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Abstract 
 
During spatial exploration, neural circuits in the hippocampus store memories of 
sequences of sensory events encountered in the environment. When sensory 
information is absent during “offline” resting periods, brief neuronal population bursts 
can “replay” sequences of activity that resemble bouts of sensory experience. These 
sequences can occur in either forward or reverse order, and can even include spatial 5 
trajectories that have not been experienced, but are consistent with the topology of the 
environment. The neural circuit mechanisms underlying this variable and flexible 
sequence generation are unknown. Here we demonstrate in a recurrent spiking 
network model of hippocampal area CA3 that experimental constraints on network 
dynamics such as spike rate adaptation, population sparsity, stimulus selectivity, and 10 
rhythmicity enable additional emergent properties, including variable offline memory 
replay. In an online stimulus-driven state, we observed the emergence of neuronal 
sequences that swept from representations of past to future stimuli on the timescale of 
the theta rhythm. In an offline state driven only by noise, the network generated both 
forward and reverse neuronal sequences, and recapitulated the experimental 15 
observation that offline memory replay events tend to include salient locations like the 
site of a reward. These results demonstrate that biological constraints on the dynamics 
of recurrent neural circuits are sufficient to enable memories of sensory events stored 
in the strengths of synaptic connections to be flexibly read out during rest and sleep, 
which is thought to be important for memory consolidation and planning of future 20 
behavior.  
 
Introduction 
 
In mammals, the hippocampus is a brain region involved in the storage and recall of 25 
spatial and episodic memories. As an animal explores a spatial environment, different 
subpopulations of hippocampal neurons known as “place cells” are selectively 
activated at different positions in space, resulting in sequences of neuronal spiking that 
are on the seconds-long timescale of locomotor behavior (O’Keefe and Conway, 1978). 
The synchronous firing of these sparse neuronal ensembles is coordinated by 30 
population-wide oscillations referred to as theta (~4-10 Hz) and gamma (~30-100 Hz) 
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rhythms (Colgin, 2016). Within each cycle of the theta rhythm (~125 ms), the spiking of 
active neurons is organized into fast timescale sequences such that neurons selective 
for just-visited positions spike first, then neurons selective for the current position, and 
finally neurons selective for the next and future positions spike last in the sequence 35 
(Drieu and Zugaro, 2019; Foster and Wilson, 2007). These order-preserving fast 
timescale “theta sequences” are thought to be involved in planning and learning of 
event order through associative synaptic plasticity (Jensen et al., 1996; Kay et al., 
2020).  
 When an animal stops running, theta and gamma oscillations decrease, and 40 
neuronal circuits in the hippocampus instead emit intermittent synchronous bursts of 
activity that are associated with high-frequency oscillatory activity detectable in local 
field potential recordings in hippocampal area CA1. These ~100-200 ms long events 
are referred to as “sharp wave-ripples” (SWRs) (Colgin, 2016), and they occur both 
during non-locomotor periods of quiet wakefulness, during reward consumption, and 45 
during sleep, when sensory information about the spatial environment is reduced or 
absent. During SWRs, sparse subsets of neurons are co-activated, with a tendency for 
neurons that fire sequentially during exploratory behavior to also fire sequentially 
during SWRs, either in the same order, in reverse, or with a mixture of both directions 
(Davidson et al., 2009; Pfeiffer, 2020; Stella et al., 2019; Wu and Foster, 2014). The 50 
hippocampus can also activate sequences of place cells during SWRs that correspond 
to possible paths through the environment that have not actually been experienced, 
suggesting a possible role for offline sequence generation in behavioral planning 
(Gupta et al., 2010; Igata et al., 2021; Ólafsdóttir et al., 2015, 2018; Wu and Foster, 
2014). Manipulations that disrupt neuronal activity during SWRs result in deficits in 55 
memory recall (Girardeau et al., 2009), supporting a hypothesis that offline reactivation 
of neuronal ensembles during SWRs is important for the maintenance and 
consolidation of long-term memories (Buzsáki, 1989; Joo and Frank, 2018).  
 Hippocampal SWRs are thought to be generated by the synchronous firing of 
subpopulations of neurons in the CA2 and CA3 regions of the hippocampus (Csicsvari 60 
et al., 2000; Oliva et al., 2016), which are characterized by substantial recurrent 
feedback connectivity (Duigou et al., 2014; Guzman et al., 2016; Okamoto and Ikegaya, 
2019). Recurrent networks have long been appreciated for their ability to generate rich 
internal dynamics (Amit and Brunel, 1997), including oscillations (Ermentrout, 1992). It 
has also been shown that associative plasticity at recurrent connections between 65 
excitatory neurons can enable robust reconstruction of complete memory 
representations from incomplete or noisy sensory cues (Amit and Brunel, 1997; 
Guzman et al., 2016; Hopfield, 1982; Treves and Rolls, 1994). However, this “pattern 
completion” function of recurrent networks requires that similarly tuned neurons 
activate each other via strong synaptic connections, resulting in sustained self-70 
activation, rather than sequential activation of neurons that are selective for distinct 
stimuli (Lisman et al., 2005; Pfeiffer and Foster, 2015; Renno-Costa et al., 2014). 
Previous work has shown that, in order for recurrent networks to generate sequential 
activity, some mechanism must be in place to “break the symmetry” and enable 
spread of activity from one ensemble of cells to another (Tsodyks et al., 1996). During 75 
spatial navigation, feedforward sensory inputs carrying information about the changing 
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environment can provide the momentum necessary for sequence generation. However, 
during hippocampal SWRs, sensory inputs are reduced, and activity patterns are 
thought to be primarily internally generated by the recurrent connections within the 
hippocampus. In this study we use a computational model of hippocampal area CA3 to 80 
investigate the synaptic, cellular, and network mechanisms that enable flexible offline 
generation of memory-related neuronal sequences in the absence of ordered sensory 
information. 
 A number of possible mechanisms for sequence generation in recurrent 
networks have been proposed: 85 

1) Winner-take-all network mechanism (Almeida et al., 2007, 2009a; Lisman and 
Jensen, 2013): Within this framework, the subset of excitatory neurons receiving 
the most strongly weighted synaptic inputs responds first upon presentation of a 
stimulus. This active ensemble of cells then recruits feedback inhibition via local 
interneurons, which in turn prevents other neurons from firing for a brief time 90 
window (e.g. the ~15 ms duration of a single gamma cycle). This highlights the 
important roles that inhibitory neurons play in regulating sparsity (how many cells 
are co-active), selectivity (which cells are active), and rhythmicity (when cells fire) 
in recurrent networks (Almeida et al., 2009b; Rennó‐Costa et al., 2019; Stark et 
al., 2014; Stefanelli et al., 2016). However, while oscillatory feedback inhibition 95 
provides a network mechanism for parsing neuronal sequences into discrete 
elements, additional mechanisms are still required to ensure that distinct subsets 
of excitatory neurons are activated in a particular order across successive cycles 
of a rhythm (Lisman et al., 2005; Ramirez-Villegas et al., 2018). 

2) Heterogeneous cellular excitability (Luczak et al., 2007; Stark et al., 2015): If the 100 
intrinsic properties of neurons in a network are variable and heterogeneous, when 
a stimulus is presented, those neurons that are the most excitable will fire early, 
while neurons with progressively lower excitability will fire later, resulting in 
sequence generation. This mechanism can explain the offline generation of 
stereotyped, unidirectional sequences, but cannot account for variable generation 105 
of sequences in both forward and reverse directions. 

3) Asymmetric distributions of synaptic weights (Tsodyks et al., 1996): During 
learning, if changes in synaptic weights are controlled by a temporally asymmetric 
learning rule, recurrent connections can become biased such that neurons 
activated early in a sequence have stronger connections onto neurons activated 110 
later in a sequence (Reifenstein et al., 2021). This enables internally generated 
activity to flow along the direction of the bias in synaptic weights. While this 
mechanism accounts for offline replay of specific sequences in the same order 
experienced during learning, it cannot account for reverse replay or the flexible 
generation of non-experienced sequences (Gupta et al., 2010; Igata et al., 2021; 115 
Ólafsdóttir et al., 2015, 2018; Wu and Foster, 2014). 

4) Cellular or synaptic adaptation: It has also been proposed that short-term 
adaptation of either neuronal firing rate (Itskov et al., 2011) or synaptic efficacy 
(Romani and Tsodyks, 2015) can enable neuronal sequence generation in 
recurrent networks without asymmetric synaptic weights. According to this 120 
scheme, recently-activated neurons initially recruit connected partners with high 
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efficacy, but continued spiking results in either a decrease in firing rate, or a 
decrease in the probability of neurotransmitter release. This causes connections 
to fatigue over time, and favors the sequential propagation of activity to more 
recently activated cells. These mechanisms do allow for the stochastic generation 125 
of neuronal sequences in either the forward or reverse direction, though they do 
not prescribe which or how many neurons will participate in a given replay event. 

In this study, we sought to understand how neuronal sequence generation in 
hippocampal area CA3 depends on the structure and function of the underlying 
network. To do this, we constructed a computational neuronal network model 130 
comprised of recurrently connected excitatory and inhibitory spiking neurons, and 
tuned it to match experimental constraints on the spiking dynamics of CA3 during 
spatial navigation, including sparsity, selectivity, rhythmicity, and adaptation. We then 
analyzed the direction and content of neuronal sequences generated both “online” 
during simulated navigation, and “offline” during simulated rest. We found that when 135 
the network was driven by ordered sensory information in the online state, it generated 
forward-sweeping “theta sequences” that depended on the structure of recurrent 
connectivity in the network. In the offline state driven by noise, the network generated 
heterogenous memory replay events that moved either in forward, reverse, or mixed 
directions, and depended on neuronal spike-rate adaptation. Finally, when particular 140 
spatial locations were over-represented by the network, as occurs in the hippocampus 
at sites of reward (Lee et al., 2006; Turi et al., 2019; Zaremba et al., 2017), memory 
replay events were biased towards trajectories that included those salient positions 
(Gillespie et al., 2021; Ólafsdóttir et al., 2015; Singer and Frank, 2009). 
 145 
Results 
 
To investigate how sequential activity in the hippocampus generated “online” during 
spatial exploration can be recapitulated “offline” in the absence of sensory cues, we 
constructed a simple spiking neuronal network model of rodent hippocampal area CA3 150 
(Materials and Methods). Neural circuits in the hippocampus and cortex typically 
comprise a majority of excitatory neurons that project information to downstream 
circuits, and a minority of primarily locally connected inhibitory interneurons. We 
included populations of excitatory (1000) and inhibitory (200) neurons in proportion to 
experimental observations (Pelkey et al., 2017; Tremblay et al., 2016) (Figure 1A). Cell 155 
models were single-compartment, integrate-and-fire neurons with saturable, 
conductance-based excitatory and inhibitory synapses (Carnevale and Hines, 2006; 
Izhikevich, 2007; Izhikevich and Edelman, 2008). Excitatory neurons were endowed 
with spike-rate adaptation to support punctuated bursting behavior during theta 
oscillations (O’Keefe and Recce, 1993; Scharfman, 1993), and inhibitory neurons 160 
exhibited fast-spiking dynamics to sustain continuous high frequency firing during 
gamma oscillations (Csicsvari et al., 2003; Ylinen et al., 1995) (Supplementary Figure 
S1A, Materials and Methods). 

To simulate the sensory experience of locomotion in a spatial environment, we 
provided both excitatory and inhibitory neurons with external afferent inputs from a  165 
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Figure 1. Sparsity, selectivity, and rhythmicity in a recurrent spiking neuronal network model of 
hippocampal area CA3. (A) Diagram illustrates connectivity of model network. Feedforward (FF) 
external excitatory inputs contact excitatory (E) and inhibitory (I) neurons. E and I neurons are recurrently 
connected to other E and I neurons. (B) Simulations of rodent “online exploration” emulated the 170 
response of the hippocampus during unidirectional locomotion along a circular linear track that takes 3 
seconds to traverse at constant run velocity. (C) Population sparsity (active fraction of neurons) vs. time 
shown for each cell population. (D) Mean firing rate of active neurons vs. time shown for each cell 
population. (E) Firing rates vs. time of all neurons in each cell population are shown (average of 5 trials 
from one example network instance). Cells in each population are sorted by the location of maximum 175 
firing. (F) Average stimulus selectivity of each cell population. Trial-averaged activity of each cell was 
centered around the location of maximum firing, and then averaged across cells. (G) The average activity 
of each population on a single trial (top row) was bandpass filtered in the theta (middle row) and gamma 
(bottom row) frequency bands. Colored traces show filtered signals (theta: green, gamma: purple). 
Traces derived from one example network instance. (H) Power spectrum of average population activity 180 
indicates dominant frequency components in the theta and gamma bands (one-sided paired t-tests: 
theta: E vs. FF, p=0.00001; I vs. FF, p=0.00001; gamma: E vs. FF, p<0.00001; I vs. FF, p<0.00001). In 
(C), (D), (F), and (H), data were first averaged across 5 trials per network instance, and then averaged 
across 5 independent instances of the network. Mean (solid) ± SEM (shading) were computed across 
network instances. p-values reflect Bonferroni correction for multiple comparisons. 185 
 
population of 1000 excitatory neurons, each of which was selectively activated at 
distinct but overlapping positions within a simulated circular track that took 3 seconds 
to traverse (Figures 1A, 1B and 1E) (Materials and Methods). Recurrent connections 
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within and between excitatory and inhibitory cell populations were also included 190 
(Figure 1A), as they are hallmark features of hippocampal area CA3, and have been 
shown to support rich network dynamics (Renno-Costa et al., 2014; Stark et al., 2014). 
Specifically, inhibitory feedback connections have been shown to regulate the number 
of simultaneously active neurons (sparsity) (Stefanelli et al., 2016), and to contribute to 
the generation of theta and gamma network oscillations (Bezaire et al., 2016; Geisler et 195 
al., 2005; Rennó‐Costa et al., 2019; Stark et al., 2014; Wang, 2010). Plastic excitatory 
connections between excitatory neurons have long been implicated in stimulus 
selectivity and the storage and recall of memories (Almeida et al., 2007; Hopfield, 1982; 
Lisman and Jensen, 2013). It has been proposed that strong connections between 
ensembles of co-active neurons could arise through a combination of biased 200 
connectivity during brain development (Buzsáki et al., 2021; Dragoi and Tonegawa, 
2013; Farooq and Dragoi, 2019; Grosmark and Buzsáki, 2016), and experience-driven 
synaptic plasticity during learning (Bittner et al., 2015, 2017; Brunel and Trullier, 1998; 
Káli and Dayan, 2000; Milstein et al., 2020; O’Neill et al., 2008). While here we did not 
simulate these dynamic processes explicitly, we implemented the structured 205 
connectivity that is the end result of these processes by increasing the strengths of 
synaptic connections between excitatory cells that share overlapping selectivity for 
spatial positions the environment (Supplementary Figure S1B) (Materials and Methods) 
(Arkhipov et al., 2018).  

Despite the relatively simple architecture of this network model, a wide range of 210 
networks with distinct dynamics could be produced by varying a number of 
parameters, including 1) the probabilities of connections between cell types (Káli and 
Dayan, 2000), 2) the kinetics and strengths of synaptic connections between cell types 
(Brunel and Wang, 2003), and 3) the magnitude of the above-mentioned increase in 
synaptic strengths between neurons with shared selectivity (Brunel, 2016; Dorkenwald 215 
et al., 2019). To calibrate the network model to produce dynamics that matched 
experimentally-derived targets, we performed an iterative stochastic search over these 
parameters, and optimized the following features of the activity of the model network: 
1) population sparsity - the fraction of active neurons of each cell type, 2) the mean 
firing rates of active neurons of each cell type, 3) stimulus-selective firing of excitatory 220 
cells, and 4) the frequency and amplitude of theta and gamma oscillations in the 
synchronous spiking activity of each cell population (Materials and Methods). 

This procedure identified a model with dynamics that met all of the above 
constraints. Given sparse and selective feedforward inputs during simulated navigation 
(Figure 1B), the excitatory neurons in the network responded with a fraction of active 225 
cells (Figure 1C) and with average firing rates comparable to the those of the 
feedforward input population (Figure 1D). The majority of inhibitory neurons were 
activated continuously (Figure 1C) at high firing rates (Figure 1D). While excitatory 
neurons received random connections from feedforward afferents and from other 
excitatory neurons with heterogeneous spatial tuning, excitatory cells exhibited a high 230 
degree of spatial selectivity (Figures 1E and 1F). This selective increase in firing rate at 
specific spatial locations within the “place field” of each excitatory neuron was 
supported by enhanced synaptic connection strengths between excitatory neurons 
with overlapping tuning (Supplementary Figure S1B). While substantial background 
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excitation occurred in all cells at all spatial positions, firing outside the place field of 235 
each cell was suppressed by sufficiently strong inhibitory input (Bittner et al., 2015; 
Grienberger et al., 2017). Interestingly, inhibitory neurons also exhibited spatial 
selectivity, albeit to a weaker degree and with a higher background firing rate (Figures 
1E and 1F). This feature of the network dynamics was an emergent property that was 
not explicitly designed or optimized. While excitatory connections onto inhibitory cells 240 
were random and not weighted according to shared selectivity (Supplementary Figure 
S1B), the total amount of excitatory input arriving onto individual inhibitory cells 
fluctuated across spatial positions, and predicted a small degree of spatial selectivity 
(Supplementary Figure S1C). Inhibitory inputs received by inhibitory cells reduced their 
average activity, effectively enabling fluctuations in excitation above the mean to stand 245 
out from the background excitation (Supplementary Figure S1C and S1D). This 
mechanism of background subtraction by inhibitory synaptic input may explain the 
partial spatial selectivity previously observed in subpopulations of hippocampal 
inhibitory neurons (Ego‐Stengel and Wilson, 2007; Grienberger et al., 2017; Hangya et 
al., 2010; Marshall et al., 2002; Wilent and Nitz, 2007). 250 

The tuned network model also exhibited oscillatory synchrony in the firing of the 
excitatory and inhibitory neuron populations, despite being driven by an asynchronous 
external input (Figures 1G and 1H). The requirement that the network self-generate 
rhythmic activity in the theta band constrained recurrent excitatory connections to be 
relatively strong, as this input provided the only source of rhythmic excitation within the 255 
network (Supplementary Figure S1E). Interestingly, as the firing rates of inhibitory cells 
increased within each cycle of the theta rhythm, their synchrony in the gamma band 
increased, resulting in an amplitude modulation of gamma paced at the theta 
frequency (Figure 1G and Supplementary Figure S1F). This “theta-nested gamma” is a 
well-known feature of oscillations in the hippocampus (Soltesz and Deschenes, 1993; 260 
Ylinen et al., 1995), and here emerged from fundamental constraints on dual band 
rhythmicity without requiring additional mechanisms or tuning. 

 
Position decoding reveals “theta sequences” during simulated navigation 

 265 
Next, we analyzed neuronal sequence generation within the network during simulated 
navigation. First, we simulated multiple trials and computed trial-averaged spatial firing 
rate maps for all neurons in the network (Figure 1E). We then used these rate maps to 
perform Bayesian decoding of spatial position given the spiking activity of all cells in 
the network from individual held-out trials not used in constructing the decoding 270 
template (Figure 2A) (Davidson et al., 2009; Zhang et al., 1998) (Materials and 
Methods). For the population of feedforward excitatory inputs, the underlying spatial 
firing rates were imposed, and the spikes of each cell were generated by sampling 
from an inhomogeneous Poisson process. Thus, decoding position from the activity of 
this population served to validate our decoding method, and indeed simulated position 275 
could be decoded from the spiking activity of the feedforward input population with 
very low reconstruction error (Figures 2B and 2C). When we applied this method to the 
population of excitatory neurons within the network, reconstruction error was 
increased (Figure 2C). This reflected an increased fraction of temporal bins (20 ms)  
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 280 
Figure 2. Online neuronal sequence generation depends on recurrent excitatory synaptic 
connectivity. (A) Spike times of all neurons in each cell population on a single trial of simulated “online 
exploration” are marked. A separate set of 5 trials was used to construct a spatial firing rate template for 
each neuron (e.g. Figure 1E). Here, cells in each population are sorted by the location of maximum 
average spatial firing rate. (B) The spatial firing rate templates for all neurons were used to perform 285 
Bayesian decoding of spatial position from the single trial spiking data shown in (A). The spatial position 
of maximum likelihood vs. time is shown for each cell population. (C) Position decoding error is 
quantified for each cell population as a fraction of the track length (one-sided paired t-tests: E vs. FF, 
p<0.00001; I vs. FF, p<0.00001). (D) Decoded positions of E and I cell populations swept from past to 
future positions. The lengths of these theta timescale neuronal sequences are quantified as a fraction of 290 
the track length (one-sided paired t-tests: E vs. FF, p<0.00001; I vs. FF, p<0.00001). (E – H) Same as (A 
– D) for an alternative model network with random synaptic strengths at recurrent excitatory connections 
between E cells. (F) Decoded position error (one-sided paired t-tests: E vs. FF, p=0.00003; I vs. FF, 
p=0.00002; two-sided t-tests vs. data in (C): E, p<0.00001; I, p=0.00003). (H) Theta sequence length 
(one-sided paired t-tests: E vs. FF, p=0.00003, I vs. FF, p=0.00005; two-sided t-tests vs. data in (D): E, 295 
p<0.00001; I, p=0.00006). In (C), (D), (F), and (H), data were first averaged across 5 trials per network 
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instance, and then averaged across 5 independent instances of the network. Mean (solid) ± SEM 
(shading) were computed across network instances. p-values reflect Bonferroni correction for multiple 
comparisons. 
 300 
where the decoded position was either behind or in advance of the actual position 
(Figure 2B). However, rather than simply reflecting reconstruction noise or poor spatial 
selectivity of individual cells (Figure 1F), these divergences from actual position 
resulted from consistent sequential structure in the spiking activity of cells in the 
excitatory population (Figure 2A and 2B). Ordered neuronal firing resulted in decoded 305 
positions that continuously swept from past positions, through the current actual 
position, to future positions, and then reset to past positions, on the timescale of the  
ongoing theta rhythm. These “theta sequences” caused decoded position estimates to 
oscillate around the actual position (Figure 2B), and their sequence length could be 
quantified from the mean amplitude of this oscillation (Figure 2D) (Materials and 310 
Methods). Interestingly, we found that position could also be accurately decoded from 
the moderately spatially-tuned activity of inhibitory cells in the network (Figure 2C), and 
that the spiking activity of the inhibitory population was also organized into theta 
sequences (Figure 2D). 

A number of possible mechanisms have been proposed to account for theta 315 
sequence generation in vivo, including synaptic, cell-intrinsic, and network-level 
mechanisms (Chadwick et al., 2015, 2016; Drieu and Zugaro, 2019; Foster and Wilson, 
2007; Grienberger et al., 2017; Kang and DeWeese, 2019). That theta sequences in the 
model emerged in both excitatory and inhibitory neuron populations implicates 
recurrent interactions within the network (Chadwick et al., 2016). To further investigate, 320 
we analyzed neuronal sequence generation in a variant of the model in which the 
strengths of recurrent connections between excitatory neurons were randomized and 
no longer depended on shared spatial selectivity between connected pairs of cells 
(Supplementary Figure S2A). This alternative model could still be tuned to match 
experimental targets, including sparsity, selectivity, and rhythmicity (Supplementary 325 
Figures S2B – S2F). In this case the spatial selectivity of excitatory cells was entirely 
determined by the synaptic weights of the feedforward afferent inputs (Supplementary 
Figure S2A), while the recurrent excitatory input supported synchronization in the theta 
and gamma bands (Supplementary Figure S2F). However, in this model, theta 
timescale neuronal sequence generation in both excitatory and inhibitory cells was 330 
suppressed (Figure 2E – 2H). Decoding of position from spikes on single trials 
produced lower reconstruction error (Figure 2F), as neuronal population activity more 
faithfully followed the current spatial position provided by the feedforward inputs 
(Figure 2G), and was not organized into the sweeps from past to future positions 
characteristic of theta sequences (Figure 2H). These results indicate that structure in 335 
the synaptic strengths of recurrent excitatory connections is required for the generation 
of fast timescale (~125 ms) neuronal sequences when network activity is driven by 
behavioral timescale (> 1 s) sequences of sensory inputs, as occurs during spatial 
exploration. 
 340 
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Emergence of offline memory replay 
 
The above results show that the same network structure that enables population 
dynamics in CA3 to exhibit sparsity, selectivity, and rhythmicity also supports neuronal 345 
sequence generation in the online state when ordered sensory information is present. 
We next sought to understand how neuronal sequences consistent with the sensory 
environment are generated offline when sensory inputs are reduced. To mimic the 
transient (~150 ms) increase in population activity that occurs during a hippocampal 
SWR, we transiently stimulated the network by randomly choosing sparse subsets of 350 
cells from the feedforward input population to emit spikes (Figures 3A and 3B). We 
then used the same decoding templates as above, constructed from the trial-averaged 
activity during simulated run, to decode spatial position from spiking activity during 
these transient offline events (Materials and Methods). 

Given that the place field locations of the stimulated neurons in the feedforward 355 
input population were heterogeneous and unordered, the spatial positions decoded 
from their spiking were typically discontiguous across adjacent temporal bins (Figures 
3A and 3B). This input pattern evoked spiking in sparse subsets of both the excitatory 
and inhibitory populations in the network. In contrast with the feedforward population, 
the activity evoked in excitatory neurons was structured such that neurons with nearby 360 
place field locations spiked in adjacent temporal bins, resulting in decoded spatial 
trajectories that were continuous (Figures 3A and 3B). Inhibitory neuron activity during 
these events was organized into high-frequency oscillations (Figures 3A and 3B). This 
procedure was repeated to produce thousands of offline events evoked by stimulation 
of different random ensembles of inputs (Materials and Methods). Across these events, 365 
each position along the track was decoded with equal probability (Figure 3C). For each 
event, the length and mean velocity of the decoded trajectory was calculated from the 
differences in decoded positions between adjacent bins (Figures 3D and 3E). A mean 
velocity of zero corresponds to events with equal steps in the forward and reverse 
directions, while positive velocities correspond to net forward-moving trajectories, and 370 
negative velocities correspond to net backwards-moving trajectories. While the 
trajectories decoded from the random feedforward input population were comprised of 
large, discontiguous steps that traced out large path lengths with an average velocity 
near zero, the excitatory neuron population generated shorter, more continuous 
sequences that progressed in either the forward or reverse directions (Figures 3D and 375 
3E). These trajectories on average covered ~0.5 the length of the track in the short 
(~150 ms) duration of the offline event. Compared to the run trajectory, which took 3 s 
to cover the full track length, this corresponded to a ~10-fold temporal compression 
(Figure 3E), similar to experimental data (Davidson et al., 2009). Spatial trajectories 
decoded from the inhibitory neuron population were intermediate in length, but with 380 
little forward or reverse momentum, similar to the feedforward inputs. However, the 
inhibitory cells exhibited high-frequency synchrony (Figures 3B and 3F), similar to 
experimentally recorded CA3 interneurons during hippocampal SWRs (Csicsvari et al., 
2000; Tukker et al., 2013).  

These data demonstrate that random, unstructured input can evoke sequential 385 
activity in a CA3-like recurrent spiking network, with sequences corresponding to  
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Figure 3. Forward and reverse offline memory replay depends on recurrent excitatory synaptic 
connectivity. (A – B) Top: spike times of all neurons in each cell population on a single trial of simulated 
“offline rest” are marked. Data from 5 trials of simulated “online exploration” was used to construct a 390 
spatial firing rate template for each neuron (e.g. Figure 1E). Here, cells in each population are sorted by 
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the location of maximum average spatial firing rate. Bottom: the spatial firing rate templates for all 
neurons were used to perform Bayesian decoding of spatial position from the single trial spiking data 
shown in the top row. The spatial position of maximum likelihood vs. time is shown for each cell 
population. (A) and (B) correspond to two example trials from one example network instance. (C – F) This 395 
procedure was repeated for 1000 trials with each of 5 instances of the network. (C) Histogram of spatial 
positions decoded from each cell population across all simulated replay events (two-sided K-S tests: E 
vs. FF, p=1.0; I vs. FF, p=1.0). (D) Histogram of the length of spatial trajectories decoded from each cell 
population (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p<0.00001). (E) Histogram of the mean 
velocity of spatial trajectories decoded from each cell population (two-sided K-S tests: E vs. FF, 400 
p=0.00141; I vs. FF, p=1.0). (F) Power spectrum of average population activity indicates high frequency 
components (one-sided paired t-tests: 75 Hz – 300 Hz frequency band: E vs. FF, p=1.0; I vs. FF, 
p<0.00001). (G – L) Same as (A – F) for an alternative model network with random synaptic strengths at 
recurrent excitatory connections between E cells. (G) and (H) correspond to two example trials from one 
example network instance. (I) Decoded positions (two-sided K-S tests: E vs. FF, p=1.0; I vs. FF, p=1.0; 405 
two-sided K-S tests vs. data in (C): E, p=1.0; I, p=1.0). (J) Offline sequence length (two-sided K-S tests: 
E vs. FF, p<0.00001; I vs. FF, p=1.0; two-sided K-S tests vs. data in (D): E, p<0.00001; I, p<0.00001). (K) 
Offline sequence velocity (two-sided K-S tests: E vs. FF, p=1.0; I vs. FF, p=1.0; two-sided K-S tests vs. 
data in (E): E, p=0.04666; I, p=1.0). (L) Offline high-frequency rhythmicity (one-sided paired t-tests: 75 Hz 
– 300 Hz frequency band: E vs. FF, p=1.0; I vs. FF, p<0.00001; two-sided t-tests vs. data in (F): E, p=1.0; 410 
I, p<0.00001). In (C – F) and (I – L), data were averaged across 5 independent instances of the network. 
Mean (solid) ± SEM (shading) were computed across network instances. p-values reflect Bonferroni 
correction for multiple comparisons. 
 
forward, reverse, or mixed direction trajectories through an experienced spatial 415 
environment. This self-generated memory-related activity implicates information stored 
in the synaptic weights of the recurrent connections within the network as being 
important for offline replay of experience. However, in most previous models, 
sequence generation was unidirectional, and was enabled by an asymmetric bias in the  
strengths of recurrent connections such that neurons encoding positions early in a 420 
sequence formed stronger synapses onto neurons encoding later positions (Malerba 
and Bazhenov, 2019; Reifenstein et al., 2021; Tsodyks et al., 1996). In contrast, the 
current network flexibly generates sequences in forward, reverse, or mixed directions, 
and has symmetric recurrent connections such that synaptic strengths between pairs 
of excitatory neurons depend only on overlapping selectivity, not on sequence order. 425 
Does sequence generation in the present network still depend on recurrent 
connectivity? To test this, we first verified that including an asymmetric bias in the 
strengths of excitatory connections produced offline replay events that were biased 
towards forward sequences (Supplementary Figure 3). We next analyzed the sequence 
content of offline events generated in the variant of the network model with random 430 
recurrent connection weights (Figures 2E – 2H and Supplementary Figures S2A – S2F). 
Indeed, without any structure in the recurrent connection weights, spatial trajectories 
decoded from the activity of excitatory neurons was more similar to those of the 
feedforward inputs, consisting of large, discontinuous steps without forward or reverse 
momentum (Figures 3G – 3K). Still, this network exhibited high-frequency oscillatory 435 
synchrony during these offline events (Figure 3L). These results confirmed that 
recurrent connectivity is important for offline sequence generation. 

If symmetric connectivity based on shared stimulus selectivity enables recurrent 
networks to generate either forward or backward steps, what “breaks” this symmetry  
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 440 
Figure 4. Neuronal spike rate adaptation supports offline memory replay. (A) Intracellular voltage 
recordings of three neuronal cell models with distinct spiking dynamics in response to simulated square-
shaped intracellular current injections. (B – G) Same as Figures 2A – 2F for an alternative model network 
in which E cells are regular-spiking cell models without spike rate adaptation. (B) and (C) correspond to 
two example trials from one example network instance. (D) Decoded positions (two-sided K-S tests: E 445 
vs. FF, p=1.0; I vs. FF, p=0.65872; two-sided K-S tests vs. data in Figure 2C: E, p=1.0; I, p=1.0). (E) 
Offline sequence length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided K-S 
tests vs. data in Figure 2D: E, p<0.00001; I, p=1.0). (F) Offline sequence velocity (two-sided K-S tests: E 
vs. FF, p=1.0; I vs. FF, p=0.45269; two-sided K-S tests vs. data in Figure 2E: E, p=0.00087; I, 
p=0.46951). (G) Offline high-frequency rhythmicity (one-sided paired t-tests: 75 Hz – 300 Hz frequency 450 
band: E vs. FF, p=0.00182; I vs. FF, p=0.00003; two-sided t-tests vs. data in Figure 2F: E, p<0.00001; I, 
p=0.00139). In (D – G), data were averaged across 5 independent instances of the network. Mean (solid) 
± SEM (shading) were computed across network instances. p-values reflect Bonferroni correction for 
multiple comparisons. 
 455 
and generates sequences that make net progress in either the forward or backward 
direction? Unlike our simulated run condition, sequence direction in the offline 
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generation in the network was facilitated by our choice of “bursty” excitatory cell 
model, which exhibited spike-rate adaptation (Figure 4A). As mentioned before, use-
dependent decreases in either firing rate or synaptic transmission over time can 460 
provide momentum to neuronal sequences by favoring the recruitment of new neurons 
that have not yet been activated during a network population event (Itskov et al., 2011; 
Romani and Tsodyks, 2015). To test a possible role for cellular adaptation in sequence 
generation in our model network, we replaced the “bursting” excitatory cell model with 
a “regular spiking” model without spike rate adaptation (Figure 4A and Supplementary 465 
Figure S4). This cell model does not support the high instantaneous firing rates of the 
bursting cell model, which compromised the peak firing rates of excitatory cells in the 
network and their entrainment by higher frequency gamma oscillations during 
simulated online navigation (Supplementary Figures S4D and S4E). Otherwise, this 
variant of the network did meet criterion for sparsity, selectivity, and rhythmicity 470 
(Supplementary Figure S4A – S4C). However, during simulated offline rest, random 
feedforward inputs evoked a truncated response from the network (Figures 4B – 4E), 
with the high frequency rhythmic activity of the inhibitory neurons diminishing before 
the end of the stimulus period (Figures 4B, 4C and 4G). Spatial trajectories decoded 
from the activity of excitatory neurons in the network were comprised of large steps 475 
that did not progress in either forward or reverse directions, similar to the random 
feedforward inputs (Figure 4F). Overall, these data show that adaptation of neuronal 
spiking provides a cellular-level mechanism for flexible and reversible sequence 
generation in recurrent spiking networks. 

 480 
Preferential replay of reward location 
 
Thus far, we have simulated network activity during spatial navigation, and identified 
components of the network that enable offline replay of behavioral sequences stored in 
memory. However, in these simulations all spatial positions were visited with equal 485 
occupancy, and considered to be of equal salience or relevance to the virtual animal. 
This resulted in all positions being replayed with equal probability offline (Figure 3C), 
mimicking experimental conditions where all spatial positions contain discriminable 
sensory cues, and opportunities for reward are provided at random times and positions 
(Turi et al., 2019; Zaremba et al., 2017). However, it has been shown that when reward 490 
is provided at a fixed location that the animal must discover through learning, offline 
memory replay events become biased towards sequences of place cells that encode 
positions nearby and including the site of reward (Gillespie et al., 2021; Ólafsdóttir et 
al., 2018; Pfeiffer, 2020; Singer and Frank, 2009). In parallel with the development of 
this bias in offline memory replay during learning, it has been shown that the fraction of 495 
hippocampal pyramidal cells that selectively fire along the path to reward increases 
(Lee et al., 2006; Turi et al., 2019; Zaremba et al., 2017). Here we sought to test the 
hypothesis that this network-level over-representation of reward location is sufficient to 
bias the content of offline memory replay. 

We chose a position along the virtual track to be the fixed location of a 500 
simulated reward, and biased the allocation of place field locations such that an 
increased fraction of excitatory neurons were selectively activated at positions near the  
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Figure 5. Offline memory replay is biased towards reward positions over-represented by the 
network. (A) In this variant of the network, an increased proportion of E cells express place fields with 505 
peak locations near the site of a simulated reward. Firing rates vs. time of all neurons in each cell 
population are shown (average of 5 trials from one example network instance). Cells in each population 
are sorted by the location of maximum firing. Reward site marked with red dashed line. (B – G) Same as 
Figures 2A – 2F for an alternative model network with population-level over-representation of reward 
location in E cells. (B) and (C) correspond to two example trials from one example network instance. 510 
Reward site marked with red dashed line. (D) Decoded positions (two-sided K-S tests: E vs. FF, 
p<0.00001; I vs. FF, p=0.13860; two-sided K-S tests vs. data in Figure 2C: E, p<0.00001; I, p=1.0). (E) 
Offline sequence length (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided K-S 
tests vs. data in Figure 2D: E, p=1.0; I, p<0.00001). (F) Offline sequence velocity (two-sided K-S tests: E 
vs. FF, p=0.02194; I vs. FF, p=1.0; two-sided K-S tests vs. data in Figure 2E: E, p=0.76372; I, p=1.0). (G) 515 
Offline high-frequency rhythmicity (one-sided paired t-tests: 75 Hz – 300 Hz frequency band: E vs. FF, 
p=0.00094; I vs. FF, p=0.00007; two-sided t-tests vs. data in Figure 2F: E, p=0.00011; I, p=0.00003). In 
(D – G), data were averaged across 5 independent instances of the network. Mean (solid) ± SEM 
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(shading) were computed across network instances. p-values reflect Bonferroni correction for multiple 
comparisons. 520 

 
reward (Figure 5A). As before, feedforward and recurrent synaptic connection strengths 
were increased between neurons with overlapping selectivity (Supplementary Figure 
S5A). Aside from the enhanced fraction of active excitatory neurons near the reward 
site (Supplementary Figure S5B), this produced network dynamics during simulated 525 
navigation that conformed to experimental constraints for sparsity, selectivity, and 
rhythmicity (Figure 5A and Supplementary Figures S5B – S5E). During simulated offline 
rest, the excitatory neurons in the network responded to random feedforward inputs by 
generating neuronal sequences corresponding to forward, reverse, and mixed direction 
trajectories through the environment (Figures 5B – 5F), paced by high frequency 530 
oscillations in the inhibitory cells (Figure 5G), as before (Figures 3A – 3F). However, 
now positions near the simulated reward site were replayed in a higher proportion of 
replay events (Figure 5D). This preferential replay of locations over-represented by the 
network recapitulated experimental findings and supported our hypothesis that 
nonuniform place cell allocation and biased memory replay are causally linked. 535 
 
Discussion 
 
In this study we used a simple recurrent spiking network model of hippocampal area 
CA3 to investigate the structural and functional requirements for offline replay of spatial 540 
memories. We optimized synaptic, cellular, and network parameters of the network to 
produce population dynamics that match experimentally observed sparsity, selectivity 
and rhythmicity. We found that networks that fit these constraints exhibit additional 
emergent properties, including the ability to generate fast timescale memory-related 
neuronal sequences. During simulated spatial navigation, when ordered sensory 545 
information was provided on the seconds-long timescale of locomotion behavior, the 
network produced neuronal sequences that swept from past to future positions on the 
faster timescale (~125 ms) of the theta rhythm (“theta sequences”). During simulated 
offline rest, the network responded to transient noisy activation of random, sparse 
inputs by generating neuronal sequences that corresponded to forward, reverse, or 550 
mixed direction trajectories through the spatial environment. 
 Both online and offline sequence generation depended on structure in the 
strengths of excitatory synaptic connections such that pairs of neurons with 
overlapping spatial tuning were more strongly connected. In the online phase, different 
sparse subsets of excitatory neurons were activated at different spatial positions due 555 
to structure in the strengths of connections from spatially-tuned feedforward afferent 
inputs. The constraint that recurrent excitation must drive rhythmic synchronization in 
the theta band resulted in relatively strong recurrent connections. During each cycle of 
the theta rhythm, when the firing rates of the excitatory neurons were at their 
maximum, synaptic excitation from recurrent connections exceeded that from the 560 
feedforward afferents (Supplementary Figure S1E), favoring activation of cells encoding 
positions ahead of the current position. This generated forward-sweeping sequences 
that outpaced the speed of locomotion. However, at the opposite phase of the theta 
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rhythm, when the firing rates of the excitatory cells reached their minimum, the non-
rhythmic feedforward input became greater than recurrent excitation (Supplementary 565 
Figure S1E), causing theta sequences to reverse direction and relax back towards the 
current position encoded by the feedforward inputs.  
 In the offline phase, the feedforward inputs were not activated in a sequence, so 
momentum had to be entirely internally generated by the network. In this case, the 
particular subset of active feedforward inputs initially selected a sparse subset of 570 
excitatory neurons to begin to fire, which set a starting position for the replayed 
trajectory. Slight biases in the feedforward input could then influence whether the 
active ensemble of excitatory neurons next recruited neurons encoding spatial 
positions in either the forward or reverse direction. Once activity began moving in one 
direction, spike-rate adaptation facilitated continued sequence movement along that 575 
direction. However, depending on fluctuations in the feedforward inputs, sequences 
were also generated that included changes in direction. Interestingly, this process is 
akin to interpolation or smoothing – the recurrent connections within the network 
served to bridge large, discontinuous jumps in position encoded by the noisy 
feedforward inputs with smaller, more continuous steps. This produced offline 580 
sequences that were consistent with the topology of the spatial environment, but did 
not necessarily replay exact experienced trajectories. These findings are consistent 
with a recent report that neuronal sequences activated during hippocampal SWRs in 
vivo resembled Brownian motion, or a random walk through the sensory space, rather 
than precise replay of experience (Stella et al., 2019). This suggests that, rather than 585 
serving mainly to consolidate specific episodic memories of ordered sensory 
experiences, neuronal sequences during SWRs could also explore possible 
associations within the environment that had not been fully sampled during experience. 
Our modeling results showing that increased population representations of goal sites 
bias the content of offline memory replay also corroborate recent findings that 590 
previously rewarded locations are replayed more readily than immediate past or 
immediate future trajectories (Gillespie et al., 2021). Within this framework, synaptic 
plasticity during offline replay could modify connection strengths to increase the 
chance that a new path will be taken that is likely to lead to a desired outcome 
(Ólafsdóttir et al., 2015). 595 
 In summary, our modeling results identified a minimal set of elements sufficient 
to enable flexible and bidirectional memory replay in neuronal networks: spike rate 
adaptation, and recurrent connectivity between excitatory and inhibitory neuron 
populations with strengths and kinetics optimized for rhythmogenesis and sparse and 
selective stimulus representations. In previous models of neuronal sequence 600 
generation, additional network components were proposed to enable unidirectional 
sequences stored in memory to be reversed during offline recall, including 
neuromodulation (Gauy et al., 2018), excitability of neuronal dendrites (Gauy et al., 
2018; Jahnke et al., 2015), coordinated plasticity at both excitatory and inhibitory 
synapses (Ramirez-Villegas et al., 2018), and functional specialization of diverse 605 
subpopulations of inhibitory interneurons (Cutsuridis and Hasselmo, 2011). While these 
mechanisms may regulate and enhance memory replay, our results suggest that they 
are not required. This model also makes some experimentally-testable predictions. 
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First, it implies that ion channel mutations that disrupt neuronal spike rate adaptation 
may also degrade neuronal sequence generation and memory consolidation (Peters et 610 
al., 2005). Secondly, while the direction and content of offline sequences may be 
largely controlled by internal dynamics and information stored in the synaptic weights 
within a recurrent neuronal circuit, the model network still required a small amount of 
random feedforward afferent input to evoke an offline population burst, suggesting that 
experimental manipulations of afferent projections to hippocampal area CA3 may alter 615 
the frequency or content of memory replay events (Chenani et al., 2019; Sasaki et al., 
2018). Recent work has also begun to explore the advantages of generative replay for 
learning in artificial neural networks (Roscow et al., 2021). In addition to better 
understanding the biological mechanisms of memory consolidation and flexible 
planning of behavior, characterizing the minimal mechanisms of memory replay could 620 
facilitate the engineering of artificial systems with enhanced cognitive functionality.  
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Materials and Methods 
 
Simulations of a recurrent network of excitatory and inhibitory spiking neurons were 
executed using the python interface for the NEURON simulation software (Hines et al., 635 
2009). Cell models were single-compartment integrate-and-fire neuronal cell models, 
as defined by Izhikevich (Izhikevich, 2007), and as implemented for the NEURON 
simulator by Lytton et al (Lytton et al., 2016). Previously calibrated cell models were 
replicated from those previous reports without modification – the “intrinsically bursting 
cell” model was used for excitatory neurons (E) with spike rate adaptation, the “regular 640 
spiking pyramidal cell” model was used for excitatory neurons without spike rate 
adaptation, and the “fast-spiking interneuron” model was used for inhibitory neurons (I) 
(Izhikevich, 2007; Lytton et al., 2016). Individual spikes in presynaptic neurons 
activated saturable conductance-based synapses with exponential rise and decay 
kinetics after a constant delay of 1 ms to emulate axonal conduction time (Carnevale 645 
and Hines, 2006). Excitatory synapses had a reversal potential of 0 mV (like AMPA-type 
glutamate receptors), and inhibitory synapses had a reversal potential of -80 mV (like 
GABA(A)-type receptors). In addition to the excitatory (E) and inhibitory (I) neuron 
populations, a population of feedforward afferent inputs (FF) provided a source of 
external excitatory synaptic drive to the model network. 650 

The baseline weights of excitatory synapses onto E cells were sampled from a 
log-normal distribution (Almeida et al., 2009b; Buzsaki and Mizuseki, 2014), while the 
weights of excitatory synapses onto I cells, and all inhibitory synapses were sampled 
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from a normal distribution (Grienberger et al., 2017). In addition to the random baseline 
synaptic weights assigned to excitatory synapses onto E cells, input strengths were 655 
increased by a variable additive factor that depended on the distance between the 
place fields of cells with overlapping spatial selectivity (Supplementary Figure S1B). 
The place field locations of the FF and E populations were assigned by distributing 
locations throughout the circular simulated track at equal intervals, and randomly 
assigning them to cells within each population. Random connectivity resulted in each E 660 
neuron receiving inputs from many FF and E neurons with heterogeneous selectivity, 
which produced substantial out-of-field excitation at all positions along the track. 

For each of six types of connections between the three cell types (E <- FF, E <- 
E, E <- I, I <- FF, I <- E, I <- I), a number of parameters were varied and explored during 
optimization to identify model configurations that produced dynamics comparable to 665 
experimental observations. These parameters included: the mean and variance of the 
synaptic weight distribution for each connection type, the decay time constants of the 
synaptic conductances, the mean number of synapses made by one presynaptic cell 
onto one postsynaptic cell for each pair of cell types, and the maximum increase in 
synaptic weight due to shared selectivity, as mentioned above. Self-connections were 670 
not permitted. 

Optimization was performed using a population-based iterative multi-objective 
algorithm. During each of 50 iterations, a population of 600 models with different 
parameters were simulated for one trial of simulated online run, and for 5 trials of 
simulated offline rest. Different trials were implemented by using a distinct random 675 
number stream to sample unique spike times of the feedforward inputs from an 
inhomogeneous Poisson process. The following features of the network dynamics were 
evaluated for each model: average minimum and maximum firing rates of E cells during 
run, average mean firing rates of I cells during run, average fraction of active E and I 
cells during run, mean firing rates of E cells during rest, average fraction of active E 680 
cells during rest, and finally, features related to the frequency and power of theta and 
gamma band oscillations in E and I cells during run. These features were compared to 
target values to obtain a set of multiple objective error values. Models within a 
population were compared to each other and ranked with a non-dominated sorting 
procedure (Deb, 2011). Then, a new population of models was generated by making 685 
small perturbations to the parameter values of the most highly-ranked models from the 
previous iteration. This algorithm effectively identified model configurations that 
satisfied multiple objective criterion. In the below tables, the final optimized parameter 
values and measured network dynamic features are compared for various model 
configurations discussed in this study: 690 
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Table 1. Model parameter values 
Parameter Bounds Structured 

E <-E 
Model 

Random 
E <- E 
Model 

Model with no 
spike rate 
adaptation 

E <- FF weight mean 0.1 – 5 1.28 0.29 0.55 
E <- FF weight st. dev. 0.1 – 5 1.09 0.21 0.41 
E <- E weight mean 0.1 – 5 0.75 0.50 2.45 
E <- E weight st. dev. 0.1 – 5 0.52 0.48 1.74 
E <- I weight mean 0.1 – 5 0.87 0.70 0.54 
E <- I weight st. dev. 0.1 – 5 0.47 0.32 0.16 
I <- FF weight mean 0.1 – 5 1.50 1.83 1.60 
I <- FF weight st. dev. 0.1 – 5 0.68 0.82 0.22 
I <- E weight mean 0.1 – 5 1.85 1.31 0.82 
I <- E weight st. dev 0.1 – 5 0.22 0.28 0.79 
I <- I weight mean 0.1 – 5 0.16 1.07 0.23 
I <- I weight st. dev. 0.1 – 5 0.12 0.68 0.05 
E <- FF and 
E <- E maximum 

structured Dweight 

1 - 5 3.63 2.80 4.00 

E <- FF and  
E <- E decay (ms) 

2 - 20 3.43 10.76 5.91 

E <- I decay (ms) 2 - 30 2.32 3.89 27.87 
I <- FF and  
I <- E decay (ms) 

2 - 20 15.04 18.53 18.39 

I <- I decay (ms) 2 - 30 8.09 5.65 22.35 
E <- FF # synapses / pair 0 - 2 0.28 0.31 0.02 
E <- E # synapses / pair  0 - 2 0.25 0.18 0.05 
E <- I # synapses / pair 0 - 10 2.32 1.07 0.84 
I <- FF # synapses / pair 0 - 2 0.08 0.21 0.04 
I <- E # synapses / pair 0 - 2 0.10 0.13 0.22 
I <- I # synapses / pair 0 - 10 2.66 1.30 2.69 
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Table 2. Features of model network dynamics 
Feature Target Structured 

E <-E 
Model 

Random 
E <- E 
Model 

Model with no 
spike rate 
adaptation 

E peak rate (run) 20. (Hz) 17.20 19.96 7.30 
E min rate (run) 0. (Hz) 0.24 0.25 0.39 
I mean rate (run) 20. (Hz) 19.58 32.05 6.17 
E fraction active (run) 0.6 0.59 0.60 0.60 
I fraction active (run) 0.95 1.00 1.00 0.87 
E theta power (run) 0.5 0.78 0.37 1.29 
I theta power (run) 0.5 0.48 0.14 1.15 
E gamma power (run) 0.25 0.53 0.40 0.27 
I gamma power (run) 0.25 1.19 1.85 1.27 
E theta frequency (run) 7. (Hz) 7.09 7.45 6.73 
I theta frequency (run) 7. (Hz) 6.91 7.27 6.73 
E gamma frequency (run) 70. (Hz) 71.06 72.93 39.29 
I gamma frequency (run) 70. (Hz) 71.06 72.93 69.19 
E theta frequency tuning 

index (run) 
>5. 6.40 6.30 150.67 

I theta frequency tuning 
index (run) 

>5. 9.83 6.10 150.59 

E gamma frequency 
tuning index (run) 

>5. 10.67 10.90 -0.01 

I gamma frequency 
tuning index (run) 

>5. 16.16 4.14 3.43 

E fraction active (rest) 0.06 0.05 0.03 0.06 
E mean rate (rest) 50. (Hz) 50.05 50.00 33.95 

 
 In the above table, power in the theta and gamma bands were quantified as 
follows: average population firing rates were band-pass filtered, and the envelopes of 
the filtered traces were computed from the Hilbert transformation. Then power was 695 
expressed as a ratio of the average envelope amplitude to the average population firing 
rate. To quantify theta and gamma frequency, bandpass filtered traces were subject to 
frequency decomposition, and the frequency corresponding to the centroid or center-
of-mass of the power spectral density distribution was taken as the dominant 
frequency within the band. The area of the power spectral density distribution was also 700 
used to compute a “frequency tuning index” which quantified how concentrated the 
power distribution was around the centroid frequency. This metric was akin to a signal-
to-noise ratio in the frequency domain instead of the time domain, and was computed 
as follows: 

1) 𝐹𝑇𝐼 = !"#
$∙&∙'

 705 
where 𝑆 is the average power at frequencies within the center of mass quartile 
containing the centroid frequency (signal), 𝑁 is the average power at frequencies in the 
extreme high and low quartiles outside the center of mass quartile (noise), 𝜎 is the 
standard deviation of the power distribution, and 𝑤 is the half-width of the power 
distribution in the frequency domain normalized to the width of the bandpass filter. This 710 
metric has values near zero when power is distributed uniformly within the filter band, 
and values larger than one when power is concentrated around the centroid frequency. 
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 Following parameter optimization, each variant of the network was evaluated by 
simulating 5 trials of online run, and 1000 trials of offline rest for each of 5 independent 
network instances. For a given set of model parameters, independent instances of 715 
each network variant were constructed by using distinct random number streams to 
assign place field locations, input spike times, synaptic connections, and synaptic 
weights for all cells in the network. 
 Bayesian decoding of spatial position from spike times recorded during a single 
trial (Figures 2 – 5 and Supplementary Figure S3) was performed using the procedure 720 
described in (Davidson et al., 2009). The spatial firing rates of all cells were averaged 
across 5 trials of simulated online run to compute the spiking probabilities of each 
neuron in 1 ms bins. Then, spiking data was taken from either a heldout set of 5 trials 
of simulated run (Figure 2), or offline rest trials (Figures 3 – 5 and Supplementary Figure 
S3). The numbers of spikes emitted by each cell in 20 ms bins were used to determine 725 
a likelihood distribution over spatial positions. The position with maximum likelihood 
was used as the decoded position estimate for each temporal bin. In Figure 2, 
decoded positions of E and I cells oscillate around the actual position. The amplitude 
of this oscillation was computed using the Hilbert transform. Theta sequence length 
was quantified as the time-averaged magnitude of this oscillation envelope, multiplied 730 
by a factor of two since the peak-to-trough distance of an oscillation is double the 
envelope magnitude. 
 
Data and Code Availability 
All code necessary to reproduce the data and analysis presented in this work are 735 
available here: 
Network simulation and analysis code: 
https://github.com/neurosutras/optimize_simple_network  
Network optimization code: https://github.com/neurosutras/nested 
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Supplementary Figures 

 
Supplementary Figure S1. Related to Figures 1, 2 and 3. Structure and online dynamics of network 
model with excitatory synaptic connectivity structured by shared stimulus selectivity. (A) 
Intracellular voltage recordings from example E and I cells during simulated “online” spatial exploration. 990 
(B) The strengths of synaptic connections within the model network shown in Figure 1 are indicated by 
grayscale intensity. Cells in each population are sorted by the location of maximum average spatial firing 
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rate. Excitatory connections from FF and E cells onto E cells are increased in strength for pairs of cells 
with overlapping spatial selectivity. (C) Spatial modulation for each cell is computed as a ratio of 
maximum to mean activity. The degree of spatial modulation expected from a linear weighted sum of 995 
excitatory inputs is larger for E cells than I cells due to the structure of the weight distributions shown in 
(B). However, the actual spatial modulation measured from the firing rate outputs of each cell is larger 
than expected in both E and I cells due to suppression of background activity by synaptic inhibition 
(one-sided paired t-tests: Expected vs. Actual: E, p<0.00001; I, p<0.00001). Mean ± SEM shown were 
computed across cells for one example instance of the network. Statistics were computed across 5 1000 
independent instances of the network. (D) The distance between the expected location of maximum 
firing, and the actual location is quantified as a fraction of the circular track. Mean ± SEM shown were 
computed across cells for one example instance of the network. (E) Traces depict average population 
firing rates of E and FF cells during an example trial for one instance of the network. E cells and FF cells 
dominate at different phases of the population theta oscillation. (F) In Figure 1G (bottom row), the 1005 
amplitudes of the gamma-filtered (purple) population firing rates for E and I populations vary in time. 
Here, the amplitudes or envelopes of the gamma-filtered population firing rates were subject to 
frequency decomposition. The resulting frequency distributions show peaks in the theta band (one-sided 
paired t-tests: 4 Hz – 10 Hz frequency band: E vs. FF, p=0.00002; I vs. FF, p<0.00002). Mean (solid) ± 
SEM (shading) were computed across network instances. Note that the clipped shading in (F) 1010 
corresponds to small values that appear expanded by the log scaling. p-values reflect Bonferroni 
correction for multiple comparisons. 
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 1015 
Supplementary Figure S2. Related to Figures 2 and 3. Structure and online dynamics of network 
model with random recurrent excitatory connectivity. (A) Same as Supplementary Figure S1B for an 
alternative model network with random synaptic strengths at recurrent excitatory connections between E 
cells. (B – F) Same as Figures 1E, 1C, 1D, 1F, and 1H for alternative model network. (F) Rhythmicity 
(one-sided paired t-tests: theta: E vs. FF, p=0.00004; I vs. FF, p<0.00001; gamma: E vs. FF, p<0.00001; I 1020 
vs. FF, p<0.00001; two-sided t-tests vs. data in Figure 1H: theta: E, p=0.00001; I, p<0.00001; gamma: E, 
p<0.00001; I, p<0.00001). In (C – F), data were first averaged across 5 trials per network instance, and 
then averaged across 5 independent instances of the network. Mean (solid) ± SEM (shading) were 
computed across network instances. p-values reflect Bonferroni correction for multiple comparisons. 
 1025 
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Supplementary Figure S3. Related to Figure 3. Offline replay is unidirectional in 
network model with past-skewed synaptic connectivity. (A) Same as Supplementary Figure S1B for 
an alternative model network with excitatory synaptic connections onto E cells biased such that neurons 1030 
encoding the current position of the animal during run preferentially activate neurons encoding future 
positions. This biases offline replay towards forward-moving unidirectional sequences. (B – G) Same as 
Figures 3A – 3F for an alternative model network with temporally asymmetric synaptic strengths at 
excitatory connections onto E cells. (B) and (C) correspond to two example trials from one example 
network instance. (D) Decoded positions (two-sided K-S tests: E vs. FF, p=1.0; I vs. FF, p=1.0; two-1035 
sided K-S tests vs. data in Figure 2C: E, p=1.0; I, p=1.0). (E) Offline sequence length (two-sided K-S 
tests: E vs. FF, p<0.00001; I vs. FF, p<0.00001; two-sided K-S tests vs. data in Figure 2D: E, p<0.00001; 
I, p=1.0). (F) Offline sequence velocity (two-sided K-S tests: E vs. FF, p<0.00001; I vs. FF, p=0.00012; 
two-sided K-S tests vs. data in Figure 2E: E, p<0.00001; I, p=0.00049). (G) Offline high-frequency 
rhythmicity (one-sided paired t-tests: 75 Hz – 300 Hz frequency band: E vs. FF, p=0.00153; I vs. FF, 1040 
p<0.00001; two-sided t-tests vs. data in Figure 2F: E, p=0.00004; I, p=0.16726). In (D – G), data were 
averaged across 5 independent instances of the network. Mean (solid) ± SEM (shading) were computed 
across network instances. p-values reflect Bonferroni correction for multiple comparisons. 
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Supplementary Figure S4. Related to Figure 4. Online dynamics in network model without spike 1045 
rate adaptation. (A – E) Same as Figures 1E, 1C, 1D, 1F, and 1H for alternative model network without 
spike rate adaptation in E cells. (E) Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p=0.00028; I 
vs. FF, p=0.00011; gamma: E vs. FF, p=1.0; I vs. FF, p=0.00004; two-sided t-tests vs. data in Figure 1H: 
theta: E, p=0.24889; I, p=0.00001; gamma: E, p<0.00001; I, p<0.00001). In (B – E), data were first 
averaged across 5 trials per network instance, and then averaged across 5 independent instances of the 1050 
network. Mean (solid) ± SEM (shading) were computed across network instances. p-values reflect 
Bonferroni correction for multiple comparisons. 
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 1055 
Supplementary Figure S5. Related to Figure 5. Online activity in network model with population 
over-representation of reward. (A) Same as Supplementary Figure S1B for an alternative model 
network with population-level over-representation of reward location in E cells. Reward site marked with 
red dashed line. (B – E) Same as Figures 1C, 1D, 1F, and 1H for alternative model network. (E) 
Rhythmicity (one-sided paired t-tests: theta: E vs. FF, p<0.00001; I vs. FF, p<0.00001; gamma: E vs. FF, 1060 
p=0.00005; I vs. FF, p<0.00001; two-sided t-tests vs. data in Figure 1H: theta: E, p=0.03168; I, p=1.0; 
gamma: E, p=0.00322; I, p=0.13110). In (B – E), data were first averaged across 5 trials per network 
instance, and then averaged across 5 independent instances of the network. Mean (solid) ± SEM 
(shading) were computed across network instances. p-values reflect Bonferroni correction for multiple 
comparisons. 1065 
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