a time [52, 53], this metric compares representations based on activities of the 382
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whole populations of artificial and biological neurons, revealing functional similarity at 383

the population level. Another choice of such population similarity metrics is Singular 384

Vector Canonical Correlation Analysis (SVCCA) [27,54]. An excellent review of such 385

similarity metrics and their properties can be found in [55]. 386

Following the procedures in [27], we construct the representation matrix for a certain 387

mouse visual cortex region by taking the trial-averaged mean responses of the neurons 388

in the 250ms during the image presentation. Activities of neurons in different 389

experiments for the same brain area are grouped together to construct the 390

representation matrix, whose dimension is number of images by number of neurons. The 391

representation matrices for MouseNet layers are obtained from feeding the same set of 392

118 images (resized to 64x64) to MouseNet and collecting all the activations from a 393

certain layer of the model. 394

Neural reliability and SSM noise ceiling 395

We next compute the SSM noise ceiling from the Allen Brain Observatory data. We use 396

split half reliability to quantify the reliability of a single neuron from the Allen Brain 397

Observatory. This is done by separating the 50 trials into two non-overlapping 25 trial 398

sets, and taking the correlation of trial-averaged responses between the two. We make 399

ten random splits, and take the mean of the ten correlations to represent the reliability 400

of each neuron. The reliability distributions of the neural populations are shown in 401

Fig 4 (left). VISp, VISl and VISal are most reliable areas and VISpm, VISam and VISrl 402

are less reliable areas. 403

To estimate the noise ceiling of the SSM metric, we compare the mouse data 404

representation matrices with themselves. Specifically, we split the 50 trials in the 405

dataset into two non-overlapping sets and calculate the trial averaged representation 406

matrices for each set. The SSM between these two representation matrices are the noise 407

ceiling of the SSM metric. Multiple splits of the dataset are computed for estimating 408

the mean and standard deviation of the noise ceilings. 409

To examine how the noise ceiling changes with the reliability of the neural 410

population, we calculate the noise ceilings by selecting neurons that surpass different 411

levels of thresholds, as shown in Fig 4 (right). We see that for some regions, if we select 412

a group of neurons using a certain reliability threshold, the noise ceiling becomes higher 413

than without this selection. We summarize the reliability and best noise ceiling for each 414

area in Fig 5. In this paper, we will concentrate our discussions on the most reliable 415

areas, VISp, VISl and VISal, which are included in the MouseNet model. We will use 416

the best noise ceiling to compare with the models. 417

Task training improves the similarity between MouseNet and the Allen 418

Brain Observatory 419

To examine the effect of training to perform an image classification task on the 420

functional similarity of MouseNet to the brain, we compute the SSM value between each 421

layer of MouseNet with data from a brain region recorded in the Allen Brain 422

Observatory. To account for the randomness due to initialization, we train four 423

instances of MouseNet on ImageNet starting with different weights and look at their 424

mean statistics. Fig. 6 shows the SSM values between each of the MouseNet layers with 425

data from L2/3 of VISp, VISl and VISal. Layers 4 and 5 are shown in Fig. 11. The first 426

important observation is that regions in the model do not necessarily best match to the 427

corresponding functional area recorded in the Allen Brain Observatory. We see that for 428

layer 2/3, area VISp in the Allen Brain Observatory, five different model areas show 429

significant change in SSM value from the untrained model. In the following, we will add 430

prefix “m” in front of the modeled areas from the MouseNet to contrast with the ones 431
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Fig 4. Selecting reliable neurons improves noise ceilings. (Left) Reliability
distribution of neural populations. Each row shows all the brain areas at a specific
cortical layer. The dotted lines indicate the median reliability of each neural population.
(Right) The noise ceilings change with variation of the threshold for selecting reliable
neurons. The higher the threshold, the fewer neurons are selected. For some
populations, selecting a certain portion of reliable neurons gives best noise ceiling. Error
bars are from different draws of non-overlapping trials.

from the real brain. One of these is an early layer, mVISp5, while the others are in the 432

parallel pathway portion of the architecture. Of the others, mVISl4 shows an increase in 433

similarity with VISp layer23, while three other model regions show a decrease in 434

similarity. For the other two regions in Figure 6, mVISp5 shows a significant increase in 435

similarity. For VISl layer23, there are six other model regions that all show an increase 436

in similarity. These statements hold specifically when comparing model regions to each 437

other for the same area in the Brain Observatory. Comparing areas of the Brain 438

Observatory to each other requires a different adjustment for the number of comparison 439

(see black vs. red stars in Figure 6). These results are consistent with the idea from Shi, 440

et al [27] that VISp is a lower order area than VISl and VISal (VISp maps to lower 441

“pseudo-depth” in comparing to a CNN than both VISl and VISal). Layers 4 and 5 show 442

results that are similar, but not identical to, layer 2/3. (Fig. 11). VISal in Layer 4 and 443

VISl and VISal in Layer 5 show improved similarity after training for many of the 444

mVISp model regions. Similarly, VISp in layer 4 and 5 shows decreased similarity after 445

training in some of regions in the parallel portion of the architecture. 446

Note that, although training on ImageNet improves the corresponding level of model 447

regions’ similarity to the brain, the highest SSM value does not always occur in the 448

model layer corresponding to the specific region considered in the Brain Observatory. 449

For example, the SSM value for mVISp regions are higher than the mVISl regions when 450

comparing to the brain area VISl L2/3. This is possibly because the visual areas are 451
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Fig 5. Summary plot of median reliability and best noise ceiling for each
brain area. Each color represents a different brain area, and shades from light to dark
indicate different cortical layers L2/3, L4 and L5. The circle size is proportional to the
size of the population in the dataset.

more similar to each other than they are to the MouseNet regions (see Table 13 in S1 452

Table for the SSM values between the brain areas themselves), such that improving the 453

similarity to one brain region can possibly lead to improving the similarity to some 454

other regions. Nevertheless, by looking at all the layers globally, we see that for the 455

earliest visual area VISp, the ImageNet classification training promotes the SSM values 456

of the mVISp layers in the MouseNet while suppress the values for the later layers; 457

whereas for secondary visual areas VISl, the training promotes both earlier layers and 458

later layers in the parallel pathways, suggesting a higher place in the functional 459

hierarchy (cf. with the results of [27]). 460

Higher task performance on image classification does not guarantee higher 461

similarity to the mouse brain 462

To examine how performance on the ImageNet classification task affects the functional 463

similarity to the brain, we contrast the SSM values for MouseNet with another network 464

that can perform this task, the VGG16 network discussed above. We use the same input 465

resolution, on the same task (see Section Computational Performance of MouseNet on 466

image classification). Similarly as for MouseNet, we calculate the SSM values between 467

each layer in VGG16 and the regions in the mouse visual cortex. VGG16 does not have 468

a “corresponding layer” for each region; we choose the VGG layer that has the highest 469

SSM with each mouse brain region. For this comparison, we do the same for MouseNet, 470

so that for each region, we compare this ‘best layer’ SSM value with the best layer SSM 471

value for MouseNet. 472

The best layer’s SSM values for both VGG16 and MouseNet, for each mouse cortical 473

layer in VISp, VISl, and VISal, are summarized in Fig 7. As we can see in the figure, 474

although VGG16 has much higher performance on the ImageNet task (about 60% vs 475

40%), it does not have much higher SSM values to the brain for most regions. The 476

saturation of functional similarity between the brain and models in terms of image 477

classification performance is also observed in primates, albeit at a much higher 478

performance level [56]. 479

To further grasp the limited relationship between a model’s task performance and its 480

functional similarity to the mouse brain, we look at how the models’ functional 481
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Fig 6. SSM between mouse data in VISp(top)/VISl(middle)/VISal(bottom)
L2/3 and all layers in the MouseNet before (blue) and after training (red).
Each line corresponds to the mean of four different MouseNet instances trained from
different initialization weights (dots). The x axis includes all the layers in the model in
a serial way. The five parallel secondary visual area pathways in the model are in
shaded grey background. Black stars denote the the pvalues of two-sample t-test with
Benjamini/Hochberg correction of 22 comparisons within one brain area is less than
0.05; Red stars denote the pvalues of two-sample t-test with Benjamini/Hochberg
correction of all 9x22 comparisons across all 9 brain areas is less than 0.05.

similarity to brain data changes during training. As shown in Fig 8, the highest SSM 482

values between a model neural network and the mouse brain areas are not necessarily 483

achieved by the best performing models, rather at early or intermediate points during 484

the training process. See Fig.12 in S1 Fig for more instances of MouseNet during 485

training, also showing this effect. These results show that optimizing performance on 486

this particular task, at least beyond an early or intermediate level of performance, does 487

not necessarily improve the model’s similarity to the biological brain. If the approach of 488

building models for neural responses via task training of artificial networks is broadly 489

correct, then we take this as an indication that ImageNet is not the correct task to 490

consider for the representations in the mouse brain. 491

Task training with the MouseNet architecture increases the similarity of 492

other functional properties to the mouse brain 493

As mentioned above, the SSM metric compares functional representations, based on 494

activities of the whole neural population in a given model layer and a set of recordings 495

from a given brain area. For a complementary view of the effect of task training on 496

MouseNet representations, and of the role of its architecture, we can also study the 497

statistical distributions of single neuron functional properties, such as orientation 498

selectivity and lifetime sparseness [26]. 499
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Fig 7. SSM between best layer in trained VGG16/MouseNet and mouse
brain regions. The plot shows results of 3 instances of VGG16 (with validation
accuracy 60.46, 60.72, 60.93) and 4 instances of MouseNet (with validation accuracy
37.46, 37.95, 37.52, 37.49) trained from different initialization weights. Yellow lines
denote the best noise ceiling; their widths are standard deviations calculated from
multiple draws of non-overlapping trials as in Fig.4. Dotted black lines are the SSM
values between the 64x64 pixel input and the corresponding regions. Black stars denote
the statistical significance of two-sample t-test between the mean of the trained VGG16
and the trained MouseNet instances (one star: p < 0.05, two stars: p < 0.01, three stars:
p < 0.001).
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Fig 8. Functional similarity and validation accuracy during the training
process. Each row compares models with a different brain area. We show one instance
of MouseNet and VGG16 during their training process, where each dot represents the
best layer’s SSM of one model at a certain epoch to the specified brain area. The clear
jumps of validation accuracy occurred when the learning rate is reduced.

Lifetime sparseness measures the selectivity of a neuron’s mean response to different 500
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stimulus condition, defined as [26,57] 501

SL =

(
1− 1

N

(
∑
i ri)

2∑
i r

2
i

)
/

(
1− 1

N

)
(9)

where N is the number of stimulus conditions and ri is the response of the neuron to 502

stimulus condition i averaged across trials. A neuron that responds strongly to only a 503

few stimuli will have a lifetime sparseness close to 1, whereas a neuron that responds 504

broadly to many stimuli will have a lower lifetime sparseness. The statistical 505

distribution of lifetime sparseness for the mouse data on natural scene stimuli and for 506

all the units in trained/untrained MouseNet and VGG16 models, responding to the 507

same natural scene stimuli as in the Allen Brain Observatory, are shown in Fig. 9 (top 508

row). This demonstrates clearly that training on the image classification task makes the 509

distribution of lifetime sparseness values much closer to the mouse brain data for 510

MouseNet, but not as much for VGG16. 511
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Fig 9. Distributions of lifetime sparseness (top row) and circular selectivity
index (bottom row) for all the units in the models and all the neurons in
the mouse data. The distributions of all units in one instance of trained/untrained
MouseNet (first column) and VGG16 (second column) are plotted along with mouse
data, with the Jensen-Shannon distances between the models and the data annotated.
The Jensen-Shannon distances between multiple instances of models and the mouse
data are summarized in the third column. Black stars denote the statistical significance
of two-sample t-test between the mean of the model instances (one star: p < 0.05, two
stars: p < 0.01, three stars: p < 0.001).

Similarly, we can study the orientation selectivity of individual neurons by using the 512

static grating stimuli in the Allen Brain Observatory dataset. Specifically, we calculate 513

the circular selectivity index (which is one minus the circular variance defined in [58]), 514

defined as 515

SO =
∑
k

rke
i2θk/

∑
k

rk (10)

where rk is the response of the neuron to a grating with angle θk averaged across trials. 516

A neuron that responds strongly to only one direction will have circular selectivity index 517

close to 1, whereas a neuron that responds broadly to many directions will have lower 518

circular selectivity index. The statistical distributions of the circular selectivity index, 519

for the mouse data with static grating stimuli and for trained/untrained MouseNet and 520

VGG16 models with the same stimuli, are shown in Fig. 9 (bottom row). As for the 521
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case of lifetime sparsity above, task training changes the distribution of selectivity 522

values. These distributions, after training, are closer to the mouse brain data for the 523

MouseNet networks than for the VGG, once again showing how the more specifically 524

matched architecture of MouseNet can lead to more similar model responses to the 525

biological brain. Note that the spikier distributions of the models result from the 526

deterministic nature of the models in contrast to the noisier brain data in response to 527

the (only) six total static grating directions. If we were to simulate neural noise in the 528

model responses, it would smooth the distributions, resulting in closer approximation of 529

the data, as we show in Fig 13 in S1 Fig). 530

Taken together, these results show how the MouseNet model can be used to explore 531

the impact of task training on a variety of response statistics that are commonly 532

computed in physiology studies, and that those defined on individual neurons can 533

demonstrate complementary and in some cases more dramatic changes with training 534

than those averaged over entire populations. 535

Task training diversifies functional representation among MouseNet layers 536

Finally, we study how task training and network architecture affect the general 537

‘geometric’ layout of models’ representations, separately from their similarity to 538

representations in the mouse brain data. To do this, we calculate the SSM values 539

between every pair of layers from both trained/untrained MouseNet and VGG16, and 540

visualize them in two dimensional space via a metric multidimensional scaling 541

algorithm [59,60]. The results are shown in Fig.10. For VGG16, we see that 542

representations in layers are clustered together both before and after training. By 543

contrast, for MouseNet the representations become much more diversified after training. 544

We hypothesize that it is the parallel architecture of MouseNet that leads it to learn 545

this more diversified representation as it solves the image classification task. Further 546

examinations of the various pathways and model instances show that different pathways 547

are learning quite different representations (Fig 14 in S1 Fig), and that these qualitative 548

results are consistent across multiple instances of MouseNet models (Fig 15 in S1 Fig. 549

Unraveling any specific functions of each pathway, in this task or in others, is an 550

opportunity left for future studies. 551
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Fig 10. Visualization of all layers from one instance (left) and three
instances (right) of trained/untrained MouseNet and VGG16. Each dot
represents a layer from a certain model instance. The position of the dots are the
two-dimensional projection from the multidimensional scaling algorithm, with the
distance measure defined as one minus the SSM value.
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Discussion 552

Task-optimized deep networks show promise for brain modelling, because they are 553

functionally sophisticated, and they often develop internal representations that overlap 554

strongly with representations in the brain [8–15]. While deep network architectures are 555

originally loosely inspired by the brain, there has been an extensive empirical 556

exploration of the effects of architectural features in machine learning, in directions 557

often independent from neuroscience. In parallel, however, a great deal more has been 558

learned about the architecture of the biological brain, with that of the mouse brain 559

having been been particularly well characterized. 560

We have developed MouseNet, a deep network architecture that is consistent with a 561

wide range of data on mouse visual cortex, including data from tract-tracing studies and 562

studies of local connection statistics. While standard deep networks have provided 563

useful points of comparison with neurobiological systems, in the long term more 564

biologically realistic deep networks may enable more specific comparisons with the 565

brain, including comparisons between homologous groups of neurons, modeling of 566

specific lesions, and analysis of functional differences between brain areas and pathways. 567

Using image classification as a working example, we use MouseNet to investigate 568

using the task-training approach to model the functional representations in the mouse 569

brain. An aspect of special interest is whether training on this task drives the 570

representations in the model to be closer to those recorded from the real mouse brain, in 571

comparison to representations in untrained versions of the MouseNet model or in 572

generic deep networks. Using recordings from the large-scale Allen Brain Observatory 573

survey, we find – consistent with the literature [8,9] for other model species and systems 574

– that training on an image classification task does drive MouseNet representations to 575

better resemble those of the real data. However, this increase of functional similarity is 576

not necessarily strictly monotonic with task performance. In our experiments we see the 577

SSM correlation with the Brain Observatory responses saturating or even maximizing 578

well before we achieve maximum accuracy on task performance. This is true for both 579

MouseNet and VGG16. 580

Within the task-training paradigm, these results suggest that the specific image 581

classification task we used, and perhaps image classification overall, is not the 582

appropriate task for describing what the mouse visual cortex has learned and developed 583

to compute. Nonetheless, MouseNet is an important reference to studies in more 584

established species, which rely on comparisons of the ventral stream with architectures 585

designed for object recognition. Although we know rodents are capable of performing 586

tasks that require visual object discrimination, mouse ethology suggests that alternate 587

computations are more important for the mouse visual system, such as motion tracking, 588

predation, and predator avoidance. A promising future direction is to use task-training 589

of the MouseNet model, together with the metrics tested here, to develop more realistic 590

tasks and stimuli that may lead to more closely matched representations. 591

In sum this work links anatomical and physiological data to task-driven CNN 592

models, providing a road map for developing better task-driven models of the biological 593

brain. It opens the door to building more detailed structures into the model, such as 594

adding further brain areas as well as adding recurrence and using different inputs and 595

readouts for different pathways. Incorporating new anatomical data is also easy within 596

this framework. By making our code publicly available, and illustrating the model’s 597

success and failures in matching representations using well-studied metrics and tasks, we 598

hope to facilitate future research along these lines. 599
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Local Potential Connectivity in Cat Primary Visual Cortex. Cerebral Cortex.
2007;18(1):13–28. doi:10.1093/cercor/bhm027.

39. Glickfeld LL, Olsen SR. Higher-Order Areas of the Mouse Visual Cortex. Annual
Review of Vision Science. 2017;3(1):251–273. doi:10.1146/annurev-vision-102016-061331.

40. Amorim Da Costa NM, Martin K. Whose cortical column would that be? Frontiers in
Neuroanatomy. 2010;4:16. doi:10.3389/fnana.2010.00016.

41. Tripp B. Approximating the Architecture of Visual Cortex in a Convolutional Network.
Neural Computation. 2019;31(8):1551–1591. doi:10.1162/neco a 01211.

42. Prusky GT, West PWR, Douglas RM. Behavioral assessment of visual acuity in mice
and rats. Vision Research. 2000;40(16):2201 – 2209.
doi:https://doi.org/10.1016/S0042-6989(00)00081-X.

43. Zhuang J, Ng L, Williams D, Valley M, Li Y, Garrett M, et al. An extended retinotopic
map of mouse cortex. eLife. 2017;6:e18372. doi:10.7554/eLife.18372.

44. Parisien C, Anderson CH, Eliasmith C. Solving the problem of negative synaptic weights
in cortical models. Neural computation. 2008;20(6):1473–1494.

45. Tripp B, Eliasmith C. Function approximation in inhibitory networks. Neural Networks.
2016;77:95–106.
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Supporting information

S1 Table.

Table 12. The estimated dijw (µm) and dijp for interareal connections.

Source Target dijw (µm) dijp
VISal4 277.1 0.039
VISl4 313.2 0.030

VISp4 VISli4 296.7 0.032
VISpl4 290.6 0.032
VISrl4 306.7 0.032
VISpor4 276.8 0.013
VISal4 266.1 0.063
VISl4 325.8 0.038

VISp2/3 VISli4 303.3 0.045
VISpl4 284.2 0.047
VISrl4 339.4 0.032
VISpor4 307.4 0.013
VISal4 239.0 0.064
VISl4 311.5 0.042

VISp5 VISli4 314.3 0.043
VISpl4 278.3 0.053
VISrl4 311.4 0.042
VISpor4 298.3 0.016

Source Target dijw (µm) dijp
VISal4 37.98 0.551
VISal2/3 13.81 4.362
VISal5 14.87 4.213
VISl4 204.7 0.014
VISl2/3 210.6 0.016
VISl5 215.4 0.019
VISli4 155.1 0.017
VISli2/3 VISpor4 169.3 0.022
VISli5 148.4 0.028
VISpl4 22.2 0.190
VISpl2/3 59.5 0.054
VISpl5 54.4 0.079
VISrl4 97.2 0.074
VISrl2/3 105.4 0.064
VISrl5 110.4 0.064

Table 13. SSM values between mouse visual cortex areas. Note that even with
the neural sub-sampling issue [27], the similarity values between VISp, VISl, and VISal
are much higher than they are with the CNN models.

VISp VISl VISal VISpm VISam VISrl
VISp 1 0.56 0.60 0.35 0.23 0.25
VISl 0.56 1 0.51 0.35 0.24 0.25
VISal 0.60 0.51 1. 0.39 0.24 0.30
VISpm 0.35 0.35 0.39 1. 0.19 0.13
VISam 0.23 0.24 0.24 0.19 1 0.14
VISrl 0.25 0.25 0.30 0.13 0.14 1

S1 Fig.
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Fig 11. SSM between data in VISp(top)/VISl(middle)/VISal(bottom) L4
and L5 and all layers in the MouseNet before(blue) and after training(red).
Each line corresponds to the mean of 4 different MouseNet instances trained from
different initialization weights (dots). The x axis includes all the layers in the model in
a serial way. The five parallel secondary visual area pathways in the model are in
shaded grey background. Black stars denote the the pvalues of two-sample t-test with
Benjamini/Hochberg correction of 22 comparisons within one brain area is less than
0.05; Red stars denote the pvalues of two-sample t-test with Benjamini/Hochberg
correction of all 9x22 comparisons across all 9 brain areas is less than 0.05.).
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Fig 12. Functional similarity and validation accuracy during the training
process for multiple MouseNet instances. Each row compares models with a
different brain area. We show three instances of MouseNet during their training process.
Each dot represents the best layer’s SSM of one instance at a certain epoch to the
specified brain area, with each instance’s highest achieved SSM during training process
marked by a cross. The clear jumps of validation accuracy occurred when we reduced
the learning rate.
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Fig 13. Distribution of circular selectivity index for all the units in trained
MouseNet with different levels of noise added. The noise is added to the
activations of each layer as a half-normal distribution with a standard deviation of the
specified noise level multiplied by the mean activation across all units for that layer.
This results shows that circular selectivity index distribution can be smoothed out by
adding noise to the deterministic MouseNet model.
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Fig 14. Visualization of all layers of trained/untrained MouseNet and
VGG16, for three instances (colored coded by areas). Each dot represents a
layer from a certain model instance. The position of the dots are the two-dimensional
projection from the multidimensional scaling algorithm, with the distance measure
defined as one minus the SSM value. The layers from three instances of trained
MouseNet are color coded by their area names, and annotated with their region names.
This result shows that different pathways in the MouseNet have learned distinct
representations after training.
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Fig 15. Visualization of all layers of trained/untrained MouseNet and
VGG16, for three instances (colored coded by instance). Each dot represents a
layer from a certain model instance. The position of the dots are the two-dimensional
projection from the multidimensional scaling algorithm, with the distance measure
defined as one minus the SSM value. The layers from three instances of trained
MouseNet are color coded by their corresponding model instance. This result shows
that training diversified the representations of all the three instances of MouseNet
starting from different initialization states.
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