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Abstract

Perceptual learning (PL) involves long-lasting improvement in perceptual tasks following extensive
training. Such improvement has been found to correlate with modifications in neuronal response prop-
erties in early as well as late sensory cortical areas. A major challenge is to dissect the causal relation
between modification of the neural circuits and the behavioral changes. Previous theoretical and com-
putational studies of PL have largely focused on single-layer model networks, and thus did not address
salient characteristics of PL arising from the multiple-staged “deep” structure of the perceptual system.
Here we develop a theory of PL in a deep neuronal network architecture, addressing the questions of how
changes induced by PL are distributed across the multiple stages of cortex, and how do the respective
changes determine the performance in fine discrimination tasks. We prove that in such tasks, modifi-
cations of synaptic weights of early sensory areas are both sufficient and necessary for PL. In addition,
optimal synaptic weights in the deep network are not unique but span a large space of solutions. We
postulate that, in the brain, plasticity throughout the deep network is distributed such that the resultant
perturbation on prior circuit structures is minimized. In contrast to most previous models of PL, the
minimum perturbation (MP) learning does not change the network readout weights. Our results provide
mechanistic and normative explanations for several important physiological features of PL and reconcile
apparently contradictory psychophysical findings.

1 Introduction

Perceptual learning (PL) refers to the improvement of performance in perceptual tasks after practice and is
accompanied by long-lasting changes to response properties in sensory cortices[1, 2, 3, 4, 5, 6, 7, 8]. In part
due to conflicting experimental observations, several important issues of neural mechanisms of PL remain
outstanding after decades of research.

First, which cortical areas undergo modifications that drive PL? While behavioral specificity of PL[9, 10]
points to an important role for plasticity in early sensory areas, single-unit response properties in visual areas
V1 and V2 show only mild changes after PL[1, 2]. In addition, PL induces significant changes to single-unit
properties in intermediate to late stages of visual processing, such as V4[3, 4, 8, 7], LIP[11], and IT[12, 13].
Taken together, these findings indicate that even for PL of low-level features, there can be broad and graded
changes across the visual hierarchy. Importantly, the vast majority of PL experiments are observational,
leaving open the question of whether these neural correlates cause PL.

Second, what are the functional consequences of observed changes? While analysis of changes in neuronal
responses after PL indicates improved accuracy of the neural coding of the trained stimuli[6, 7, 8], this appears
inconsistent with the behavioral finding that PL does not transfer to a different task even when using the
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same stimuli[14, 15, 16]. There are also reports that PL is correlated with changes in decision-making areas
(e.g., LIP) but not sensory areas (e.g., MT)[17, 11], suggesting that in these scenarios, PL primarily modifies
the readout. The Reverse Hierarchy Theory[18] proposes that PL is initially driven by learning in later
areas, which results in less specific learning; earlier areas are modified if the task is difficult, leading to
more specific learning. Analysis of a reduced model of perceptual learning lent support for this theory[19] .
However, recent experimental and computational studies questioned these predictions ([6, 7, 20]).

Perceptual learning has been the subject of several computational studies. Most of them, however,
focused on either changing weights of the readout from a fixed sensory array [21, 22, 23] or changing only the
input layer to a single cortical circuit [20], and as such do not address the neural correlates of PL in multiple
cortical regions. A recent numerical work simulated learning in large, deep convolutional networks[24], the
complexity of which hinders a systematic mechanistic analysis in a broad parameter range.

In the present work, we address neuronal mechanisms of PL from a computational perspective. We ask:
what changes in the multi-stage neuronal systems are necessary for learning the task, and what are the
network motifs characterizing the space of all possible solutions? In the face of a multiplicity of solutions,
we study the role of plausible constraints on the plasticity in the circuit; such constraints on the learning
process can either be imposed explicitly or implicitly through the choice of the synaptic learning dynamics.
Finally, we analyze how changes to representations contribute to cross-stimuli specificity and transfer of PL.

More concretely, we studied PL in a simple deep neural network (DNN) model. DNNs imitate hierarchical
structures of sensory areas by including multiple layers of feedforward synaptic weights stacked between an
input layer and a linear readout[25, 26, 24]. We first developed an analytical theory of learning fine perceptual
discrimination in the network model. The theory allows us to characterize the nature of representational
changes needed for PL, as well as the space of all possible synaptic modifications that can give rise to such
changes. We introduced a minimum-perturbation (MP) principle that targets the specific synaptic changes
that solve the task while making the smallest overall changes to the pre-learning synaptic weights, and we
then studied the resultant distribution of plasticity across the layers. Next, we simulated the dynamics of
learning and found that the slow progression of PL naturally leads to modifications that agree well with those
predicted by the MP constraint. Importantly, while modifying weights between the earliest areas is sufficient
and necessary for PL, later representational weights are also modified to reduce the overall perturbation to
weights. In contrast, the readout weights that connect the sensory representations to the decision-making
stage are predicted to be the same as the ones that allow a baseline performance of the task for all stimuli
range. The MP solution to PL improves performance by strengthening the signal in cortical representations
across layers. Noise in the neuronal responses, caused by sensory noise, is not suppressed and may even
increase, although only moderately relative to the signal amplification. Finally, we show that this solution
alters cortical representations to give rise to rich cross-stimuli transfer patterns, which are readily testable.
Analyzing the MP solution resolves several long-standing conflicts in experimental findings and delineates
roles played by early and late areas in PL.

2 Results

We studied perceptual learning (PL) in a feedforward neural network with L layers of sensory neurons
receiving input from N channels (Fig.1A). The feedforward weight matrix connecting presynaptic neurons
in the l − 1th layer to postsynaptic neurons at the lth layer is hereafter denoted as W l. A decision neuron
produces an output using a linear readout integrating responses of the Lth layer neurons with synaptic
weight vector a. All other neurons have rectified linear activation functions mimicking rectification of
synaptic potential by the neuron’s firing threshold. Input channels represent a 1D angular stimulus (such as
orientation or direction of motion) with bell-shaped tuning curves with width σs (Fig.1B) and independent
and identically distributed additive Gaussian noise. We hereafter refer to input channels with large σs as
having low input selectivity and vice versa (example 2D Gabor stimuli that correspond to different values of
σs are given in Fig.M1). Importantly, our model neurons respond deterministically to a given activation of
the input array. Thus, the noise in their responses is due to “input noise”, i.e., the above mentioned noise
in the input array. The effect of additional neuronal noise is discussed toward the end the results section.
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Figure 1: Model of perceptual learning.
(A) Architecture of a two-layer version of the model. The activation of input channels (gray squares) is
passed through two layers of intermediate layers (blue circles) before getting read out by a linear readout
(a).
(B) Example tuning curves of input channels. Each curve represents a channel with a different preferred
stimulus. The preferred stimuli of input channels uniformly tile [0, 2π]. Selectivity of them is controlled by
σs (taken to be 0.2 in these examples). Larger σs indicates wider tuning curves and less selectivity.
(C) Example weight matrix, W l, before learning. Selectivity of weights is controlled by σw (taken to be 0.8
in this example). Larger σw indicates that each neuron in layer l receives input from more neurons in layer
l−1 and has less selectivity. Weights connecting neurons with similar preferred stimuli tend to be excitatory
and strong while those connecting neurons with dissimilar preferred stimuli tend to be weak and inhibitory.
(D) Example neuronal tuning curves before learning. Each curve is a different intermediate neuron. Due
to structures in the pre-learning weights, these neurons have preferred stimuli that uniformly tile [0, 2π], as
well as bell-shaped tuning curves. (σs = 0.2, σw = 0.8, L = 3, and the last layer is analyzed)
(E) Schematics of the perceptual task in input space. Noisy representations of θ+ (red) and θ− (blue) are
shown. The signal is in the direction of the difference between the means of these representations.
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We assume pre-PL weight matrices to be circulant matrices with a Gaussian profile (Fig.1C), reflecting
the spatial modulation of the synaptic input to a neuron. Specifically, every neuron receives strong excitation
from neurons with similar preferred stimuli and weak inhibition from those with dissimilar preferred stimuli.
The width of the synaptic spatial modulation is denoted σw (hereafter, networks with large σw are referred
to as having low weight selectivity and vice versa). As a result, prior to PL, neurons have bell-shaped tuning
curves (Fig.1D). Note that the circulant weight structure may not persist after PL in our model and weight
selectivity only describes the pre-PL weights.

The perceptual task consists of fine discrimination between two similar stimuli, θ± = θtr ± δθ, where
the center stimulus θtr is called the trained stimulus. In each trial, a stimulus generates a noisy activa-
tion of the input array, denoted as an N -dimensional vector x0 = f0(θ±) + input noise, where f0(θ±)
is the noise-averaged activity for each of the two angles, respectively, and input noise is a vector of i.i.d.
Gaussian distributed noise with variance σ2. Viewed in input space, the task amounts to separating two
high-dimensional spherical Gaussian clouds (Fig.1E), centered at f0(θ±) . The input signal direction, de-
noted by s, is defined as a unit vector in the direction of f0(θ+) − f0(θ−) . In each trial, the decision
neuron’s activity r indicates whether the input comes from the θ+ stimulus or from θ− with r > 0 or r < 0,
respectively. Stimuli are presented with equal probability; the optimal performance in the task is thus given
by performing maximum likelihood discrimination (MLD,[21]). Importantly, in this task, MLD can be re-
alized by directly summing the input layer activities with weight vector s. However, in the cortical deep
architecture, the decision neuron has direct access only to the top sensory layer.

The pre-PL value of the readout vector a is chosen to be the optimal linear readout for this task from
the pre-PL top layer (Methods M9). This gives the network a well-above-chance but generally suboptimal
performance (as shown below), imitating animals that understand the task but have not yet acquired the
skills required for near optimal performance. Prior to learning, a similar readout applied for discriminating
around other angles will generate the same (sub-optimal) performance, as the pre-learning sensory coding
accuracy is the same for all angles.
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Figure 2: Suboptimal neural representations before learning.
(A) Linear Fisher information for the trained stimulus in layer 1 (J1) divided by that in the input (J0),
for different input and weight selectivity. If J/J0 = 100%, no information is lost through the network and
the pre-PL performance is optimal. The ratio is low for large σs, small σw (the “unselective-input-selective-
weights” regime, red polygon) or small σs, large σw (the “selective-input-unselective-weights regime, blue
polygon). Dots: example parameters used in B. N = 1000 in all panels.
(B) Linear Fisher information for the trained stimulus (J) in the last layer of networks of different depths,
divided by that in the input layer (J0). Each curve (red vs. blue) corresponds to a different set of σs, σw.
(C) Same as B, but assuming that all neurons are active; equivalently, the effective weight matrix W l

eff is
the entire weight matrix W l. Information loss in the unselective-input-selective-weights is prevented by this
assumption, while the loss in the selective-input-unselective-weights is not significantly affected.
(D) Schematics showing the relationship between effective weights W l

eff and all weights W l. On the left:
black, dashed boxes mark neurons with above-zero average activation for the task (”active neurons”). Weights
connecting active neurons from layer l to those in layer l + 1 are the effective weights (red arrows). On the
right: the red box shows the submatrix within W l that composes the effective weights; black curves show
the average response of neurons in layers l and l − 1.
(E) Match between J1/J0 computed from nonlinear networks and that computed using linear effective
networks. Every dot is a three-layer network with a different (σs, σw).

Suboptimal Neural Representations Before Learning

Since our pre-PL weights and neurons are tuned to the stimulus variable θ, is it possible that the network
can perform the perceptual task optimally by an appropriate readout, without any modification of the rep-
resentation? To address this question we chose Linear Fisher Information [27] as the metric of performance,
as it determines the signal-to-noise ratio (SNR) of the best performance of a linear neuron reading out from
the top layer (Lth). It is defined as

JL = (dθf
L)T (ΣL)−1dθf

L, (1)

where dθf
L = (fL(θ+) − fL(θ−))/2δθ and fL(θ±) are the noise average response vectors of the top layer

to the two stimuli. The matrix ΣL is the noise covariance matrix in layer L (if this matrix is low-rank, then
ΣL
−1 stands for the pseudoinverse[28]). For brevity, we will refer to JL as the Fisher Information.

As mentioned above, a linear decoder reading from the input layer can have optimal performance, hence
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an upper bound on the network Fisher information is given by the input SNR, which is the input Fisher
information, J0 = ‖f0(θ+)− f0(θ−)‖2/σ2. Note that since the input noise statistics does not depend on θ,
J0 is the upper bound on the SNR of any decoder and is achieved by MLD for large input width[21]. In
order for the network to have optimal performance, JL must match J0. While in our model the mapping
from input to layer L is deterministic and does not inject additional noise, filtering the input through the
pre-PL intermediate synaptic weights may lead to loss of JL and degraded performance. Indeed, we found
two distinct scenarios where such filtering significantly reduces JL(Fig.2A for L = 1 and Fig.S1 for L = 2, 3):
when input channels are unselective and pre-PL feedforward weights are selective (large σs, small σw, red
polygon), and when input channels are selective but feedforward weights are unselective (small σs, large σw,
blue polygon). Furthermore, under these conditions, the loss of information through the network filtering is
bigger in deeper networks (Fig.2B). These findings counter the intuition that sharper tuning curves (coming
from more selective input channels or feedforward weights) always produce better performance.

To explain these results, we identify two sources of information loss by the network. In the regime of
selective-input-unselective-weights (small σs, large σw), information is lost because the rank of the network
pre-PL weights W l

pre is low, implying that they project to subsequent layers only part of the signal in
the input. In this regime, information loss occurs regardless of the nonlinearity of representation neurons
(Fig.2C). Importantly, the low-rankness arises from smoothness of the pre-PL weights and does not vary
with width of the network. On the other hand, in the unselective-input-selective-weights (large σs, small σw)
regime, the weight matrices project the full signal. However, due to firing rate rectification, a substantial
fraction of the representation neurons are inactive for essentially all training stimuli. Thus, the weights
connecting only active neurons are low-rank and are incapable of transmitting the full signal. Thus, in
this regime, information loss is entirely due to the neuronal nonlinearity and disappears if we remove this
nonlinearity (Fig.2C). Importantly, because in our paradigm θ± stimuli generate highly overlapping input
patterns and the input noise is substantially suppressed by the averaging performed by the weights, only
neurons with preferred stimuli near the trained stimulus are activated by the set of stimuli involved in the
task. Since the identity of active neurons is largely constant for most of the stimuli (full derivation in Methods
M2), we can replace our nonlinear network with weights W l by a linear network with effective weights W l

eff

(Fig.2D), similar to the approximation done in [29] for recurrent networks. Consistent with this observation,
Fig.2E shows that the effective linear networks exhibit the same loss of information as their corresponding
nonlinear networks. The theory also provides a unified perspective on why information is lost. In an effective
linear network, the severity of information loss is related to the span of the product of all effective weight
matrices (Sec.M3.1). Information loss is severe if the signal, s, projects substantially outside of its span.
Indeed, this is the case in both regimes of information loss(see Fig.S2). For simplicity, we will hereafter use
W and a to denote the effective weights.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.05.463260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463260
http://creativecommons.org/licenses/by/4.0/


Weight Structures After Learning

only training

no
 tr

ai
ni

ng

W1 W2 W3

A

0 1

0 N

B cos(s, Vpre)

Vpre
0

σw(rads)

σ s
(ra

ds
)

0.1 1.50.1

1.5
s

W2&W3

input neuron idx.

w
ei

gh
t

channel 1

ch
. N C

s

Vch
. 2

ch
. N

100

60

20

J/J0(%) 

Figure 3: Space of weights that give optimal performance.
(A) Schematics showing the relationship between the network decision surface and the signal direction.
Decision surface of the network (orange) in input space is globally nonlinear but locally linear (gray paral-
lelogram). The local hyperplane is defined by the N -dimensional V (black arrow), which in turn depends
on the effective weights. Discrimination is optimal if and only if V is parallel to the signal s (gray arrow),
making the decision surface perpendicular to s.
(B) Cosine angle between s and the pre-PL V , Vpre. Higher values indicate better alignment between these
two vectors and a network performance that is closer to being optimal. Insets: some examples of s and Vpre.
All networks have and L = 3, N = 1000 (same for (C)).
(C) Best last-layer information (J3) achievable if plasticity is restricted to some weight matrices in a three-
layer network. Dashed line: performance if no weight matrix is modified. Modifying any weight ma-
trix improves the performance, but only modifying W 1 is sufficient and necessary for optimizing it. Note
that these results are valid even if the all weights (not just the effective ones) in each matrix are trained.
(σs = 0.2, σw = 0.8)

We first characterize the space of all possible solutions to the PL task, i.e., all possible weights that render
optimal performance. This characterization is vastly simplified by our observation above, namely that we
can replace our network by a linear network with effective weights. The network input-output relation is
approximately linear and is given by r(θ) = V Tx0(θ) where x0(θ) is the single-trial noisy activity vector of
input channels and the input-output mapping is given by (see Fig.3A)

V = W 1TW 2T ...WLTa. (2)

Conceptually, for the performance to be optimal, two conditions must be satisfied. First, the last-layer
neural representation must contain the full Fisher information, as we have argued in the previous section.
Second, the network readout must be accessing all the information. These two conditions can be combined
into the requirement that V ∝ s. This condition is not satisfied in pre-learning networks (even with optimized
readouts), leading to suboptimal performance (Fig.3B).

To characterize solutions, we note that a necessary and sufficient condition is that the first layer effective
weights are modified such that after learning,

W 1 = usT +W⊥. (3)
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where W⊥s = 0 (Methods M8). In order for the signal term to be read out by the network, the vector u

must obey uTW 2T ...WLTa 6= 0. In addition, since the remainder weight matrix is perpendicular to the

signal, it should not contribute to the network output. Hence, it must obey W T
⊥W

2T ...WLTa = 0. This
result implies that, to obtain an optimal performance, higher layer weights including the readout weights can
be essentially arbitrary and in particular can retain their pre-learning values, provided the first layer weights
are appropriately modified. Conversely, restricting the plasticity to higher layer weights while freezing the
first layer weights to their pre-PL values is insufficient for optimal performance, because the input to the
plastic weights is already filtered suboptimally by the bottom frozen weights (Fig.3C).
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Figure 4: Minimum-perturbation learning in networks.
(A) Top: error over time converges to the optimum during the simulated PL of an L = 1 network. Bottom:
Norms of changes to W 1 and a, divided by norms of W 1

pre and apre. This figure describes learning in the
selective-input-unselective-weights regime (σs = 0.2, σw = 0.8, learning rate = 10−3, and N = 1000, unless
otherwise noted). Results from the unselective-input-selective-weights regime are shown in Fig.S3.
(B) A visualization of changes to W 1 after simulated learning. The x-axis is the index of input channels;
the y-axis is the index of neurons in layer 1. Dashed box: effective weights.
(C) Same as (B), but for MP changes to W 1.
(D) Same as (A), but for an L = 3 network.
(E) Structures of MP modifications (top row) and simulated changes (bottom row) in an L = 3 network.
Colorbars are not shown. See (G) for the magnitude of changes. The axes are analogous to those in (B) and
(C).
(F) Leading singular values (normalized by the top one) of simulated ∆W 1,2,3. That the first singular value
dominates suggests that these matrices are approximately rank-1.
(G) Magnitude of simulation changes (“sim”) and MP plasticity (“theory”) for different values of σw.
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Learning While Minimizing Network Perturbation

The analysis above shows that the fine discrimination task can be solved by networks with a large variety
of weight patterns. Which one does the brain adopt after PL? To answer this question, we studied gradient
descent supervised learning as the learning algorithm (Methods M1.4) because it has been shown to reproduce
experimental findings in PL[25, 24, 30]. In this learning rule, at each plasticity step, the synaptic weights
change in proportion to the negative gradient of the error signal with respect to a small change in the
weights[31]. The actual magnitude of weight changes at each step is controlled by a learning rate constant.
Here, we used small learning rates to imitate the slow progression of PL (Methods M11).

Shallow networks: First, we analyzed learning dynamics in a shallow (L = 1) network (Fig.4A) (for
the selective-input-unselective-weights regime; similar results are shown in the unselective-input-selective-
weights regime (Fig.S3)). As learning progresses, the synaptic weights converge to a solution, and the error
rate converges to its minimal value (Fig.4A). Learning dynamics lead to three interesting features of weight
modifications. First, PL-induced modifications are restricted to only the subset of weights connecting only
neurons that were active initially (Fig.4B, dashed box). This is explained (Methods M7) by the fact that
during gradient-based learning, the set of active neurons in every layer remains the same as that before
learning. Consequently, the same subset of weights (the effective weights) contributes to the network output
(and therefore the error) throughout learning, thus only those are modified. Second, although learning
is enabled for both W 1 and a, only the former undergoes significant changes (Fig.4A, bottom). Finally,
changes to weights appear to be rank-1.

To explain these salient features of the observed plasticity, we propose that they are the outcome of an
implicit tendency of the slow gradient-based learning dynamics to minimize the overall changes in the weights
relative to their pre-PL values. Since only the effective weights are modified, we focus our analysis on changes
to the effective weights, denoted as ∆W 1 ≡ W 1

post −W 1
pre (“post” denotes post-PL values). To test this

hypothesis, we studied the solution to the PL task under the principle minimum-perturbation (MP) plasticity.
According to this principle, out of all viable post-PL weights that solve the perceptual task, learning dynamics
finds the one that minimizes network perturbation, as measured by

∑L
l=1 ‖∆W l‖2 + ‖∆a‖2.

MP weight modifications are fully determined by pre-PL weights and task parameters (Methods M10).
Analytical evaluation of the MP modifications for L = 1 exactly matched simulations, in both structure and
magnitude (Fig.4C). Importantly, under MP modifications, the readout weights are essentially unchanged,
so that a = apre. In addition, The change to W 1 has a rank-1 structure, ∆W 1 = a(sT − aTW 1

pre)/‖a‖2
so that W 1

post contains a rank-1 component asT and a term that cancels out the projection of the pre-PL
weight matrix on the readout a, thus satisfying Eq.3. This structure is in contrast to a grandmother-cell
strategy where a small number of individual neurons adopt optimal filters; instead, MP learning opts for a
population-coding scheme where the linear filters of all active neurons are altered slightly.

MP learning in deep networks: Simulations of PL in deeper networks (Fig.4D) confirm that, similar
to the case of single-layer networks, changes to synapses are concentrated in those between neurons that
responded to the stimulus prior to learning (i.e., the effective weights, Fig.4E bottom row). Also, the readout
weights remain essentially unchanged. We solved analytically the plasticity under MP constraint for deep
networks(Methods M10). The theory predicts that changes in all effective weight matrices are confined to a
rank-1 structure,

∆W l = VlU
T
l (4)

where Vl is the readout vector from the l-th layer and Ul is the effective signal vector propagating into this
layer. They are given by

Vl = W l+1
post

T · · ·WL
post

T
a (5)

Ul = W l−1
post · · ·W 1

postλ, (6)

where the vector λ is determined by the requirement that after learning the full input-output mapping V
(Eq.2) equals the signal s. Note that the above equations need to be solved self-consistently as they involve
the post-learning weight matrices.
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Numerical solutions of the self consistent-equations of the MP theory for the case of L=3 (Fig.4E, top row)
show that W 1 undergoes the biggest change, followed by W 2 and W 3, with ‖∆W 2‖ ≈ ‖∆W 3‖. These
results are supported by the gradient-based learning, indicating that also in deep networks, this learning
dynamics expresses implicit biases qualitatively similar to MP learning (the same result for networks in the
unselective-input-selective-weights regime is shown in Fig.S3).

We have shown that the largest changes occur at layer 1 weights but significant changes also occur at the
higher layers. According to our analysis above (see Eq. 3), modifying W 1 alone is sufficient for learning;
so why do higher layers change? We hypothesized that higher layers undergo small perturbations so that
the total network perturbation is minimized. To verify this interpretation, we computed MP plasticity in a
three-layer network assuming that only W 1 is modified and found that this consistently leads to more total
perturbation than learning involving all matrices (Fig.5A).

While there is overall excellent agreement between gradient descent learning and MP theory predictions
regarding the patterns of weight changes, there is a quantitative discrepancy about the magnitude of changes
(Fig.4G), suggesting that in deep networks (L > 1) the gradient learning dynamics converges to a solution
with a slightly larger overall change than the minimal value. Another important factor in the comparison
between the two is the value of the learning rate. As shown in Fig. 5B, a substantial increase in the learning
rate significantly increases the amount of induced synaptic changes, (Fig.5B) widening the discrepancy with
the MP changes. This suggests that the slow progression of PL is essential for achieving MP plasticity.

We hypothesize that adding an explicit bias favoring small weight perturbation to the cost function of the
learning dynamics will alleviate the quantitative discrepancy with the MP theory. Indeed, we repeated the
learning simulations with an explicit penalty on the size of weight changes in the loss function. The strength
of this penalty balances a trade-off between optimizing performance on the perceptual task and minimizing
network perturbation. We adjusted the strength of this penalty to be the largest that allows convergence
to optimal performance (Fig.5C). Simulations with this penalty term converged to MP plasticity (Fig.5D;
changes to the readout are negligible for both simulation and theory).
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Figure 5: Factors affecting network perturbation.
(A) Restricting learning to W 1 leads to more network-wide perturbation (measured by the sum of matrix
norms of ∆W 1,∆W 2,∆W 3) than unrestricted learning. In either case, the readout a is also allowed to
learn but does not change significantly following PL. In all panels , σs = 0.2, σw = 0.8, L = 3, Learning rate
= 10−3 and N = 1000, unless otherwise noted.
(B) Effects on perturbation when a higher learning rate is used. Average of 10 simulations. Error bars show
standard error and are too small to be seen in most places. The red box indicates that when learning rates
are greater than ≈ 10−1.5, gradient descent diverges. Dashed line: learning rate used by default.
(C) Effect of adding an additional perturbation penalty to the loss function on discrimination error after PL
has converged. If the penalty is too strong (e.g. above 10−1 in this case), error at convergence is suboptimal
because learning prioritizes reducing the magnitude of changes. Arrow: penalty strength used in (D), which
is the maximal value without making error suboptimal.
(D) Match between the magnitude of MP changes to weights (“theory”) and changes from simulations with
a perturbation penalty (“sim”).
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Modifications of Neural Representations
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Figure 6: MP Learning-induced changes to response properties.
(A) Example pre-PL and post-PL tuning curves of neurons (selective-input-unselective-weights regime). Each
color denotes a different neuron. All tuning curves are normalized by the max firing rate before learning.
Before learning, tuning curves only differ by their preferred stimuli. In all panels, unless otherwise noted,
σs = 0.4, σw = 1.0, N = 1000, L = 3, and the last layer is analyzed.
(B) Probability distribution of phase of the 1st Fourier component of tuning curves. Before PL, the dis-
tribution is uniform (dashed line). Location of the phase indicates preferred stimuli of the neuron. The
depression near the trained stimulus indicates that fewer neurons prefer the trained stimulus following PL.
(C, D) PL-induced changes to signal(C) or noise(D) amplitude across layers for different weight selectivity.
Changes are generally greater in higher layers and in networks with initial weights that are less selective
(larger σw).

How does MP plasticity modify neural representations? Example pre-PL and post-PL tuning curves in the
last layer of an L = 3 network are visualized in Fig.6A. After learning, tuning curve centers shift and their
shapes are modified so that the population is sensitized towards changes in θ near the trained stimulus. As
shown in Fig.6B, the new distribution of preferred angles exhibits a sharp peak at the side bands of the
trained stimulus and is decreased on both sides, reflecting the concentration of tuning curve maximal slopes
near the trained stimulus. Additional contribution to the enhanced selectivity comes from the tuning curve
shape modification that leads to increased slopes of individual tuning curves near the trained stimulus.

How do observed changes to tuning curves contribute quantitatively to improvement of perceptual perfor-
mance? We analyzed the two factors determining discrimination performance around the trained stimulus:
signal and noise, defined such that JL = (signal/noise)2. The signal amplitude at θ in layer l is defined as

‖dθf l(θ)‖. Noise at θ in layer l is defined via noise−2 = dθf
l(θ)TΣl−1

dθf
l(θ)/‖dθf l(θ)‖2. Note that this

noise projects the inverse covariance of the neural fluctuations onto the signal direction, analogous to the
information-limiting correlations[32, 33]. While early studies of PL highlighted the importance of increased
tuning curve slopes (i.e., amplified signal), some recent work suggested that PL is achieved primarily by noise
suppression [20]. Our model exhibits a pronounced amplification of signal (Fig.6C), with the effect being
stronger in higher layers. Surprisingly, we found that PL also amplifies noise across all layers, although to
a weaker extent than signal amplification (Fig.6D). Thus, MP learning improves perceptual performance by
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strengthening the signal rather than weakening the noise.

Effects of Learning on Untrained Stimuli
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Figure 7: Transfer of PL to Untrained Stimuli.
(A, B) FI change in the last layer for different stimuli after PL, normalized by change for the trained stimulus.
The change for the trained stimulus is 1 by definition. FI gain is prominent for stimuli close to the trained one
(“proximal”), and those somewhat different from the trained one (“distal”). In all panels, N = 1000, L = 3,
and the last layer is analyzed. For the selective-input-unselective-weights regime, σs = 0.4, σw = 1.0. For
the unselective-input-selective-weights regime, σs = 1.2, σw = 0.1. The x-axis is shared among panels in each
column.
(C, D) Change to signal amplitude for different stimuli, normalized by change for the trained stimulus.
(E, F) Change to noise amplitude for different stimuli, normalized by change for the trained stimulus.
(G, H) Changes to the number of active neurons for each stimulus (third layer, L = 3). There is no change
for the trained stimulus. Before learning, the number of active neurons is the same for all θ.
(I, J) Effects of fixing active neurons (“gating”) after PL on information change for different stimuli. The
“control” curves (black) are the same as those shown in (A,B). For the “gated” curves (green), neurons in
the post-PL network are gated such that for every stimulus, active neurons in each layer of the post-PL
network are the same ones that have been active before PL.
All variables shown in this figure are symmetric around the trained stimulus.

PL-induced weight modification in our model leads to a nonuniform representation of angles post learning,
raising the question of how the quality of coding of untrained stimuli is affected. To analyze the pattern of
“transfer of learning” to untrained stimuli, we computed normalized information gain, defined as the infor-
mation change at the last layer for each untrained stimulus divided by information change for the trained
stimulus. Our analysis reveals a rich, non-monotonic pattern of transfer arising from MP plasticity. Con-
sistent with experimental findings, PL transfers to stimuli similar to the trained stimulus across parameter
regimes (see Fig.7A, B for L = 3; “proximal transfer”). Surprisingly, PL also transfers to distal stimuli,
where the distance between trained and test stimuli is intermediate (“distal transfer”). Finally, as expected,
representations for stimuli far away from the trained one are unaffected by learning.

How are such patterns of transfer connected to PL-induced changes to neuronal representations? We
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first analyzed how the signal magnitude for untrained stimuli is affected by PL (Fig.7C, D). We found that
stimuli that are sufficiently similar to the trained one also exhibit signal amplification, as expected from the
smoothness of tuning curves. Interestingly, the signal for distal stimuli is also amplified (Figs.7C and D) .
However, stronger signals may not necessarily lead to more information, if they are countered by a concurrent
increase of noise. We found that noise increases for both proximal and distal stimuli (Fig.7E,F). Similar
to the trained stimulus, information for these stimuli nevertheless increases because signal amplification is
stronger than noise amplification.

How does PL amplify the signal? In general, signal amplification can be accomplished by two mechanisms:
either by modifying the tuning curves of neurons which are active even before learning (“sharpening”), and/or
activating neurons that were previously silent to recruit them to represent this stimulus (“recruiting”). For
the trained stimulus, since no additional neurons are activated, signal amplification occurs strictly because
of sharpening. However, following changes in connectivity by PL, the number of neurons (compared to the
untrained network) responding to untrained stimuli may change, hence both mechanisms may contribute to
transferred learning. To investigate this question, we first computed how the number of active neurons for
each stimulus changes following PL (Fig.7G,H; third layer, L = 3). In the selective-input-unselective-weights
regime (Fig.7G), the number of active neurons decreases for distal stimuli, suggesting that sharpening of
population responses is responsible for transfer here. On the other hand, in the unselective-input-selective-
weights scenario (Fig.7H), the number increases for distal stimuli, suggesting that recruiting could be driving
signal amplification here. To test this hypothesis, we performed gating experiments where the identity of
active neurons in the presence of distal stimulus is artificially kept the same as prior to learning in all
layers. We found that in the selective-input-unselective-weights regime, this manipulation barely affected
transfer (Fig.7I), confirming that sharpening drives transfer in this regime. This is consistent with our finding
that gating does not significantly reduce signal amplitude in this regime (data not shown). On the other
hand, gating significantly reduced distal transfer (Fig.7J) in the unselective-input-selective-weights regime,
suggesting that recruiting is driving transfer here. Indeed, gating removed PL-induced effects on signal and
noise for distal stimuli (data not shown).

Noise Correlations and Size Dependence

Our discussion of PL so far has not touched on how performance of the post-PL network depends on the
numbers of input channels (Ninput) and sensory representation neurons (Nhidden). For input channels, the
signal amplitude increases linearly with the number of them. On the other hand, since noise is independent
between individual input channels, noise amplitude (σ2) does not depend on the number of them. As a
result, J0 increases linearly with the number of input channels as expected. Since JL in a post-PL network
matches J0, JL also increases linearly with the number of input channels(Fig.8A). The same holds for Fisher
information before learning (Fig.S8).

We next consider the effects of changing the number of hidden neurons in the network. Our expression
of the space of solutions (Eq.3) can be satisfied with only a few hidden neurons. Thus, learning can achieve
optimal performance with small Nhidden. Viewed from a signal and noise perspective, both signal amplitude
and noise increase linearly with the number of hidden neurons in trained networks, making the overall signal-
to-noise ratio independent of Nhidden. The situation is different if intrinsic neuronal noise is considered. As
a simple example, we consider the effects of injecting i.i.d. Gaussian noise (“output noise”) to the activity
of neurons in the top layer of the post-PL network (Fig.8B). In this case, noise in the last layer has two
components: one is the input noise, filtered through upstream layers; the other is the output noise. We
found that when Nhidden is small, information is primarily limited by the output noise component and
increases linearly with Nhidden. When Nhidden exceeds approximately Ninputσ

2
output/σ

2, the effect of output
noise is drastically suppressed, and information saturates with large Nhidden to the value determined by the
input noise (see detailed analysis in Sec.M3.2). This behavior of the input noise in our model is similar
to the information-limiting correlations discussed by [32, 33] which limit information even at large Nhidden.
Consideration of the more complex problem of having both input noise and intrinsic neuronal noise in all
layers both during learning and afterwards is beyond the scope of this work.
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Figure 8: Dependence of Information on Network Size.
(A) Linear Fisher information in the input channels and the last layer (after PL) increases linearly with the
number of input channels. After learning, the information in the last layer (gray dashed line) is always the
same as that in the input layer (red line). In both panels, σs = 0.2, σw = 0.8, L = 3.
(B): Linear Fisher information in the last layer as a function of Nhidden in a post-PL network when i.i.d.
output noise of different intensities is injected to the last layer. Each curve corresponds to a different
magnitude of output noise. J0 does not depend on Nhidden; thus these curves reflect dependency of J3

on Nhidden. The contribution from this output noise to information degradation decreases with increasing
Nhidden; at large Nhidden, the output noise contribution vanishes and the information approaches J0. For
this panel, Ninput = 1000.

Discussion

We have presented the first theory of perceptual learning in a deep sensory network. We have shown that
during a fine discrimination task, a deep sensory network is equivalent to a linear input-output mapping with
readout vector V (Eq.2), determined by the subset of weights (“effective weights”) connecting active neurons
between layers. In the pre-learning network, optimal performance cannot be achieved despite an optimized
readout weights a, due to the low-rank nature of the effective synaptic matrices in upstream sensory layers.
Thus, PL adjusts the effective weights such that V is aligned with the optimal input-output mapping for
the task. While there is a large space of weight modification satisfying this objective, we propose that
PL operates under the constraint that perturbation to prior synaptic weights be minimal (“MP learning”).
We show that a gradient-based learning rule with small learning rates converges to a solution qualitatively
similar to that predicted by MP learning. Furthermore, changes to neural representations and behavioral
performance induced by MP learning are consistent with experimental observations and lead to new testable
predictions.

Loci of Learning

An important counterintuitive prediction of the MP theory is that synaptic weights of the readout unit do
not change during PL, a result replicated by a gradient-based learning rule with small learning rates. Crucial
for this result is our assumption that readout weights are initialized as optimal, relative to the pre-learning
sensory representations. This is contrary to most models of learning in neural networks, where task-specific
readout synapses are assumed to be random before learning and undergo significant changes during learning.
We argue that random initialization is not biologically plausible when considering naturalistic tasks which
should yield above-chance performance prior to PL.

Since the readout does not change, the success of PL is entirely due to improvement of representations
in upstream sensory layers. This requires increasing the SNR about the task-relevant stimuli in the sensory
layers and ensuring that the existing readout can access all the information. This is similar to recent findings
that attention improves performance by shaping cortical representations to fit a fixed readout[34]. Our result
is consistent with [20] who found that PL is successful even when only the feedforward weights to a single
sensory layer are modified.
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Importantly, our results reconcile improved representations with psychophysical findings that were taken
as evidence for stable representations during PL, namely observations that PL for one task did not transfer
to another task using the same stimuli[14, 15, 16]. This result was interpreted as evidence that population
codes for these stimuli did not improve[35]. However, our theory shows that the representation improvement
during PL is itself task-specific. Therefore, PL will not transfer to an untrained discrimination task if it has
a signal direction perpendicular to that of the trained task, even if the two tasks have highly overlapping
mean stimuli. To illustrate this point, we considered a network trained on the θ discrimination task and
tested its performance on a input-width discrimination task (telling apart stimuli with different σs) using
the same stimuli and found no transfer (Fig.S7; details in Sec.M6). Thus, cross-task transfer may not occur
despite extensive changes to cortical representations at every layer.

Another question of interest is which stage in the sensory system contributes the most to PL. We have
shown analytically that with fine discrimination tasks, plasticity in the first sensory hidden layer is necessary
for the success of PL. While this is difficult to test experimentally, it is in agreement with conclusions drawn
from PL in Deep Convolutional Neural Networks(DCNNs) previously trained for an object recognition task
[24]. Consistent with our results, their numerical simulations indicated that the weight matrix following
the first intermediate layer undergoes the biggest modification and that preventing learning in this matrix
significantly impacted performance after PL (in their model, the first intermediate layer contains the full
information and is thus analogous to our input layer). However, the complexity of DCNNs obscures their
interpretability and precludes elucidating the underlying mechanism. Our simplified model with stimuli
and connectivity tuned only to a 1D angle allows the development of powerful analytical tools to study
mechanisms underlying PL in deep neuronal sensory architectures. In particular, in contrast to DCNNs
where higher layers are selective to higher-level complex features, in our model all stages are selective to
the same angular feature. Thus, the fact that the orientation discrimination task depends on changes in
lower layers rather than higher ones cannot be attributed to the difference in the nature of selectivity of the
different stages (see [24, 36]). Rather, modifying early layers plays a critical role in PL due to the loss of
information by propagation through the existing low-rank effective weights. Furthermore, even though in
MP learning changes are distributed across all layers to minimize the overall perturbation, earlier matrices
still consistently undergo bigger changes.

A confusing aspect of current discussions about the loci of PL is the confounding of changes to the synaptic
connections (i.e., the magnitude of synaptic plasticity) and the changes in the neuronal response properties.
Our theory shows that although changes to weight matrices are larger in lower layers, the increase in SNR
and signal amplification are stronger in higher layers (Fig.S5) as they are the outcome of the accumulated
changes in upstream layers. The Reverse Hierarchy Theory[18] claims that in a difficult PL task, higher-
level layers that are closer to the readout change before lower-level ones. This is supported by a recent
one-dimensional model of PL in deep linear networks[19]. Although we have not focused on the dynamics of
PL, our numerical results do not substantiate these claims (see e.g., Fig.4). Note that in contrast to [19], the
readout layer does not change during PL in our model. Both the MP theory and the gradient-based learning
simulation show that the changes in the weights are confined largely to adding rank-1 terms to the existing
weight matrices (see Fig.4). Indeed, recent work on supervised learning in deep networks highlighted the
compressed dimensionality of gradient-based learning in deep networks[37] .

Nature of Changes to Representations

Our analysis shows that both signal and noise are increased by PL (Fig.6). Performance is improved because
signal amplification is stronger. While we found changes to the structure of noise correlation(Fig.S9), such
changes do not contribute causally to PL because the overall noise increases. The magnitude of predicted
changes to tuning curves and SNR depends on input and weight selectivity (Fig.S5). In particular, changes
are smaller when selectivity of input and weights is more similar, concomitantly with a smaller performance
gap between the network before learning and the optimal level.

Given the large space of solutions, an important question is whether any of the predicted changes to tuning
curves and noise are necessary for PL to be successful[20]. Our expression of the space of solutions allows
us to compute the minimal amount of signal amplification needed for PL. We found that for deep networks,
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signal amplification is indeed necessary for PL (Fig.S6A,B) and is of the same magnitude as the amplification
caused by MP. Furthermore, MP changes amplify the signal to the minimal extent necessary for learning.
This result suggests that in our model, changes to noise alone is not sufficient for PL; signal amplification,
which arises from sharpened tuning curves, is required for PL. Indeed, we found that solving PL under a
”soft” MP constraint, where post-PL weights are allowed to move away from the MP weights, leads to even
greater signal amplification(Fig.S6C). This result is inconsistent with [20] who found that amplification is
not necessary for PL. Their conclusion may be confined to the regime where performance is dominated by
neural noise, not input noise as in ours. Additionally, their plasticity model differs from ours in that it
assumes circularly invariant weights both before and after learning, which forces a global change of synaptic
weights. In contrast, in our model, PL plasticity is localized to the neurons responding to the stimulus (if we
require post-PL weights to be circularly invariant in our model, post-PL tuning curves have very unnatural
multi-modal shapes. See Sec.M13). Finally, we note that our prediction of signal amplification stems from
our observation of a fixed readout under MP learning. If the readout can be adapted in ways that violate
the MP principle, signal amplification is not always necessary(Fig.S6D).

Minimum Perturbation and the Plasticity-Stability Dilemma

The plasticity-stability dilemma[38] refers to the brain’s need for balancing between acquiring new skills
(plasticity) and not altering existing circuits/representations in such a way that previously acquired skills
are seriously affected (stability). It is particularly acute for fine discrimination PL tasks, since, as we have
shown, they necessarily involve changes to early sensory areas, which need to maintain representations for a
wide variety of untrained tasks[35]. We propose that during PL, this is achieved by choosing weight changes
that minimize perturbation to existing weights. Indeed, MP learning induces significantly less degradation
of discrimination performance of untrained stimuli than non-MP learning (e.g., if the learning rate is large)
while reaching the same optimal performance for the trained task(Fig.S4).

For artificial neural networks, minimum perturbation schemes have been proposed to successfully prevent
“catastrophic forgetting” of previously trained tasks when training a new task[39, 40]. These schemes
suppress plasticity on synapses deemed important for previous learning episodes. Although they can be
more effective than our MP model which weighs equally all synapses, they require memorizing not only the
previous synaptic weights but also their contributions to previous tasks. Furthermore, this procedure may
not be relevant for cases like ours where PL occurs on top of a natural baseline performance at all angles.
Another advantage of our simple model is that gradient-based learning dynamics naturally finds solutions
qualitatively similar to the MP solution when learning rate is slow. This may provide a normative explanation
of why subjects typically require extensive training over a long time to reach asymptotic performance in PL
experiments after understanding the task(e.g., in [2, 3]).

Experimental Evidence and Predictions

Our finding that PL is driven by improved sensory coding is consistent with the observed PL-induced
changes to sensory representations in several electrophysiological experiments [41, 1, 2, 3, 4, 42, 5, 6, 43, 7, 8]
and functional imaging studies[44, 45, 46, 47] across different model systems and tasks. Some of these
studies reported representational changes that are closely related to behavioral improvements[6, 43, 7, 8],
consistent with our predictions. Furthermore, we predict that for a fine discrimination task, processing
between layers is approximately linear and thus all information present in an area is accessible to a linear
decoder, as reported by [6]. However, our theory is inconsistent with studies that found little to no neural
plasticity correlates of PL in sensory areas[48, 2, 11, 17]. Such inconsistency may arise from different task
conditions and analysis methods. First, while MP synaptic changes are stronger in early layers (Fig.4G),
changes to neuronal tuning properties are predicted to be more prominent in higher layers (Fig.6). This
is consistent with experiments reporting bigger changes in monkey V4 than those in V1 and V2 following
orientation discrimination PL[1, 2, 3, 4]. This may explain why some experiments failed to find significant
changes in early sensory areas[48, 2]. Second, our theory predicts that PL-induced changes to tuning curves
are localized near θtr and may cause some tuning curves to lose their pre-PL bell shapes. Thus, studies
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(e.g.,[48, 2]) that excluded non-bell-shaped neurons from analysis or fitted bell-shaped functions to tuning
curves may fail to detect these localized changes. Third, for motion direction discrimination in moving
random dot patterns[11, 17], the relevant primary sensory layer may be MT rather than neurons in V1 with
smaller receptive fields. Under this interpretation, changes in the readout layer from MT should be sufficient
to yield an optimal performance.

The types of changes to sensory representations predicted by MP learning are largely consistent with
experimental observations. At a single-cell level, MP learning causes localized sharpening of tuning curves
and thus amplifies signal strength, as observed in experiments[43, 7, 3, 1, 4, 41, 42]. In addition, PL is
predicted to decrease the number of neurons preferring θtr, as reported in [2, 3, 4]. On a population level,
MP learning decreased mean noise correlation (Fig.S9), consistent with findings from simultaneous recordings
of multiple units [5, 6, 7, 8]. We predict that mean firing rates of neurons responding to θtr will be unaffected
by learning, consistent with [5, 11, 46, 48, 42], while some others found increased[49, 50, 51, 45, 44, 3, 52, 53]
or decreased activation[2, 54]. While these inconsistencies may arise from differences in tasks and setups,
our theory indicates that increased/decreased activation does not play a causal role in PL[20, 6].

In terms of psychophysics, our theory predicts a rich pattern of cross-stimuli transfer. While PL transfers
to stimuli highly similar to θtr as expected, it causes performance for intermediate stimuli (“proximal”,
Fig.7) to drop below pre-PL levels. Indeed, some experiments report worse-than-baseline performance when
subjects are tested on untrained stimuli following PL[55, 56, 57]. In addition, PL transfers to stimuli further
away (“distal”) from θtr. A more systematic examination how observed cross-stimuli transfer depends on
stimulus similarity can further test our theory. In deriving our results, we have assumed a high-precision
scenario where both signal and noise are small. A sufficiently large signal (i.e., low precision) and/or noise
invalidate our assumption that a fixed subset of neurons are active throughout learning as well as during
responses to the trained stimuli. PL under such conditions likely involves a broader subset of neurons and
weights, potentially explaining why it leads to broader cross-stimuli transfer than high-precision PL does
[58].

Many predictions from our theory depend quantitatively on the parameters σs, σw, which represent,
respectively, input and weight selectivity. These parameters can be estimated indirectly by fitting experi-
mentally observed amplitude and distribution of tuning changes (Fig.6) as well as transfer patterns (Fig.7)
to our theory. The parameter σs can be varied by changing the width of the Gabor stimulus (Sec.M12). σw
can be estimated from tuning properties of synaptic inputs to V1 neurons(e.g.,[59, 60, 61]). By fitting input
tuning curves with different σw in our model to those measured from cat V1[59], we estimated σw in cat V1
to be in the range of of values shown here (roughly between between 0.7 and 1.3).

Finally, we mention several limitations of the present work. Our plasticity model does not include a
mechanism of unsupervised learning, namely, plasticity triggered by the mere exposure to the stimulus,
independent of task. Thus, task irrelevant phenomena observed in some PL studies[62, 63] are beyond
the scope of the present work. Additionally, it would be interesting to add to our architecture recurrent
connections within each layer, and to impose on our model units the constraints of being exclusively either
excitatory or inhibitory. We also focus on how to counter input noise with learning and do not consider
neuronal noise. Our scenario thus amounts to the high ”external noise contrast” regime in threshold vs.
contrast (TvC) analysis[64, 20], where input noise is the main factor limiting performance. Additional
uncorrelated noise in the last layer is straightforward to analyze (see Fig.8B above). More general neural
noise will be correlated by filtering with the feedforward and recurrent connections[29]. Studying MP learning
in the presence of such noise is delegated to future study.

In conclusion, while the hierarchical nature of sensory systems in the brain can be beneficial for learning
high-order categories such as objects, faces, and words, we show that a perceptual learning of fine discrimi-
nation tasks of low level features is challenged by the filtering of the signals through the multi-stage sensory
systems. Our theory predicts the patterns of PL-induced changes in synaptic connections as well as the
changes in neuronal responses throughout the deep sensory structure. Such changes overcome this filtering
and give rise to optimal performance after training.
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Methods

M1 Model and Task Setup

Our model of the sensory system consists of L layers of rectified linear neurons, connected with feedforward
weights. Input to the system comes from N input channels (the 0th layer). Neurons do not have inherent
noise; noise in their firing rates is entirely caused by noise in the input.

M1.1 Input Layer

The ith input channel has a preferred stimulus θi = i
N 2π. Then the noise-averaged activities of input

channels are generated with

f0
i (θ) = Z−1

s exp

(
cos(θi − θ)− 1

σ2
s

)
, (M.1)

where Zs is chosen such that ‖f0(θ)‖ =
√
N . The input vector fed to the network is x0(θ) = f0(θ) + ε0,

where ε0 ∼ N (0, σ2I). Tuning and noise properties of input channels are not affected by learning.

The perceptual task consists of discrimination of two close-by stimuli, θ± = θtr ± δθ. At every trial, the
network is presented with either a sample of x0(θ+) or x0(θ−). Since the noise is Gaussian, the task can
be performed optimally by a linear discriminator reading out directly from the input channels and using
weights parallel to the signal,

s =
(
f0(θ+)− f0(θ−)

)
/‖f0(θ+)− f0(θ−)‖. (M.2)

To create an O(1) signal-to-noise ratio in the input layer, we choose σ2 ∼ O(1) and δθ ∼ O(N−1/2). The
exact values are given in Table M10.

To provide intuition for different values of σs, we present below some examples of 2D Gabor stimuli that
are equivalent (see the procedure in Sec.M12) to different values of σs (Fig.M1A,B).

st
im

ul
us

fil
te

r

σs =0.2
σw=0.8

σs =0.2
σw=0.8

σs =1.2
σw=0.1

σs =1.2
σw=0.1

A B

C D

Figure M1: 2D equivalent Gabor stimuli and filters for different values of σs, σw. Both the stimuli and the
filters can be rotated to correspond to different stimuli/preferred stimuli. (A,B) Example stimuli. Warmer
color indicates higher intensity at that location. (C,D) Example filters. Warmer color indicates a larger filter
weight for stimuli at that location.
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M1.2 Model Architecture

Our model of the sensory system is a feedforward network with L hidden layers and a linear readout from
the top layer. Let xl(θ) to denote the noisy population response vector of neurons in layer l, and f l(θ) its
average over noise. {xl(θ)} are recursively given by

l = 1, 2, ..., L : xl(θ) = Φ(W lxl−1(θ)),

where Φ(·) is an element-wise activation function. The linear readout a produces a scalar network output
from activity in the last layer

r(θ) = aTxL(θ).

Note that, by default we assume the number of input channels and the number of neurons in each layer of
the network to be the same, denoted as N . In cases where we fix one and vary the other, we use Ninput and
Nhidden to refer to them, respectively.

M1.3 Pre-PL Weights

Pre-PL weights {W l}l=1,2,...,L are generated with

W l
ij,pre = Z−1

w exp

(
cos(θi − θj)− 1

σ2
w

)
+ bw, (M.3)

where Zw is chosen such that each row of W l
pre has norm 1/

√
N (i.e. each weight is O(N−1); when Nhidden 6=

Ninput, N takes the value of the width of layer l − 1). This normalization ensures that the noise-averaged
input to any hidden neuron is O(1). After this normalization, bw is chosen such that each row sums to 0.
This causes weights between neurons with very different preferred stimuli to be negative (i.e., inhibitory).
2D receptive field filters equivalent to different σw values are shown in Fig.M1C,D (see the procedure in
Sec.M12).

The pre-PL readout apre is optimized for the discrimination task around θtr and pre-PL weights. As
discussed above, the task can be performed optimally by a linear readout from the input with weights s.
We initialize the pre-PL readout such that it minimizes the loss function (Eq.M.4) prior to PL (see the
expression in Sec.M9).

M1.4 Model of Learning

We model perceptual learning as the optimization of W 1,W 2, ...,WL,a over the loss function

E = 〈(r(θ)− sTx0(θ))2〉θ=θtr±δθ,ε0 (M.4)

with gradient descent dynamics. Assuming PL to be slow, we model learning as “batch gradient descent”
where each update to the weights is computed using the average loss function (i.e., E is averaged over stimuli
and noise). The updates to the weights are given by

Θ = W 1,W 2, ...,WL,a :
dΘ

dt
= −η dE

dΘ
. (M.5)

The default value of η used in simulations is given in Table M10.

M2 Approximating Nonlinear Networks with Effective Linear Net-
works

In this section, we describe our approach to approximating nonlinear feedforward networks with effective
linear networks during PL. We show that, for the setup described in Sec.M1,
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• When the network is wide (large Ninput, Nhidden), the linear Fisher information with respect to the
stimulus θ in any layer of the nonlinear network can be approximately computed from an equivalent
deep linear network.

• When the nonlinearity is the rectified linear function, every weight matrix in the equivalent deep linear
network (the “effective weight matrix”) is a submatrix of its counterpart in the nonlinear network.
Note that the effective weights are different for discrimination around different stimuli.

• When the network is wide, the identity of the submatrix is fixed during gradient descent learning, as
described in Sec.M1.4. That is to say, the effective weight matrix is always the same ”part” of the full
weight matrix in the nonlinear network throughout learning.

M2.1 Equivalent Linear Networks

When the network is wide, signal-induced and noise-induced fluctuation in the input to any neuron in the
network is small (both scale as N−1/2). We can thus expand activities of neurons around their average
inputs (using � to denote the element-wise product)

xl(θ±) = Φ
(
W lxl−1(θ±)

)
≈ Φ

(
W lf l−1(θtr)

)
+ Φ′

(
W lf l−1(θtr)

)
�
[
±δθW ldθf

l−1 +W lεl−1
]
, (M.6)

where dθf
l =

[f l(θ+)−f l(θ−)]
2δθ and εl = 1

2

[
xl(θ+) + xl(θ−)− f l(θ+)− f l(θ−)

]
are the signal- and noise-

induced fluctuation in layer l, respectively. In the case of rectified linear units (ReLUs), every element of
Φ′ is 1 if its argument is positive and zero otherwise. For the ith neuron in layer l, we call it active if
[W lf l−1]i > 0 and inactive otherwise. In the limit of large N , inactive neurons have zero activity during
typical single trials in the task. Furthermore, activities of active neurons are linear functions of activities of
neurons in the previous layer. These linear functions are defined by corresponding effective weight matrices.
Every effective weight matrix, W l

eff, is a submatrix of W l, given by

l ≥ 2 :
{(
W l

eff

)
ij

}
= {W l

ij

∣∣∣i, j : [W lf l−1(θtr)]i > 0, [W l−1f l−2(θtr)]j > 0} (M.7){(
W 1

eff

)
ij

}
= {W 1

ij

∣∣∣i : [W 1f0(θtr)]i > 0, ; j = 1, 2, ..., N}. (M.8)

The dependency of these equations on θtr highlights the fact that for the same nonlinear network, its effective
linear network is different for different stimuli. We also note that effective weights for nonlinear networks at
the limit of small fluctuations in inputs to individual neurons have been previously introduced in [29].

M2.2 The Identity of Effective Weights is Fixed During Learning

In the previous subsection, we showed that the identity of effective weights depends on element-wise signs
of the vector W lf l−1(θtr). During learning, W l as well as the upstream weights may be altered, causing
elements of this vector to change sign. If this happens, the identity of effective weights would shift during
learning. However, we found that under the learning dynamics described in Sec.M1.4, W lf l−1(θtr) is
approximately stationary over the course of learning (assuming the network is wide; the derivations are
given in Sec.M7). Thus, throughout PL, the identity of active/inactive neurons in any layer is constant.
Consequently, the identity of effective weights is also fixed. To numerically verify the validity of these
results, we computed how much f l(θtr) changes over the course of PL in three-layer networks of different
widths(Fig.M2). Indeed, changes are negligible for wide networks.

Importantly, MP plasticity(see Sec. M4) is derived under the assumption that MP learning does not
alter the identity of effective weights. It can be verified that MP plasticity does not alter W lf l−1(θtr) and
is thus self-consistent with the assumption.

For brevity, we hereafter use W 1, ...,WL,a to refer to W 1
eff, ...,W

L
eff,aeff, respectively.
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Figure M2: PL-induced changes to the noise-averaged response to the trained stimulus (f l(θtr)) as a function
of network width. Width of the network is controlled by adjusting the number of input channels (Ninput)
and the number of intermediate neurons (Nhidden) simultaneously. Parameters: σs = 0.2, σw = 0.8, L = 3,
learning rate = 10−3.

M3 Linear Fisher Information Analysis

M3.1 Loss of Fisher Information in the Effective Linear Network

Fig.2A (L=1) and Fig.S1 (for higher L) show the loss of Fisher Information in the deep network before
learning. To explain this phenomenon, we first define the Nhidden ×Ninput matrix

P l ≡W lW l−1...W 1. (M.9)

In the effective linear network, we can write the signal and noise covariance in each layer in terms of P l as,

Σl = σ2P lP lT (M.10)

dθf
l = P ldθf

0. (M.11)

Assuming P l to be of rank K (see Fig.S2A,B,E,F), we write it in terms of its truncated singular value
decomposition, P l = AlΛlBl, where Al ∈ RNhidden×K has orthonormal columns, Bl ∈ RK×Ninput has
orthonormal rows, and Λl ∈ RK×K is a diagonal matrix with the nonzero eigenvalues. Then,

Jl
J0

= ‖Bls‖2. (M.12)

Bls is s projected onto K orthonormal vectors. Before learning s is not fully embedded in the subspace
spanned by these vectors (Fig.S2C,E), hence Jl/J0 < 1. After learning, the rank of the post-PL Bl does not
drastically change. However, its orthogonal vectors has been rotated so that the signal is fully spanned by
them, recovering the full information, J0 (Fig.S2D, H).

When the structure of W l is smooth, both K and the orientation of the orthonormal vectors are not
dependent on Ninput, Nhidden. Thus, Jl/J0, does not depend on network width. Since J0 is linear in Ninput,
Jl is also linear in Ninput, which we show for the pre-PL network in Fig.S8 and for the post-PL network in
Fig.8A.

M3.2 Information Scaling in the Presence of Output Noise

In this subsection, we compute the linear Fisher information in the top layer L in the scenario where i.i.d.
Gaussian noise with variance σ2

output is added to the activity of layer L neurons. In particular, we assume
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that the network has completed PL and thus performs optimally, before the output noise is injected. It is
given by

JL = dθf
L(θ)T (σ2PLPLT + σ2

outputI)−1dθf
L(θ). (M.13)

We assume both Ninput and Nhidden to be large enough such that the approximations introduced in Sec.M2
hold. Writing PL in terms of its SVD (see the previous subsection) and dθf

L(θ) = PLdθf
0(θ),

JL =
K∑
i=1

ΛLii
2
[BLdθf

0(θ)]2i

σ2
output + σ2ΛLii

2 . (M.14)

In this expression,
∑k
i ΛLii

2
= ‖PL‖2 ∼ O(Nhidden/Ninput). Since K does not depend on Ninput nor Nhidden,

ΛLii
2 ∼ O(Nhidden/Ninput). On the other hand,

∑K
i [BLdθf

0(θ)]2i = ‖BLs‖2‖dθf0(θ)‖2. ‖BLs‖2 does not
scale with network width, as we have argued in the previous subsection; ‖dθf0(θ)‖2 ∼ O(Ninput). It follows
that [BLdθf

0(θ)]2i ∼ O(Ninput).

The scaling relations explain the curves in Fig.8B. When Nhidden is small, the denominator is dominated
by σ2

output. When Nhidden is increased beyond approximately Ninputσ
2
output/σ

2, the denominator is dominated
by the input noise term. Thus, information saturates with growing Nhidden and approaches information
without output noise (J0).

M4 Minimum Perturbation (MP) Learning

MP changes to weights for PL are defined as those with minimal L2 norms that would still minimize the loss
function (Eq.M.4). They are the solution to the constrained optimization problem

min
∆W 1,...,∆WL,∆a

‖∆W 1‖2 + ...+ ‖∆WL‖2 + ‖∆a‖2

subject to

E(W 1
pre + ∆W 1, ...,WL

pre + ∆WL,apre + ∆a) = 0. (M.15)

For networks of any depth, the solutions have the general structure

∆W l = (W l+1
post

T · · ·WL
post

T
apost)(W

l−1
post · · ·W 1

postλ)T . (M.16)

where λ ∈ RNinput is a Lagrange multiplier vector that enforces the constraint of zero error. As shown here,
changes to every weight matrix are confined to a rank-1 matrix. The left vector is a linear readout from
the lth layer after PL; the right vector is the effective signal, λ, propagated through the post-PL upstream
layers.

The full solution needs to be obtained by solving a system of self-consistent equations. We present these
equations and further details for the cases of L = 1, 2, 3 in Sec.M10.

M5 Is signal amplification required for PL?

M5.1 Minimal Signal Amplitude in the Last Layer Required for PL

Both MP learning and gradient-descent learning lead to negligible changes to the readout vector a. Assuming
the readout to be fixed, we ask whether it is possible to complete PL without increasing the signal amplitude
in last-layer representations by computing the minimal signal amplitude in the last layer required for PL.

For PL, the necessary and sufficient condition in Eq.3 translates to analogous conditions on the post PL
value of the product matrix PL, i.e., PL = usT +P⊥, P⊥s = 0,P T

⊥a = 0. In addition, in order to minimize
the loss function(Eq.M.4), uTa = 1. The squared signal amplitude in the last layer is given by

‖dθfL
∣∣
θtr
‖2 = ‖PLdθf

0
∣∣
θtr
‖2 = ‖u‖2‖dθf0

∣∣
θtr
‖2+‖P⊥dθf0‖2. (M.17)

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.05.463260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463260
http://creativecommons.org/licenses/by/4.0/


This is minimized (under the constraint that uTa = 1) by u = ‖a‖−2a and P⊥ = 0. Thus, the minimal
post-PL signal amplitude is

min‖dθfL
∣∣
θtr
‖ = ‖a‖−1‖dθf0

∣∣
θtr
‖. (M.18)

As shown in Fig.S6A,B, the minimal post-PL signal amplitude is larger than the pre-PL one across parame-
ters. Thus, signal amplification is indeed necessary for PL, assuming a fixed a. We also note that the signal
amplitude after MP learning is close to the minimal level.

M5.2 PL with An Amplified Readout Vector

A reasonable extension of our model is to consider the case where the direction of the readout vector stays
the same but not amplitude is increased, namely (apost = (1+c)apre), b We computed MP changes to weight
matrices for several values of c (for networks with L = 2) and find that if c is sufficiently large, MP learning
may even lead to a decreased signal amplitude (Fig.S6C).

M5.3 Learning Under a Soft MP Constraint

Compared to a non-MP post-PL solution to PL, does MP learning lead to smaller signal amplitudes? We
consider a ”soft” MP constraint where changes to the weights fluctuate in the space of solutions around MP
changes. Concretely, for networks with one-layer and a fixed a, we sample solution W 1 with

W 1
soft MP = W 1

pre + ∆W 1
MP +

(
I− aaT

‖a‖2

)
E, (M.19)

where Eij ∼ N (0, σ2
soft MP/N) and ∆W 1

MP = a
‖a‖2 s

T − aaTW 1
pre

‖a‖2 is the MP changes to W 1 (derived under

Sec.M10).

Every sampledW 1 solves PL. We computed the post-PL signal amplitude for various σ2
soft MP. σ2

soft MP =
0 is the MP changes (Fig.S6D). We found that MP learning does indeed lead to a smaller signal amplitude
than the average ”soft” MP learning.

M6 Cross-Task Transfer Test

To test whether perceptual learning on the θ discrimination task transfers to a different task, we devised a σs
discrimination task. In this task, the network has to discriminate between two close-by values of σs, σs,tr±δσs
with the same θ. We ensure that the two tasks have the same difficulty by choosing values of δσs such that
‖δθdθf0‖ = 1

2‖f
0(θtr;σs + δσs) − f0(θtr, σs − δσs)‖. For typical network parameters that we considered,

the performance on σs discrimination is suboptimal prior to training, leaving room for learning. Finally,
we assume that the network uses two separate linear readouts from the last layer, a for θ discrimination
and a′ for σs discrimination. Importantly, the averaged stimuli in the σs discrimination task and the θ
discrimination task are both f0(θtr).

To test for the presence of cross-task transfer, we trained the network on θ discrimination with gradient
descent. At various points during this training (which does not affect a′), we paused and optimized a′ for
σs discrimination under current weights and computed its performance (Fig.S7).

Our results suggest that PL for θ discrimination does not transfer to σs discrimination. This does not
suggest that cross-task transfer cannot occur but merely provides an example where it does not occur despite
extensive representational changes.
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Extended Methods

M7 Stationarity of Identity of Effective Weights

In this section, we show that the identity of effective weights, introduced in Sec.M2, is approximately
stationary during gradient-based PL(Sec.M1.4). For brevity, denote

hli(θ±) = [W lxl−1(θ±)]i, (M.20)

and write f0 = f0. With this, input to the network can be written as

x0(θ±) = f0 ± δθdθf0 + ε0. (M.21)

M7.1 Networks With One Hidden Layer

In this case, output of the network is given by

r± ≡
∑
i

aiφ
(
W 1

i
T
x0(θ±)

)
, (M.22)

where W 1
i is the ith row of W 1. Rewrite Eq.M.4 as

E(W 1,a) =
1

2
〈(r+ − r̂+)2 + (r− − r̂−)2〉, (M.23)

where r̂± = sT (f0 ± δθdθf0 + ε0) and 〈·〉 denotes average over noise.

Gradient for W 1
i is given by〈

∇W 1
i
E
〉

=
1

2

〈
∇W 1

i
[(r+ − r̂+)2] +∇W 1

i
[(r− − r̂−])2

〉
. (M.24)

For brevity, we only examine the first term (analysis of the second term is very similar).

1

2

〈
∇W 1

i
(r+ − r̂+)

2
〉

=

〈
(r+ − r̂+)

(
dr+

dx1
i (θ+)

)
φ′(h1

i (θ+))x0(θ+)

〉
(M.25)

=ai
〈
(r+ − r̂+)φ′(h1

i (θ+))x0(θ+)
〉

(M.26)

=ai
〈
(r+ − r̂+)φ′(h1

i (θ+))
〉
f0 + ai

〈
(r+ − r̂+)φ′(h1

i (θ+))
〉
δθdθf

0

+ ai
〈
(r+ − r̂+)φ′(h1

i (θ+))ε0
〉
. (M.27)

Applying Stein’s lemma to the last term yields

1

2
〈∇W 1

i
(r+ − r̂+)2〉 =ai

〈
(r+ − r̂+)φ′(h1

i (θ+))
〉
f0 + ai

〈
(r+ − r̂+)φ′(h1

i (θ+))
〉
δθdθf

0

+ aiσ
2
〈
φ′(h1

i (θ+))∇ε0(r+ − r̂+)
〉

+ aiσ
2
〈
(r+ − r̂+)φ′′(h1

i (θ+))
〉
W 1

i . (M.28)

Every 〈·〉 contains the product of two random variables, which can be written as 〈XY 〉 = 〈X〉〈Y 〉+cov(X,Y ).
At large N , it can be verified that each is dominated by 〈X〉〈Y 〉. Eliminating covariance terms and assuming
that 〈r+ − r̂+〉 = −〈r− − r̂−〉 throughout training, Eq.M.24 becomes

〈∇W 1
i
E〉 ≈ai〈r+ − r̂+〉

〈
φ′(h1

i (θ+))− φ′(h1
i (θ−))

〉
f0 + ai〈r+ − r̂+〉

〈
φ′(h1

i (θ+)) + φ′(h1
i (θ−))

〉
δθdθf

0

+ aiσ
2
〈
φ′(h1

i (θ+)) + φ′(h1
i (θ−))

〉
(V − s) + aiσ

2〈r+ − r̂+〉
〈
φ′′(h1

i (θ+))− φ′′(h1
i (θ−))

〉
W 1

i ,
(M.29)
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where V is defined in Eq.2. Under the linear approximations, we assume
〈
φ′(hli(θ+)) − φ′(hli(θ−))

〉
= 0.

Thus,
〈∇W 1

i
E〉 ≈ 2ai〈r+ − r̂+〉

〈
φ′(hli(θ+))

〉
δθdθf

0 + 2aiσ
2
〈
φ′(hli(θ+))

〉
(V − s) . (M.30)

V is perpendicular to f0 because otherwise the network would be a biased discriminator. In addition,
dθf

0 ⊥ f0. Thus, 〈∇W 1
i
E〉 ⊥ f0 and W 1f0 is stationary in time during learning.

M7.2 Generalization to Deeper Networks

To show that the averaged input is stationary in deeper networks, we first derive a general expression for the

dynamics of W l during training in a deep network. To facilitate discussion, define W̃ l
eff to be the padded

effective matrix of dimension N ×N defined as

W̃ l
effij

=

{
W l
ij if W l

ij ∈W l
eff

0 otherwise.
(M.31)

Define P̃ l ≡ W̃ l
eff

˜W l−1
eff ...W̃ 1

eff and Σ̃ ≡ σ2P̃ lP̃ l
T

. Dynamics for W l can be derived from

〈∇W l
i
(r+ − r̂+)2〉 =

〈 dr+

dxli(θ+)
(r+ − r̂+)φ′(hli(θ+))

〉
f l−1 +

〈 dr+

dxli(θ+)
(r+ − r̂+)φ′(hli(θ+))

〉
δθdθf

l−1

+
〈 dr+

dxli(θ+)
(r+ − r̂+)φ′(hli(θ+))εl−1

〉
, (M.32)

where dr+
dxl

i(θ+)
is a random variable with O(N−1/2) mean and fluctuation. Applying Stein’s lemma to the

last term and eliminating non-leading order terms to get (let ãli =
〈

dr+
dxl

i(θ+)

〉
)

〈∇W l
i
(r+ − r̂+)2〉 ≈ãli〈r+ − r̂+〉〈φ′(hli(θ+))〉f l−1

+ ãli〈r+ − r̂+〉〈φ′(hli(θ+))〉δθdθf l−1

+ ãli〈φ′(hli(θ+))〉
(

˜Σl−1ãl−1 − σ2 ˜P l−1s
)
. (M.33)

Combine 〈∇W l
i
(r+ − r̂+)2〉 and 〈∇W l

i
(r− − r̂−)2〉 to get

〈∇W l
i
E〉 = 2ãli

〈
φ′(hli(θ+))

〉 [
〈r+ − r̂+〉δθdθf l−1 + ˜Σl−1ã

l−1 − σ2 ˜P l−1s
]
. (M.34)

Note that under mean-field approximations, ãl−1 = (W̃ l
eff)T ( ˜W l+1

eff )T ...(W̃L
eff)Ta. We have

〈∇W l
i
E〉 = 2ãli

〈
φ′(hli(θ+))

〉 [
〈r+ − r̂+〉δθdθf l−1 + σ2P̃ l−1V − σ2P̃ l−1s

]
= 2ãli

〈
φ′(hli(θ+))

〉
P̃ l−1

[
〈r+ − r̂+〉δθdθf0 + σ2V − σ2s

]
. (M.35)

We proceed to show that every component of 〈∇W l
i
E〉 is perpendicular to f l−1.

First, define a notion of parity for vectors. For an N -dimensional vector v, it is odd if for all j, vN/2−j =
−vN/2+j ; we call it even if vN/2−j = vN/2+j . Without loss of generality, we consider the scenario where the
input neuron preferring the trained stimulus has index N/2. It is easy to see that dθf

0 is an odd vector
while f0 is an even vector. Furthermore, any odd vector is perpendicular to any even vector.

We make the ansatz that throughout training, V is an odd vector. If V was not odd (that is, it is
even or the sum of even and odd vectors), its even component would be perpendicular to the signal dθf

0.
This component would therefore be suboptimal because it would contribute to noise without contributing
to signal. Unlike other sources of suboptimality discussed in the main text, this component can easy be
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removed by making a an odd vector. Since we optimize a before learning, this component does not exist at
the beginning of learning.

Since pre-PL weight matrices are circulant, it is easy to verify that they have the following property: if
v is an odd/even vector, then W lv and (W l)Tv are also odd/even. Further, it can be verified that pre-PL
effective weight matrices have the same property. We say that these matrices preserve vector parity. Product
of matrices preserving vector parity preserves parity itself.

We now show that throughout learning, weight matrices and effective matrices preserve vector parity.
Assume that at time t, weight matrices still preserve vector parity. Note that the gradient is a rank-1 matrix.
The right vector of the gradient is an odd vector, since dθf

0,V , s are all odd vectors, and the product matrix
preserves parity. The left vector, which can be written as the element-wise product between an odd vector

ãl and an even vector
〈
φ′(hl(θ+))

〉
, is an odd vector. Therefore, for a small τ , this matrix at time t+ τ can

be written as
W l

t+τ = W l
t + τo1o

T
2 , (M.36)

where o1,2 are odd vectors. This new matrix will again preserve vector parity since (letting o denote any
odd vector)

W l
t+τo = W l

to+ τo1o
T
2 o, (M.37)

is a sum of two odd vectors and therefore still an odd vector and (letting e denote any even vector)

W l
t+τe = W l

te+ τo1o
T
2 e = W l

te, (M.38)

which is even. Since weight matrices preserve parity at initialization, we can show by induction that they
do so throughout learning.

We now return to Eq.M.35. Since weight matrices at all times preserve vector parity, the mean response

in layer l − 1, f l−1 = ˜W l−1
eff

˜W l−2
eff ...W̃ 1

efff
0 is always even.

In addition, 〈∇W l
i
E〉 is always odd because P̃ l−1 always preserve parity. Therefore, 〈∇W l

i
E〉 is always

perpendicular to f l−1(θtr).

For brevity, hereafter we use W 1, ...,WL,a to refer to W 1
eff,post, ...,W

L
eff,post,aeff,post, respec-

tively; we use W 1
0 , ...,W

L
0 ,a0 to refer to W 1

eff,pre, ...,W
L
eff,pre,aeff,pre, respectively.

M8 The Space of Solutions

In this section, we show that all W 1 that solves the perceptual task satisfy the condition in Eq.3 and vice
versa. Formally, let ã = aTWLWL−1...W 2. We claim

W 1T ã = s ⇐⇒ W 1 = usT +W⊥, W⊥s = 0, W T
⊥ ã = 0, uT ã = 1. (M.39)

Proof. Let W 1 =
∑
i λiαiβ

T
i be its singular value decomposition. Then let β̂i = βi − γis s.t. β̂i ⊥ s

and α̂i = αi − εiã s.t. α̂i ⊥ ã. We have

W 1 =
∑
i

λiα̂iβ̂i
T

+
∑
i

λiγiα̂is
T +

∑
i

λiγiεiãs
T +

∑
i

λiεiãβ̂i
T
. (M.40)

In order to satisfy W 1T ã = s, the last term must be zero. Combine the second and third terms,

W 1 =
∑
i

λiα̂iβ̂i
T

+
∑
i

λiγiαis
T . (M.41)

Let u ≡
∑
i λiγiαi. To satisfy the constraint, it must have uT ã = 1. Also let W⊥ ≡

∑
i λiα̂iβ̂i

T
. It can be

verified that W⊥s = 0,W⊥ã = 0.
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M9 Closed-Form Initialization of Readout Weights

Under the linear approximations, the optimization problem in Eq.M.4 can be solved in closed-form. We can
express the optimal a0 as

a0 = 〈PLx0(θ)x0(θ)TPLT 〉†θ=θ±,ε0P
L〈x0(θ)x0(θ)T 〉θ=θ±,ε0s, (M.42)

where PL is defined in Sec.M3.1. This can be written more explicitly in term of the truncated singular value
decomposition of PL = ALΛLBL (see Sec.M3.1) as

a0 =
1 + SNR

1 + SNR/‖BLs‖2
ALΛL−1

BLs, (M.43)

where SNR = (δθ)2‖dθf0‖2/σ2 is the input signal-to-noise ratio, which is set to 1 in simulations (see
Sec.M11).

M10 Derivation of Minimum Perturbation (MP) Modifications

MP modifications are solutions to the constrained optimization problem posed in Eq.M.15. ∆W l = W l−W0

and similarly for ∆a. We hereby provide solutions for L = 1, 2, 3.

M10.1 L=1

Define the Lagrangian

L = ‖∆W 1‖2 + ‖∆a‖2 − λT
[(

∆W 1 +W 1
0

)T
(∆a+ a0)− s

]
, (M.44)

where λ is a vector of N Lagrange multipliers. Extremizing the Lagrangian w.r.t. ∆W and ∆a yields

∆W 1 = (∆a+ a0)λT (M.45)

∆a =
(
∆W 1 +W 1

0

)T
λ. (M.46)

Solve for λ to get

λ =
[
(1− ‖λ‖2)−1W 1

0
T
W 1

0 + ‖∆a+ a0‖2I
]−1 [

s− (1− ‖λ‖2)−1W 1
0
T
a0

]
, (M.47)

where I is the N -dimensional identity matrix. Defining scalar order parameters

α = (1− ‖λ‖2), β = ‖∆a+ a0‖2, (M.48)

we have

λ =
[
α−1W 1

0
T
W 1

0 + βI
]−1 [

s− α−1W 1
0
T
a0

]
. (M.49)

This expression can be plugged back into definitions of α, β to obtain two self-consistent equations for α, β.
Values of the order parameters can then be solved numerically, yielding α∗, β∗. Plugging these back into
expressions for ∆a,∆W 1 gives the solution.

Assuming fixed a If we assume a fixed a, the MP ∆W 1 can be given in closed form as

∆W 1 =
a0

‖a0‖2
sT − a0a

T
0W

1
0

‖a0‖2
. (M.50)
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M10.2 L=2

Since for L = 1, 2, 3, simulations suggest that ∆a is neglible, we assume it to be zero for calculating solutions
for L = 2, 3. Define the Lagrangian as

L = ‖∆W 1‖2 + ‖∆W 2‖2 − λT
[(

∆W 1 +W 1
0

)T (
∆W 2 +W 2

0

)T
a0 − s

]
. (M.51)

Extremizing yields
∆W 1 = (∆W 2 +W 2

0 )Ta0λ
T (M.52)

∆W 2 = a0λ
T (∆W 1 +W 1

0 )T (M.53)

Solving for ∆W 1,∆W 2 yields

∆W 1 = (1− ‖a0‖2‖λ‖2)−1
[
W 2

0
T
a0 + ‖a0‖2W 1

0 λ
]
λT (M.54)

∆W 2 = (1− ‖a0‖2‖λ‖2)−1a0

[
‖λ‖2W 2

0
T
a0 +W 1

0 λ
]T
. (M.55)

Define scalar order parameters

u1 =

∥∥∥∥ 1

1− ‖a0‖2v1

[
W 2

0
T
a0 + ‖a0‖W 1

0 λ
]∥∥∥∥2

(M.56)

v1 = ‖λ‖2. (M.57)

Plugging expressions for ∆W 1,∆W 2 into the constraint equation and solve for λ to get

λ =
[
‖a0‖2W 1

0
T
W 1

0 + (1− ‖a0‖2v1)u1I
]−1 [

(1− ‖a0‖2v1)s− (W 2
0W

1
0 )Ta0

]
. (M.58)

Plugging this expression back into Eqs.M.57 yields two self-consistent equations of u1, v1. Other variables
in these equations are all stationary in time. Therefore, one can numerically solve for u1, v1 to obtain
expressions for ∆W 1,∆W 2.

M10.3 L=3

Setting up the Lagrangian and extremizing the variables to get

∆W 1 = (∆W 2 +W 2
0 )T (∆W 3 +W 3

0 )Ta0λ
T (M.59)

∆W 2 = (∆W 3 +W 3
0 )Ta0λ

T (∆W 1 +W 1
0 )T (M.60)

∆W 3 = a0λ
T (∆W 1 +W 1

0 )T (∆W 2 +W 2
0 )T (M.61)

Solving these equations for ∆W l gives (u1,2, v1,2 being order parameters defined below)

∆W 1 = (1− v1u2)−1
[
W 2

0
T
U + u2W

1
0 λ
]
λT (M.62)

∆W 2 = (1− v1u2)−1U
[
v1U

TW 2
0 + λTW 1

0
T
]

(M.63)

∆W 3 = v2a0U
T + (1− v1u2)−1a0

[
v1U

TW 2
0 + λTW 1

0
T
]
W 2

0
T
, (M.64)

where

U = Q−1
[
W 3

0
T
a0 + ‖a0‖2(1− v1u2)−1W 2

0W
1
0 λ
]

(M.65)

λ =
[
u1I + (1− v1u2)−1u2W

1
0
T
W 1

0 + ‖a0‖2(1− v1u2)−2(W 2
0W

1
0 )TQ−1W 2

0W
1
0

]−1

[
s− (1− v1u2)−1(W 2

0W
1
0 )TQ−1(W 3

0 )Ta0

]
, (M.66)
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and
Q = (1− ‖a0‖2v2)I− ‖a0‖2(1− v1u2)−1v1W

2
0
T
W 2

0 . (M.67)

We have defined four scalar order parameters to be solved numerically.

u1 = ‖(1− v1u2)−1[W 2
0
T
U + u2W

1
0 λ]‖2 (M.68)

u2 = ‖U‖2 (M.69)

v1 = ‖λ‖2 (M.70)

v2 = ‖(1− v1u2)−1[W 1
0 λ+ v1W

2
0
T
U ]‖2. (M.71)

M10.4 Numerical Solvers of Self-Consistent Equations

In each case discussed above, we seek to solve k nonlinear equations of k scalar variables numerically. There
are many algorithms for this purpose. In general, convergence to the true solution is not guaranteed and
depends on initial estimates. To obtain good initial estimates, we used a two-step procedure to solve the
equations for each set of network parameters.

In the first step, we used an iterative algorithm defined in Algorithm1.

Algorithm 1: Algorithm for solving self-consistent equations.

Initialize estimates for order parameters, α0, β0 ;
i = 0 ;
Initialize update factor γ ;
Initialize convergence threshold ε ;
while (αi+1 − αi)2 > ε or (βi+1 − βi)2 > ε do

αi+1, βi+1 = γ ∗ pseudo-self-consistent equations(αi, βi) + (1− γ) ∗ (αi, βi);
i = i+ 1 ;
if i > MaxIteration then

break
end

end

To aid convergence, we replaced all matrix inversions in the equations with pseudo-inverses (specifically,
we only keep the 4 leading singular values and inverse them). These equations are referred to as ”pseudo-
self-consistent equations”. We first used trial-and-error to find good initial estimates for a specific set of
network parameters (e.g., σs = 0.1, σw = 1) and ran the algorithm until convergence. We then considered
another pair of parameters that are close to the previous pair (e.g., σs = 0.125, σw = 1), using final estimates
for σs = 0.1, σw = 1 as initial estimates for the new pair. We repeated this procedure recursively to cover
all network parameter regimes of interest. After this step, we obtain solutions to the pseudo-self-consistent
equations.

For the second step, we used scipy.optimize.fsolve, which implements a quasi-Newton method. For
each set of network parameters, we used solutions to the pseudo-self-consistent equations as initial estimates
for solutions to the true self-consistent equations. Upon convergence, we obtain solutions to the true self-
consistent equations.

M11 Simulation Details

Gradient descent with minibatches was used for all weights in the network (W l and a), implemented with
pytorch. The algorithm is terminated after the error estimated with 50, 000 examples is less or equal to
the optimal level for more than 5 times. Default hyperparameters used in simulations are tabulated in
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Variable Value Comments

Number of neurons per layer (N) 1000 All layers have the same number.
Learning rate (η) 0.001

Input noise variance (σ2) 0.01
δθ (in rads) ≈ 0.0009 Adjusted so that signal-to-noise ratio in input is 1.

Minibatch size 50

Table M10: Default Simulation Hyperparameters.

Table M10. We chose relatively small δθ and σ2 so that the large N effects are already apparent with N =
1000, conserving computational resources. Python codes are available at https://github.com/hzshan/

perceptual_learning.

M12 2D Gabor Equivalents of Stimuli and Filters in Our Model

In our model, the input vector has a 1D structure with width σs and the filter used by each hidden neuron
is also 1D with width σw. Here, we describe the procedure to find their 2D equivalents. We consider 2D
stimuli and 2D filters as given in [20]. The stimulus (for orientation θstim) is given by

Gs(i, j, θstim) ∝ exp

(
− C2

⊥
2σ2
⊥,s
−

C2
‖

2σ2
‖,s

)
cos(2πKsC⊥) (M.72)

C⊥ = i cos θstim + j sin θstim C‖ = j cos θstim − i sin θstim, (M.73)

where (i, j) gives the coordinates in 2D, Ks is the spatial frequency, σ2
⊥,s controls the width perpendicular

to the orientation θstim and σ2
‖,s controls the width parallel to the orientation. Analogously, the filter (for

preferred stimulus θpref) is given by

Gf (i, j, θpref) ∝ exp

(
− C2

⊥
2σ2
⊥,f
−

C2
‖

2σ2
‖,f

)
cos(2πKxC⊥) (M.74)

C⊥ = i cos θpref + j sin θpref C‖ = j cos θpref − i sin θpref. (M.75)

For both the stimulus and the filter, we used i, j ∈ [−0.5, 0.5]. Note that for each stimulus and each filter,
one can generate an input tuning curve by fixing θpref and rotating the stimulus.

We first found a 2D Gabor filter equivalent to a value of σw, we fixed a stimulus with C⊥,s � 1, Ks = 0.75,
and C‖,s = 0.4 and filter parameters σ‖,f = 0.5. We then adjusted σ⊥,f while fixing K = 0.3/σ⊥,f until the
input tuning curve had the same width as each row of the weight matrix with σw.

To find the 2D Gabor stimulus equivalent to a value of σs, we used a filter created as described above
(which depends on σw). We then adjusted σ⊥,s until the input tuning curve had the same width as the input
tuning curve with 1D stimuli/weights corresponding to this pair of σs, σw. bake

M13 Circulant Solutions to Perceptual Learning

For networks with one layer and a fixed a, we seek a circulant W 1
circ such that W 1

circ
T
a = s. Note that all

circulant matrices can be diagonalized as W 1
circ = FΛWF

T , where eigenvectors in F are the Fourier bases.
We then use

(ΛW )ii =
(F Ts)i

(F Ta)i + εcirc
, (M.76)
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where the regularizer εcirc is chosen to be as large as possible without significantly increasing ‖W 1
circ

T
a−s‖.

We found that such W 1
circ, computed numerically, leads to multi-modal tuning curves, which are unrealistic

results (data not shown).
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Supplementary Figures
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Figure S1: Information loss (J/J0) in untrained L = 2 (A) and L = 3 (B) networks. The L = 1 case is
shown in Fig.3A. The two panels share the color bar. In each case, there are two regimes corresponding to
significant information loss. In all three cases, information loss is significant when the input is selective and
the weights are unselective, or when the input is unselective and the weights are selective. Related to Fig.2.
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Figure S2: Low-rankness of weight matrices.
(A) The eigenspectrum of the product of effective weight matrices(PL, see definition in Eq.M.9) before PL.
Each curve corresponds to a network of a different depth. All networks are in the selective-input-unselective-
weights regime (σs = 0.2, σw = 0.8). PL is of lower rank for deeper networks.
(B) Same as (A), but for networks after PL. Rank of PL for networks post-PL is approximately the same
as that in pre-PL networks.
(C) Sum of squared projection of the signal vector (s) onto the top n eigenvectors of PL.
(D) Same as (C), but for networks after PL.
(E)(F)(G)(H) Same as (A)(B)(C)(D), respectively, but for networks in the unselective-input-selective-weights
regime (σs = 1.2, σw = 0.1). Related to Fig.2.
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Figure S3: Comparing magnitude of MP learning changes (“theory”) and changes induced by gradient
descent (“sim”) in the unselective-input-selective-weights regime. (A) L=1 network. (B) L=3 network.
Learning rate is 10−3. Related to Fig.4.
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Figure S4: Worst error (over all test stimuli) after PL using different learning rates (L = 1, σs = 0.2, σw =
0.8). All learning rates tested here led to the same optimal performance on the trained task. Average of five
runs (errorbars are standard errors). Baseline: pre-PL error. Optimal: MLD error. Related to Fig.4.
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Figure S5: Magnitude of MP changes depends on selectivity parameters, σs, σw. Changes to the SNR and
signal amplitude are bigger in higher layers. (A,B) Changes to the SNR in the last layer for different σw. (C,
D) Changes to the signal amplitude in the last layer for different σw. L = 3 pre-PL networks in all panels.
Related to Fig.5.
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Figure S6: (A,B) comparison between the MP-induced signal amplification and the minimal signal amplifi-
cation required for PL. (A) shows results in the selective-input-unselective-weights regime; (B) shows results
in teh unselective-input-selective-weights regime. (C) Average signal amplification induced by ”soft” MP
learning, where weights are allowed to fluctuate around the MP weights. σ2: magnitude of fluctuation.
Errorbars show standard deviations over 10 independent samples. Results are taken from a 1-layer network
with σs = 0.4, σw = 1.0. (D) Signal amplification induced by MP learning if we amplify the pre-PL readout
weights. Results are taken from the last layer in a network with σs = 0.4, σw = 1.0, L = 2. Related to Fig.6.
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Figure S7: Cross-task transfer. Training a three-layer network on the θ discrimination task (gray) does
not affect performance on a σs discrimination task (black). At every checkpoint, a separate task-specific a
is used for the σs discrimination task. As a result, that the performance on the untrained task does not
improve strictly reflects that the information content for σs discrimination does not increase. See Sec.S7 for
details of the σs discrimination task. Related to Fig.7.
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Figure S8: Scaling of Fisher information in the pre-PL network (L = 3, σs = 0.2, σw = 0.8). (A) Scaling of
FI over different Ninput and fixed Nhidden. (B) Scaling of FI over different Nhidden and fixed Ninput. J0:FI in
the input; J1,2,3: FI in layer 1,2,3. Related to Fig.8.
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Figure S9: Structure of noise correlation in layer 3 of a L = 3 network when θtr is presented. (A) Normal-
ized* pre-PL noise covariance matrix. (B) Post-PL covariance. (C) Averaged pair-wise Pearson’s correlation
coefficients before (red) and after PL (black), for different σw. (D) Same as C, averaged absolute values of
coefficients are shown. (E) Fraction of PL-induced changes to covariance (Σpost −Σpre) that project on the
signal direction. (F) Visualization of PL-induced changes to covariance.
*Covariance matrices are multiplied by N/σ2‖f0‖2‖f3‖−2, where f0,f3 are noise-averaged population re-
sponse vectors in the input layer and layer 3, respectively. This scaling makes each element of the matrix
O(1) and adjusts for different activity levels in different layers. Related to Fig.8.
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