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Abstract7
8

The neocortex is a network of rather stereotypical cortical microcircuits that share an exquisite genetically9

encoded architecture: Neurons of a fairly large number of different types are distributed over several10

layers (laminae), with specific probabilities of synaptic connections that depend on the neuron types11

involved and their spatial locations. Most available knowledge about this structure has been compiled12

into a detailed model [Billeh et al., 2020] for a generic cortical microcircuit in the primary visual cortex,13

consisting of 51,978 neurons of 111 different types. We add a noise model to the network that is based on14

experimental data, and analyze the results of network computations that can be extracted by projection15

neurons on layer 5. We show that the resulting model acquires through alignment of its synaptic weights16

via gradient descent training the capability to carry out a number of demanding visual processing tasks.17

Furthermore, this weight-alignment induces specific neural coding features in the microcircuit model18

that match those found in the living brain: High dimensional neural codes with an arguably close to19

optimal power-law decay of explained variance of PCA components, specific relations between signal-20

and noise-coding dimensions, and network dynamics in a critical regime. Hence these important features21

of neural coding and dynamics of cortical microcircuits in the brain are likely to emerge from aspects of22

their genetically encoded architecture that are captured by this data-based model in combination with23

learning processes. In addition, the model throws new light on the relation between visual processing24

capabilities and details of neural coding.25

1 Introduction26

The mammalian neocortex is a two-dimensional sheet of rather stereotypical local cortical microcircuits27

with diverse types of neurons distributed over 6 laminae with largely genetically encoded interconnection28

profiles. It is commonly conjectured that understanding the organization of information representation29

and computation in such a generic cortical microcircuit holds the key for understanding brain function.30

Intense research during the past decades has provided a rich set of data on the diverse types of neurons31

and their specific laminar locations and interconnectivity [Mountcastle, 1998, Thomson and Lamy, 2007,32

Markram et al., 2015], culminating in the model [Billeh et al., 2020] for a patch of area V1 in mice, see33

Fig. 1. We will use this model, more precisely its point neuron version that consists of 51,978 neurons of34
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111 different types on 6 laminae, as the basis for our work. We will refer to this model simply as the Billeh35

model. More precisely, we complement this model with a noise model that is based on experimental data36

from [Stringer et al., 2019a]. Furthermore, we propose and analyze biologically plausible rules for reading37

out results of network computations from the Billeh model.38

The Billeh model with the parameters provided in [Billeh et al., 2020] is not able to solve nontrivial39

computing tasks since its synaptic weights have not been properly aligned. They were chosen largely40

on the basis of experimental data about the mean and variance of synaptic weights. But it is well-41

known that such data do not provide salient insight into computational capabilities of a network, since42

they do not reflect correlations and other higher-order relations between the weights of different synaptic43

connections. These higher-order dependencies arise in the living brain largely through synaptic plasticity,44

and are essential for endowing the network with computing capabilities. The relevance of these higher-45

order relations for understanding computational capabilities of a network can be illustrated through an46

analogy: Knowledge of the mean and variance of synaptic weights in a trained artificial neural network47

provides hardly any information about its computing capabilities.48

However, the data of [Billeh et al., 2020] allow us to investigate the question of what computing tasks49

this cortical microcircuit model can solve if its weights are properly aligned for those, in other words, if it50

has been trained for those tasks. We aligned its synaptic weights through a variation of backpropagation-51

through-time (BPTT) from [Scherr and Maass, 2021] that works quite well for the Billeh model. In52

particular, it can be applied to networks consisting of generalized leaky integrate-and-fire (GLIF) neuron53

models, out of which the point neuron version of the Billeh model is composed. These neuron models,54

which are more precisely GLIF3 neurons with two additional hidden variables besides the membrane55

potential, have been fitted to individual neurons of the cell data-based in the Allen Brain Atlas, see56

[Teeter et al., 2018]. Instead of training the model for just one computing task as in [Scherr and Maass,57

2021], we train it for 5 different visual processing tasks that have commonly been considered in biological58

experiments. We find that the Billeh model can simultaneously achieve high accuracy on all 5 tasks. In59

addition, its task performance turns out to be highly resilient also to new forms of noise that were not60

present during training.61

We next address the dimensionality of input presentations in the Billeh model, both before and after62

training. Lots of data had pointed to low-dimension representations of visual inputs due to stereotypical63

inherent dynamics of neural ensembles [Pérez-Ortega et al., 2021]. Low-dimension representations also64

offer the promise of higher noise robustness. However, [Stringer et al., 2019a] found that representations65

of visual inputs in area V1 of mouse are very high dimensional, and the explained variance of PCA66

components follows a power law that is optimal from a theoretical perspective because it combines67

large representational capacity with good generalization capabilities. We found that the Billeh model68

in conjunction with our data-based default noise model reproduces these neural coding properties with69

remarkable precision. However, we also found that this power law is not necessary for the visual processing70

capabilities that we examined, since a high level of noise can destroy these coding properties without71

affecting task performance.72

We examined in the Billeh model also to what extent it reproduces other experimental data for mouse V173

that address limitations of neural coding due to noise correlations [Rumyantsev et al., 2020]. This study74

found that V1 reduces the impact of correlated noise on neural coding through extensive use of coding75

dimensions that are orthogonal to the strongest noise component. However, noise was nevertheless found76

to limit the separability of neural codes for different visual stimuli because lower noise components are77

entangled with signaling dimensions. We show that both of these experimental findings are reproduced78

by the Billeh model in combination with the added noise model. We can also confirm in this model a79

conjecture of [Stringer et al., 2021], that some results on information-limiting correlations in visual cortex80

are affected by extrapolating results of recordings from smaller sets of neurons to larger neural systems.81

One clearly sees in the Billeh model that the separability of neural codes for images keeps increasing82
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when one increases the number of neurons beyond the number considered in [Rumyantsev et al., 2020].83

Our model offers, in addition, an answer to the puzzle that was addressed in [Stringer et al., 2021]:84

That the behavioral discrimination threshold for orientations of grating is much higher than suggested85

by the measured joint information in large ensembles of neurons in V1. We found that an idealized linear86

readout from all neurons of the Billeh model, as commonly used in previous models, does support a much87

lower discrimination threshold. However, if one takes into account how much of this information can be88

extracted and communicated by projection neurons of the circuit, one sees that not all information that89

is represented by the neurons can be used by downstream networks.90

Finally, we addressed the question in which dynamic regime the trained and untrained Billeh models91

operate, in particular, to what extent they operate in a critical regime that is favored by some theoretical92

studies [Chen and Gong, 2019, Wilting and Priesemann, 2019]. We used the branching factor of neural93

activity, as suggested for example by [Wilting and Priesemann, 2018a], to evaluate the criticality of these94

models. We found that their branching factors are in the same range as those of neural networks in the95

living brain.96

The research method that we used in this work, training of large-scale models, capitalizes on significant97

improvements in software and computing hardware that resulted from efforts to accelerate the training98

of deep neural networks in machine learning and AI. We show that some of these improvements can be99

recruited to also speed up simulation and training of large-scale data-based models for neural networks100

of the brain.101

2 Results102

2.1 Preparing the ground for investigating computational properties of a103

data-based laminar cortical microcircuit model.104

We build on the new compilation and drastic expansion of anatomical and neurophysiological data on the105

cortical microcircuit that is reported in [Billeh et al., 2020]. We will refer in the following to the point-106

neuron version of their model, and to our small modification of it regarding noise, as the Billeh model.107

This point-neuron version of the model in [Billeh et al., 2020] is a large-scale model of a 400 µm-radius108

patch, also commonly referred to as cortical microcircuit or column, of area V1 in mouse. It consists of109

51,978 neurons and a simplified model of LGN (Fig. 1A). This cortical microcircuit model distinguishes110

17 neuron classes, resulting from 4 main types of neurons, one excitatory type and 3 inhibitory types,111

located on 5 different layers (laminae), denoted L1, L2/3, L4, L5, L6, see Fig. 1B. Excitatory neurons112

(pyramidal cells) are distributed over L2/3, L4, L5, L6 (labeled E2/3, E4, E5, and E6 in Fig. 1A). The113

3 inhibitory neuron types are Htr3a neurons (subsuming VIP neurons), that are present in all layers, as114

well as parvalbumin (Pvalb) and somatostatin (Sst) neurons in L2/3 to L6. The fraction of each type115

of neuron on each layer is based on experimental data. The resulting 17 cell classes are further split116

into 111 neuron types according to their dynamics (firing response). They are modeled as generalized117

leaky integrate-and-fire 3 (GLIF3) neurons that have besides the membrane potential two types of spike-118

triggered internal currents as dynamic variables. The hard reset of membrane potential in [Teeter et al.,119

2018] was replaced by a voltage reduction (last term in the first line of Eq. 1). Their diverse dynamics120

are specified by synaptic weights and the parameters which are colored red in the following equations121
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Figure 1 (previous page): Cortical microcircuit model of [Billeh et al., 2020]. (A) The model consists
of 4 types of neurons on 5 different layers, together with a model for LGN that transforms visual inputs into
input currents to neurons in the microcircuit. The cortical microcircuit model receives visual input from an oval
in the image space; note that we consider only the detailed“core” part of the model in [Billeh et al., 2020]. (B)
The model contains one excitatory and three inhibitory types of neurons. Each color point labels the position
of one neuron. (C) Base connection probabilities from [Billeh et al., 2020] depend on the cell class to which the
presynaptic (row labels) and postsynaptic neuron (column labels) belong. (D) The base connection probability
from (C) is multiplied according to [Billeh et al., 2020]) by an exponentially decaying factor that depends on the
horizontal distance between the neurons involved, and their type. Several panels of this figure are reproduced
from [Billeh et al., 2020].

(see Methods for details):122

vj(t+ 1) = αvj(t) +
1− ατ
C

[
Iej (t+ 1) +

∑
m

Imj (t+ 1) + gEL + Isyn
j (t)

]
− zj(t)vth

zj(t) = H (vj(t)− vth)

α = e−δt/τ

Iej (t) =
∑
i

W in
ji xi(t) + qKquick

j (t) + sKslow
j

Im(t+ 1) = fmIm(t) + z(t)δIm; m = 1, 2.

(1)

These parameters can be interpreted as neuron capacity, resistance, resting potential, as well as ampli-123

tudes and decay time constants of two types of after-spike currents; the length of refractory period and124

synaptic time constant were also determined by the neuron type. These neuron parameters have been125

fitted to experimental data from 111 selected neurons according to the cell database of the Allen Brain126

Atlas [Allen Institute, 2018], see [Teeter et al., 2018, Billeh et al., 2020]. In addition, the Billeh model127

specifies the connection probability between neurons, based on experimental data. The base connection128

probability for any pair of neurons from the 17 cell classes is provided in [Billeh et al., 2020] by a table129

(reproduced in Fig. 1C); white grid cells denote unknown values. The entries in this table are based130

on measured frequencies of synaptic connections for neurons at maximal 75 µm horizontal intersomatic131

distance. This base connection probability was scaled by an exponentially decaying factor in terms of the132

horizontal distance of the somata of the two neurons (Fig. 1D). This distance-dependent scaling is also133

based on statistical data from experiments (leaving aside finer details of connection probabilities). This134

microcircuit model receives synaptic inputs from a simple LGN model according to [Billeh et al., 2020]135

(Fig. 1A), which we model as input currents. This LGN model transforms visual inputs, i.e., images and136

movies, into retinotopic and lamina-specific inputs to neurons in the microcircuit model.137

The neurons j in the cortical microcircuit model of [Billeh et al., 2020] received, besides external inputs,138

inputs from other neurons also a noise current Kj . This noise current consisted of a single Poisson139

source that was injected into all neurons and resulted in a global noise correlation that was not based on140

experimental data. We replace it with a noise model that is based on experimental data from [Stringer141

et al., 2019a], more precisely on measured responses of large numbers of neurons in mouse V1 to repeated142

presentations of 2,800 natural images (Methods). There an additive form of noise was extracted from143

experimental data by subtracting from neural signals their mean over two presentations of the same144

natural images (see Methods for details). This resulted in the empirical noise distribution shown in145

Fig. 2A. One sees that this data-based noise distribution is heavy-tailed. We define our noise model by146

drawing the noise current Kj from this distribution, independently for each neuron j and each time step147

t, i.e., every ms.148

We will refer to the previously described form of noise as quick noise, and denote its scaling factor by q.149
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Figure 2: Adding biologically realistic noise and network readouts to the microcircuit model. (A)
Histogram of noise values for individual neurons based on experimental data from [Stringer et al., 2019a]. We
draw in our noise model the noise values from the corresponding empirical distribution. (B) Resulting trial-
to-trial variability of 4 randomly selected neurons from L2/3-L6, respectively (those have spiking activities) in
the microcircuit model for 10 trials with the same input image. The resulting variability is substantial, posing a
nontrivial challenge for computational processing in the microcircuit so that it can produce at a desired time firing
activity in its readout populations that are not affected by this response variability. (C) 15 spatially separated
groups of 30 pyramidal neurons in L5 were selected to signal specific network outputs for 5 different tasks (see
Fig. 3). (D) Alternative selection of these 15 populations in L5 without spatial clustering leads to very similar
performance. Color scheme is the same in Fig. 3A, representing different output values/decisions for 5 chosen
tasks. (E) Schematic diagram of a commonly considered readout convention that has less biological support: A
linear readout receives synaptic input from all 51,978 neurons in the microcircuit model, using a corresponding
number of weights that can all be optimized for one particular task.
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It appears to be suitable for modeling qualitatively the impact of stochastic release of vesicles at synaptic150

connections from pre-synaptic neurons. But neural networks of the brain are in addition subject to noise151

on a slower time-scale, commonly referred to as trial-to-trial variability. Whereas quick noise mainly152

shifts spike times but does not affect firing rates in a major way, trial-to-trial variability affects the firing153

rates of neurons. In other words, the firing rates of neurons tend to be different from trial to trial, often154

in a way that can be related to the network state at the beginning of a trial [Arieli et al., 1996]. We155

model this form of slow noise by adding to each neuron another input current whose amplitude is drawn156

from the same distribution as the quick noise, but is only drawn once at the beginning of a trial. We call157

the scaling factor of this slow noise s, so that each noise model that we consider is characterized by the158

two scaling factors q and s. In our default setting, both have the value 2. To illustrate the effect of this159

noise model in our modification of the Billeh model, we input the same natural image to LGN in 10 trials.160

Figure 2B shows the response of 4 randomly selected neurons in the microcircuit model in these 10 trials.161

One sees a substantial trial-to-trial variability that qualitatively matches generic experimental data (see162

e.g. Fig. 1B of [Nikolić et al., 2009]). The Fano factor of spike counts in 10 ms was 1.46, quantitatively163

comparable with experimental data from mouse V1 (1.39) [Montijn et al., 2014].164

In order to compare the impact of our noise model on network responses to natural images with that165

found in the experiments of [Stringer et al., 2019a] we analyzed the correlations between the responses166

of large numbers of neurons to two presentations of the same image, projected onto selected principal167

components, as in Extended Data Fig. 5 of [Stringer et al., 2019a]. We found that our noise model places168

these correlations into a similar range, although resulting correlations are somewhat higher according to169

Fig. 4B. However, the measured correlations in [Stringer et al., 2019a] were not only reduced by noise170

in V1 neurons, but also by measurement noise. According to [Stringer et al., 2019a] several factors171

contribute to measurement noise in Calcium imaging from very large numbers of neurons, but the exact172

contribution of that appears to be unknown.173

In order to investigate the computational capabilities of a cortical microcircuit model, one needs to make174

an assumption regarding which neurons project computational results of the microcircuit to downstream175

areas. One common convention for reading out binary computational results from microcircuit models (see176

e.g. [Haeusler et al., 2009]) is the postulate that a linear downstream “decision neuron” receives synaptic177

input from all neurons in the microcircuit, that a correspondingly large number (in our case 51,978) of178

weights to this global readout neuron can be trained for a specific computing task, and that this global179

linear readout neuron signals the binary result of a computation by assuming a value above/below a given180

threshold, see Fig. 2E for a schema. Such readout convention is problematic from a biological perspective.181

One issue is that experimental data suggest that there does not exist such global readout neurons from182

all neurons in a cortical microcircuit. Furthermore, theoretical results for Support Vector Machines183

suggest adding such global readout neuron with task-dependent readout weights gives to a quite powerful184

computational model even if the computational contribution of the microcircuit itself is rather benign, and185

the readout neuron is modeled as a simple linear neuron [Haeusler et al., 2009]. Hence, to understand186

the potential computational contribution of a microcircuit model it appears to be more adequate to187

assume that like in the brain, specific neurons in the microcircuit project their computational results to188

downstream networks, and that their projection content results from the dynamics in the microcircuit189

model and the weights of synaptic connections from other neurons in the microcircuit model (but no190

additional “readout weights” to a global external readout). It is well-known that only specific neuron191

classes project to other neocortical or subcortical areas [Harris and Shepherd, 2015]. In particular, many192

pyramidal cells on L5 project to subcortical areas, and can therefore provide the basis for a motor response193

that is triggered there. Therefore we selected for each computational task and each possible output194

value of this computation a population of 30 excitatory neurons on L5 that triggered a corresponding195

downstream response if their firing activity was during a specific time window larger than the activity196

of the other selected populations of 30 neurons on L5. 15 such populations were needed for the 5197

computational tasks that we considered. In our default model, each such population is a co-localized set198
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of pyramidal neurons in L5P that were randomly sampled within disjoint spheres of radius 55 µm, see199

Fig. 2C and Fig. 3A. But we considered also the option that each of these 15 populations of excitatory200

neurons was randomly distributed on L5 see Fig. 2D. It leads to very similar results: an average accuracy201

of 91.56% for all 5 tasks (instead of 89.10% for co-localized pools of readout neurons on L5). we also202

compared these results with the performance of a global linear readout (see Fig. 2E): it achieved a higher203

accuracy: 97.73%.204

2.2 A data-based laminar circuit can be trained to solve diverse visual pro-205

cessing tasks206

We trained the Billeh model to carry out simultaneously five visual processing tasks that have also been207

used as bases for recordings from trained mice. These are the fine orientation discrimination task (Fig. 3B)208

of [Rumyantsev et al., 2020, Stringer et al., 2021], a generic image classification task (Fig. 3C), visual209

change detection task for natural images and static gratings (Fig. 3D) [Garrett et al., 2020, Siegle et al.,210

2021], and evidence accumulation from a sequence of signals on the left and right (Fig. 3E) [Morcos and211

Harvey, 2016, Engelhard et al., 2019] (Methods). We designed details of these tasks to be as close as212

possible to these biological experiments, but otherwise we made them as simple as possible. For every213

task, the cortical microcircuit model received visual inputs from the LGN model of [Billeh et al., 2020]214

(Fig. 3A). Pairs of visual inputs and target outputs are collected in separate batches for each task and215

these batches are interlaced during training (Methods).216

Before training, with the weights given by [Billeh et al., 2020], the network model is incapable of per-217

forming any task; the accuracy is close to the chance level. The model was trained through BPTT with218

the help of the pseudo derivative for handling the discontinuous dynamics of spiking neurons suggested219

by[Bellec et al., 2018] (Methods). We made sure that during training synaptic weights cannot change220

their sign, i.e., synaptic plasticity followed Dale’s law (Methods). BPTT was allowed to change all synap-221

tic weights of the microcircuit model (W in, and W rec) in order to minimize a loss function (Methods).222

The chosen loss function aimed at minimizing the cross-entropy between the network output and a de-223

sired (target) output and simultaneously keeping firing rates and membrane potentials of all neurons in a224

biologically plausible regime range. After training, the Billeh model achieved on all 5 tasks a performance225

that was in the same range as reported behavioral data (Table 1), with an average accuracy of 89.10%.226

Simultaneously neural activity in the model stayed in a biologically realistic sparse firing regime of about227

4 Hz, see also the spike rasters in Figs. S1-S5. Also, the weight statistics stayed after training in a range228

that is qualitatively consistent with biological data. The mean strength of inhibitory synapses increased229

from 0.04 to 0.24; the mean weight of excitatory synapses increased from 0.14 to 0.17, see Fig. S6 for230

resulting changes in the distributions of all excitatory and all inhibitory weights, and (Fig. S7 for more231

detailed analysis in terms of pre- and postsynaptic neuron type. Overall we arrived at the conclusion232

that the Billeh model achieved after training a high computational performance that is in the same range233

as corresponding behavioral data for mice, while staying with regard to the firing activity and values of234

synaptic weights within a biologically realistic regime.235

2.3 The trained model creates similar quasi-optimal high-dimensional neural236

representations as observed in the brain237

One of the most controversial questions about neural coding is whether the brain employs low- or high-238

dimensional neural representations of sensory inputs. It was recently shown through large-scale recordings239

[Stringer et al., 2019a] that area V1 of the mouse employs high-dimensional neural codes. More precisely,240

the explained variance of the nth principal component of network representations of images follows a241
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Figure 3: Illustration of the 5 visual processing tasks for which the model was trained. (A) The
same visual stimuli as used in the corresponding biological experiments were input to the LGN. Separate pools
of readout neurons on L5 were chosen for each task, one for each possible outcome of the network decision. The
resulting 15 populations are shown on the right. (B) In the fine orientation discrimination task, the network
received a drifting grating for 100 ms and a readout population had to report by producing at least one spike
during the subsequent response window of 50 ms whether the orientation was smaller or larger than 45◦. (C) In
the image classification task, the network received a sample of a handwritten digit from 0 to 9 from the MNIST
dataset (timing of input images and response windows as in the preceding task). The task was to decide which
digit was denoted by the handwritten sample (a nontrivial decision in many real-world samples; two samples for 7
and 6 are shown). That one of 10 populations of readout neurons dedicated to this task that fired most strongly
during the subsequent response window signaled the network decision. (D) For the visual change detection task
a long sequence of images was presented, each for (100 ms) with (200 ms) gaps in between (while the input image
represented a gray screen). The task was to report by at least one spike from the readout population within the
response window if that image was different from the preceding one. Both natural images and static gratings were
used. (E) For the evidence accumulation task, the mouse was running along a corridor in a virtual environment,
where 5 transient visual cues were presented each for 50 ms at the left or right side of the corridor, with a gap of
10 ms between cues. The task was to turn at the end of the corridor to that side from which the majority of the
cues had been received, independently of their order (250 ms after the offset of the last cue). The decision had
to be indicated by activating one of two readout pools more than the other during the response window of 50 ms
length.
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Table 1: The Billeh model achieves high accuracy in all 5 tasks, consistent with the behavior
performance of mice in similar tasks, after 6 training epochs.

Test
accuracy

Behavior
accuracy

Mean firing
rate (Hz)

Spike
raster

Fine orientation discrimination 93.15% ∼ 83%a 3.97 Fig. S1
Image classification 88.92% N/A 4.11 Fig. S2

Visual change detection of natural images 84.13%/83.25%b ∼ 73%/77%c 3.97 Fig. S3
Visual change detection of gratings 89.25% ∼ 60%d 3.90 Fig. S4

Evidence accumulation 90.92% ∼ 85%e 3.96 Fig. S5

(a) Estimated from Fig. 4C of [Lee et al., 2012] when the orientation difference was 90◦.
(b) In the visual change detection task for natural images, the two values refer to testing with familiar and novel
images, respectively.
(c) Estimated from Fig. 1I of [Garrett et al., 2020] when familiar and novel images were presented to mice,
respectively.
(d) Estimated from Fig. 3A of [Glickfeld et al., 2013] when the orientation difference was 5◦.
(e) Estimated from Fig. 1C of [Morcos and Harvey, 2016] when the number of cues was 6.
The behavior experiments had longer time delays that made tasks more difficult.

power-law, with an exponent that represents a quasi-optimal compromise between presentations that242

support fast learning of downstream decisions and presentations that support the continual refinement243

of downstream decisions. A major surprise of the Billeh model is that it reproduces these experimental244

findings with remarkable precision, although the model had not been designed or trained for that.245

We analyze the response of neurons in the trained Billeh model in the same way as responses of V1246

neurons were analyzed in [Stringer et al., 2019a]: A set of 2800 natural images are presented twice in247

the same order. The neural signal for an input image is defined as the correlated neural response for the248

two representations, and the noise in each presentation as the residual after subtraction of the signal. An249

unbiased estimate of the explained variance of the neural signal along with the nth principal component250

(computed from the first presentation) is achieved by computing the covariance of the projections of251

neural responses for the two repeats onto this component. We refer to Fig. 4A for an illustration and to252

the Suppl. of [Stringer et al., 2019a] for a detailed mathematical analysis of this method, referred to as253

cross-validated PCA, abbreviated cvPCA.254

We demonstrate that the neural response of the trained Billeh model to natural images does not lie on any255

low-dimensional plane within the space of possible firing patterns. We chose 2800 natural images from256

the ImageNet database (same images as in [Stringer et al., 2019a]) and analyzed the cumulative variance257

in Fig. 4C. We found that, like in the recordings from area V1 in mouse, the amount of explained variance258

continued to increase as further dimensions were included, without saturating at any dimensionality below259

the maximum possible for this stimulus set. As a control, we carried out the same analysis for a set of260

32 images that were each shown 96 times. We found that the variance saturated after 32 dimensions261

(Fig. 4C), thereby reproducing in the neural codes again the full dimensionality of the input space.262

We refer to the function that gives the variance of the neural signal projected onto the nth principal263

component as eigenspectrum, following the terminology of [Stringer et al., 2019a] In Fig. 4D, we compare264

the eigenspectrum of the Billeh model before and after training with the measured eigenspectrum of265

V1 responses from [Stringer et al., 2019a]. One sees that the training process for 5 unrelated visual266

processing tasks moves the eigenspectrum of the model close to the eigenspectrum of V1 responses for267

the same image set. The latter was found to follow a power-law with an exponent close to α = 1 + 2/d,268

where d is the dimension of the stimulus space. This particular exponent was argued to be optimal from269

two perspectives: for creating maximally informative codes and for creating codes that are both easy to270

learn for downstream networks but still support the continual refinement of learning precision.271
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The eigenspectrum of the trained Billeh model can be fit to a power-law function with exponent α =272

1.17, see Fig. 5A. This value is somewhat higher than the theoretical optimum, but the power-law273

exponent of eigenspectrum approximates the formula α = 1 + 2/d also for 3 other stimulus sets with274

lower dimensionality Fig. 5C-F.275

We also verified that the power law of the trained Billeh model can not be explained by the well-known276

power-law structure of natural images [Ruderman and Bialek, 1994]. To show this, we removed the image277

power law by spatially whitening the images, and presented the whitened stimuli to the model. Although278

the power law in the image pixels is abolished, the power law in the neural responses of the model279

remains valid (Fig. 5B). These results are similar to the experimental data for the mouse V1 [Stringer280

et al., 2019a].281

We also analyzed the eigenspectrum for the untrained Billeh model, partially trained version of the Billeh282

model (in terms of the number of training epochs), and control models with the same number of neurons283

and synapses as the Billeh model but where all data-based structure was removed (Methods). To quantify284

how close the actual power-law exponent α is to the theoretically ideal values 1 + 2/d, we calculated the285

coefficient of determination, R2 in fitting α to 1 + 2/d (Methods). The larger value of R2 indicates a286

better fitting. Fig. 5G shows that this R2 value increases during training, both for the Billeh model and287

for the equal-sized control model without data-based structure. However, the R2 value stays in a much288

lower range for the latter. Hence, our results support the hypotheses that the data-based structure of the289

Billeh model strongly enhances the quality of neural representations in the model, but this quality only290

becomes apparent once it is trained for visual processing tasks.291

2.4 Noise correlations reduce but do not limit coding fidelity in the data-292

based model293

Fundamental doubts about the capability of neural networks in area V1 of the mouse were raised by294

[Rumyantsev et al., 2020]. It was argued there, on the basis of simultaneous recordings from up to 1,300295

neurons, that correlated noise reduces their capability to encode visual stimuli by sufficiently succinct296

neural codes that can be robustly separated by downstream networks. More precisely, they measured the297

discriminability index d′, see (Fig. 6A for an illustration, where the distance between the mean of neural298

codes for two stimuli is divided by the standard deviation of the neural codes. The square (d′)2 of this299

value is related to the Fisher information [Cover, 1999]. They found that the normalized (d′)2 appears to300

reach a plateau when neural codes from the increasingly large number of neurons were integrated, thereby301

suggesting a fundamental limit on information about a visual stimulus that can be conveyed by neurons302

in V1 to downstream networks. These findings appear to be in contradiction to the results of [Stringer303

et al., 2019a], which suggest that the amount of information that is jointly conveyed by increasing number304

of neurons or PCA components does not reach a plateau at values around 1,000. Hence the question305

arises whether the Billeh model, which we have shown to reproduce the high-dimensional neural codes306

found by [Stringer et al., 2019a], also reproduces the information-limiting results due to noise correlations307

reported by [Rumyantsev et al., 2020]. As in their experiments, we used static gratings as visual stimuli,308

and the task was to judge whether their orientation was smaller or larger than 45◦. We presented stimuli309

with orientations (43◦ or 47◦), an orientation difference that was in the range of the reported behavioral310

discrimination threshold of the mouse [Glickfeld et al., 2013].311

We examined how d′ varied with the number of neurons from which we “record” in the model, using312

between 200 to 51,978 randomly sampled neurons. Figure 6B shows that the increase of d′
2

becomes313

substantially smaller when more than a few thousand neurons are taken into account, but keeps increasing314

when the number of neurons grows further, up to the number of neurons in the Billeh model. At the315

same time, we could also verify a strong information-limiting impact of noise correlation in the model,316
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Figure 4: Dimensionality of neural codes of the model matches detailed experimental data. (A)
Schematic diagram of cvPCA (cross-validated PCA) according to [Stringer et al., 2019a]. A set of images was
presented twice. Noise was independently drawn from the noise distribution for each image (Noise A and Noise B).
Eigenspectrum of visual stimulus responses was estimated by cvPCA; neural responses to the first presentation
(Data A) were factorized by singular value decomposition (SVD). (B) Correlations of neural responses for two
presentations of the same natural image, projected to selected principal components as in Extended Data Fig. 5
of [Stringer et al., 2019a]. Each plot shows the responses of all neurons in the trained Billeh model, projected
onto the specified PC, for the first repeat (x axis) and second repeat (y axis). Thus each point represents the
responses of the network to two presentations of the same stimulus. Altogether there are 2800 points in each
panel, for the same set of 2800 natural images as used in [Stringer et al., 2019a]. One sees that the trial-to-trial
variability in our modification of the Billeh model is substantial, although in the absence of measurement noise
somewhat smaller as in the experiments. (C) In the trained Billeh model, the cumulative fraction of variance is
shown for increasing numbers of principal components, for an ensemble of 2800 stimuli presented twice (blue) and
for 96 presentations of 32 stimuli (green). The dashed line indicates 32 dimensions. One sees that the dimension
of neural presentations that the network employs matches the number of images that are presented, similarly as
in [Stringer et al., 2019a]. (D) Eigenspectra of the untrained/trained Billeh models, and the mouse V1 [Stringer
et al., 2019a] responding to an ensemble of 2800 nature images. One sees that the eigenspectrum of the Billeh
model is already at the beginning similar to that of the data, and moves during training even closer.
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=1.15

E. 5

Figure 5: Power-law of the eigenspectrum of neural codes has in the trained Billeh model an
exponent that is not far from the theoretical optimum. (A)-(E) Examples of presented images (top),
and eigenspectra of neural codes in the model (bottom), for the original natural images (A), spatially whitened
images lacking 1/n image spectrum (B), images projected into eight dimensions (C), images projected into
four dimensions (D), drifting gratings, one-dimensional stimulus ensemble (E). (F) Comparison of power-law
exponents α in the model with the theoretical ideal blues α = 1 + 2/d (dashed line). The blue marker for each
input ensemble is defined at the top left in (A)-(E). (G) Quality of fits of power-law exponents (measured by
R2) to ideal values 1 + 2/d both for the Billeh model (B), untrained (U), after training episode i (E.i) and fully
trained (T), as well as for a control network without biological structure (R). The black dashed line represents
the R2 for the experimental data of [Stringer et al., 2019a]. The red line with circles represents the averaged test
accuracy on the 5 tasks. One sees that training improves for both network models the fit of their eigenspectrum
to experimental data, but the Billeh model comes substantially closer.
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since the normalized d′
2

assumed for trial-shuffled data values that were by several orders of magnitude317

larger (Fig. 6C), similarly as in the recorded data [Rumyantsev et al., 2020].318

According to [Rumyantsev et al., 2020], there was one interesting factor that limited the impact of319

correlated noise in their recorded data: They reported that the visual signaling dimensions were nearly320

orthogonal to the largest noise mode, which therefore had almost no effect on coding fidelity. Interestingly,321

we find that also in the Billeh model the projection of the signal difference ∆µ onto the eigenvector for the322

largest noise eigenvalue is relatively small (Fig. 6D). Furthermore, compared with the untrained Billeh323

model (Fig. 6E), training had moved signal dimension to become more orthogonal to the largest noise324

dimension, similar but less pronounced than in the data of [Rumyantsev et al., 2020].325

2.5 The Billeh model suggests a further reason why behavioral performance326

lags behind neural coding fidelity in area V1327

[Stringer et al., 2021] reported that the behavioral discrimination threshold for orientations in the mouse328

V1 was almost 100 times larger than the discrimination threshold which they inferred from neural coding329

fidelity of populations of 50,000 neurons in area V1 of the mouse. They conjectured that this difference330

was caused by the limitations of downstream decoders. The Billeh model suggests a slightly more refined331

explanation. Direct measurements of coding fidelity on the basis of simultaneous recordings from 50,000332

neurons do not account for the fact that their information content has to be extracted by neurons333

in V1 that project to downstream areas. They are conceptually similar to the postulate of having a334

global readout neuron that receives synaptic input from all 50,000 neurons, see Fig. 2E. However, one335

can demonstrate in the Billeh model that such global linear readout attains for the fine orientation336

discrimination task an accuracy of 98.81%. On the other hand, a pool of 30 projection neurons on337

L5 could only achieve an accuracy of 93.15% if one assumed that they were localized closely together338

(Fig. 2C)), and of 93.61% if they were assumed to be randomly distributed in L5 (Fig. 2D). These results339

suggest that the means by which information from area V1 is extracted and projected to downstream340

areas is a limiting factor that is likely to contribute to the gap between the performance of an ideal341

observer of neural activity in V1 and the behavioral performance of mice.342

2.6 Relating data on criticality of brain networks to the dynamic regime of343

cortical microcircuit models344

The critical brain hypothesis has inspired numerous theoretical and experimental studies [Mora and345

Bialek, 2011, Wilting and Priesemann, 2019]. Nonetheless, experimental results are still contradictory.346

Assessing criticality of brain networks is more intricate than first thought due to undersampling issues.347

We therefore focus here on a subsampling-invariant measurement of the branching ratio m as discussed in348

[Wilting and Priesemann, 2019]. It is intended to measure how many other spikes a spike causes on average349

(Methods). m < 1 indicates a subcritical regime, m > 1 a supercritical regime, and m = 1 a critical350

regime (Fig. 7A). We calculated the branching ratios of untrained/trained RSNN and Billeh models based351

on all neurons, and alternatively based just on all excitatory neurons (Fig. 7). Resulting values are in352

the range of in vivo spike recordings in many brain areas and species [Wilting and Priesemann, 2018a],353

although the number of neurons in the models is far larger than those in experimental recordings. In354

particular, both the untrained and trained Billeh model, containing 51,978 neurons operate according to355

our measurements in the same subcritical regime as neural networks of the brain.356
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Figure 6: The impact of correlated noise on neural coding fidelity in the Billeh model qualitatively
matches experimental data. (A) Schematic of neural ensemble dynamics in a population vector representation
of reduced dimensionality. Trajectories, rA(t) and rB(t), depict single-trial responses to different (gray, red)
stimuli. At a fixed time after stimulus onset, the sets of responses to the two stimuli form two distributions of
points (ellipses). At the bottom left are projections of these distributions onto a subspace, found by PLS (partial
least square) analysis, in which responses to the two stimuli are most distinct. The green line indicates the
optimal linear boundary for classifying stimuli in this subspace. The stimulus discriminability, d′, is defined as
the separation, ∆µ, of the two distributions along the dimension orthogonal to this boundary, divided by the s.d.,
σ, of each distribution along this dimension. (B) (d′)2 values in the trained Billeh model during the interval 1 s
from stimulation onset, plotted against the number of neurons used for analysis. The shading area indicates the
standard deviation calculated over 100 different subsets of neurons. d′ values are normalized by those obtained for
trial-shuffled data (averaged across 1 s). (C) Same as in (B) but for trial-shuffled datasets in which the activity
traces of each neuron are randomly permuted across all trials with the same stimulus. The greater value of d′

2

indicates that correlated noise degrades stimulus representations in the unshuffled data. (D), (E) Training moves
the neural coding dimensions of the Billeh model so that they become more orthogonal to the dominant noise
dimension. Each color denotes a different eigenvector of the noise covariance matrix, numbered in decreasing
order. The largest eigenvalue λ1 is 3.34 times larger than the 2nd largest one λ2, but training drastically reduced
the projection of the neural coding dimensions on its eigenvector.
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A

Supercritical

Subcritical
All neurons Exc. neurons

Figure 7: Comparison of the dynamic regime of the Billeh model with that of neural networks
in the brain. (A) Positive values of ε = 1 −m, where m is the branching ratio indicate a subcritical regime
of a dynamical system. Data from spike recordings from rats, cats, and monkeys according to [Wilting and
Priesemann, 2018a] are shown, their median m̂ = 0.98 indicating subcriticality. Error bars: 16 to 84% confidence
intervals, note that some confidence intervals are too small to be resolved). (B) ε̂ estimated from all neurons in
untrained (light color) and trained (dark color) RSNN (R.) and Billeh model (B.). (C) Same as in (B) but only
for the excitatory (Exc.) neurons in the models. Scale as in (A). One clearly sees that the models operate with
regard to their branching ratio in the same dynamical regime as the brain networks.

2.7 The impact of noise on neural coding and task performance357

We analyzed in the Billeh model also how high-dimensional neural coding properties according to [Stringer358

et al., 2019a] and task performance depend on the type of noise in the model. More precisely, we varied359

during this analysis the scaling factors q and s for the independent quick and slow noise currents in360

each neuron, for the fixed setting of synaptic weights that resulted from training with a low amplitude361

quick noise, and no slow noise. The results in (Table 2) show that task performance of the Billeh model362

generalizes very well to different noise settings, and tolerates in particular also substantial amplitudes of363

slow noise. In addition, the fitted power-law exponent of eigenspectrum remains invariant over a wide364

range of noise amplitudes. However, a remarkable effect occurs for the case of large scaling factors 10365

for quick and slow noise: While task performance remains very high for all 5 tasks, the power law of366

the PCA eigenspectrum breaks down (Fig. S8). This type of noise may be stronger than that found in367

area V1, but this result for the Billeh model makes an important and unexpected point for the theory of368

neural networks in the brain, more precisely for establishing links between their neural coding properties369

and computational capability: It shows that the power law of the PCA eigenspectrum found in [Stringer370

et al., 2019a] is not necessary for achieving high accuracy in the 5 visual processing tasks that we are371

considering.372

2.8 Salient features of cortical microcircuits speed up gradient descent learn-373

ing of the model374

We applied the same training procedure also to control models that lacked salient structural features of375

the Billeh model, and found that their task performance advances substantially slower. In particular,376

we applied the same training procedure that we had applied to the Billeh model also to control models377

where its laminar connectivity structure with topographic maps between laminae was replaced by random378
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Table 2: Impact of different amplitudes of our noise model on the eigenspectrum of neural codes,
the mean firing rate, and average performance for the 5 visual processing tasks. properties. The
light cyan highlights the results for the default noise model used in this study.

Power-lawa

eigenspectrum
Mean firing
rateb (Hz)

Average
acc.

q = 1, s = 0 α = 1.11, I > 100 3.77 90.51%
q = 1, s = 2 α = 1.09, I > 100 3.79 88.87%
q = 1, s = 3 α = 1.31, I > 100 3.81 88.77%
q = 1, s = 3.5 α = 1.25, I > 100 3.88 88.58%
q = 1, s = 4 α = 1.30, I > 100 3.94 88.71%
q = 2, s = 2 α = 1.15, I > 100 3.94 89.10%
q = 2, s = 3.5 α = 1.4, I > 100 3.92 88.68%
q = 3, s = 3 α = 1.19, I > 100 3.94 89.31%
q = 3, s = 4 α = 1.31, I > 100 3.99 88.62%
q = 4, s = 3 α = 1.21, I > 100 3.97 88.97%
q = 4, s = 4 α = 1.58, 0 < I < 100 4.03 88.21%
q = 5, s = 4 α = 1.38, 0 < I < 100 4.07 88.58%
q = 10, s = 10 α = N/A, I = 0 4.18 87.89%
q = 20, s = 20 α = N/A, I = 0 4.28 83.75%
q = 200, s = 200 α = N/A, I = 0 10.19 50.77%

(a) α is the power-law exponent of eigenspectrum when the trained Billeh
model response to 2,800 nature images. I is the interval of the best fitted
power-law function (R2 > 0.8); I = 0 if the best fitting R2 < 0.8.
(b) The mean firing rate measured in the visual change detection task for
nature images.

choice but keep the same number of synaptic connections, or GLIF3 model was replaced by standard LIF379

neuron model, or all data-based details of the Billeh model were deleted (RSNN). We found that during380

the training time, the Billeh model achieved an approximately saturating task performance, whereas381

these control models were only able to reach a substantially lower task performance level, see Fig. 8A.382

The same effect could also be observed for a smaller version of the Billeh model with just 5,000 neurons,383

which we compared with RSNNs containing the same initial weights, numbers of neurons and synaptic384

connections (Fig. 8B). In this case, we found that the performance level of the generic RSNN did not even385

saturate when it was trained much longer, and remained at a performance level significantly below that of386

the Billeh model. Substantially larger computing resources will be needed to determine the performance387

levels that these control models can eventually reach after sufficiently long training.388

It had already been shown that neuron models with slower changing internal variables tend to enhance389

BPTT training, see Fig. 2D of [Plank et al., 2021], and Fig. 3C and Supplementary Movie of [Bellec390

et al., 2020]. Fig. 3C of the latter reference also shows that a similar training advantage holds for391

a biologically more plausible variant of gradient descent learning. But Fig. 8A shows that also the392

laminar connectivity structure of the Billeh model contributes to its learning speed, even it the neuron393

models remain unchanged (yellow curve). One possible explanation is that the laminar structure enforces394

topographic maps between different layers, and hence tends to keep information more local within the395

network. The data-based rapid spatial decay of connection probabilities within a layer has a similar effect.396

This locality of information processing may facilitate learning through local learning mechanisms in such397

network. In contrast, in a generic randomly connected network without this connectivity structure, all398

information is continuously dissipated throughout the network, which is likely to impede the localization399

of processing errors and their correction.400
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Figure 8: Data-based neural network models learn substantially faster. (A) Average test accuracy of
five tasks as a function of training epoch. One epoch contains 781 iterations of weight updates (Methods), costing
around 3.2 hours of wall time on 160 GPUs (A100). All models contain 51,978 neurons. (B) Same as in (A)
but for RSNN and Billeh models with 5,000 neurons (column radius:124 µm). The input images and movies to
LGN model are resized to 44× 52, depending on the receptive fields of the 5,000 neurons. The number of readout
neurons in each group of L5P is reduced to 20.

3 Discussion401

We have demonstrated the feasibility of a research method where neural coding, the impact of noise,402

dynamical network regimes, and computational capabilities are investigated in a detailed large-scale403

model of a patch of a particular neocortical area in a particular species, and compared with recordings404

from many neurons in the same area, the same species, for the same visual inputs, and for the same405

computational tasks. This method has become feasible because of substantial advances in computer406

science and computing technology. It promises to substantially advance our insight into the link between407

structure and function of neural networks of the brain.408

Specifically, we analyzed the detailed large-scale model for a patch of area V1 in mouse from [Billeh409

et al., 2020], and compared results from this model with recordings from large numbers of neurons in410

area V1 of mouse, for the same behavioral (computational) tasks, using the same visual stimuli. The411

results surprised us in several aspects. First, we found that one can assign values to those parameters412

of the model that are not constrained by experimental data, the synaptic weights, so that the model413

can carry out -with the same weight-setting- 5 different visual processing tasks that have already been414

used as behavioral tasks in biological experiments. Furthermore, the trained model achieved for these 5415

tasks about the same performance as trained mice. It was not obvious that training of the model could416

achieve that, since we used a substantially more constrained and arguable biologically more realistic417

rule for extracting the computational result from the model: We demanded that the firing of concrete418

populations of projection neurons on L5 encode and transmit the result of the network computation419

rather than an abstract global readout neuron. In addition, we employed a biologically more realistic420

model for noise in the network, which additionally constrained the computing capability of the network.421

One should, however, also be aware of two differences between the 5 visual processing tasks in the model422
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and in the animal experiments: In order to reduce computing time for training the Billeh model each423

visual processing task was implemented within trials that lasted just 600 ms, whereas the tasks in the424

experiments often contained longer delays. In addition, we were not able to model the contribution of425

other brain areas than LGN and V1 for solving these tasks, although other brain areas are likely to be426

salient -especially for the case of longer delays within a trial. On the side, we would like to emphasize427

that we tested the trained model -whenever possible- for new visual stimuli that had not been shown428

during training (this was not possible for the gratings that occurred in some of the experiments). In that429

sense, we evaluated the generalization capability of the trained Billeh model, rather than its capability430

to handle a fixed set of stimuli correctly (which often suffices to solve behavioral tasks in experiments).431

A rather surprising result was that the trained Billeh model automatically reproduced a number of432

details of experimental recordings for which it had not been trained. In particular, high-dimensional433

neural codes for natural images emerge in this model, as reported in [Stringer et al., 2019a], with an434

exponent in the power law of the PCA spectrum that is very close to biological measurements. To be435

precise, the untrained Billeh model had already a PCA spectrum that was in the range of the recorded436

data (see Fig. 4D). But the training process moved it substantially closer to the experimental data, see437

Fig. 4D and Fig. 5G. Hence this PCA spectrum appears to be helpful for solving the 5 visual processing438

tasks. This is especially remarkable in view of the theoretical analysis of [Stringer et al., 2019a], which439

suggests that this particular exponent is close to optimal for combining a maximum of information about440

the stimulus with good generalization capability.441

In addition, we found that correlated noise does increase the difficulty to discriminate neural responses442

to slightly different pairs of visual stimuli in the Billeh model, as found for mouse V1 in [Rumyantsev443

et al., 2020]. But since we could carry out this analysis for much larger number of neurons than those444

recorded in [Rumyantsev et al., 2020], our modeling result produced a concrete and somewhat surprising445

prediction (see Figure 6B): That recordings from larger numbers of neurons in V1 will find that the446

discrimination capability does not saturate, but will continue to increase when larger neural populations447

are taken into account. We also would like to mention that conceptually there is no contradiction between448

the high-dimensional neural codes found by [Stringer et al., 2019a] and the limiting impact of correlated449

noise found by [Rumyantsev et al., 2020]: The latter focused on the discrimination of two very similar450

visual stimuli, whereas the former analyzed neural codes for a large repertoire for natural images.451

We also examined the dynamic regime of the model, using the subsampling-invariant estimator proposed452

by [Wilting and Priesemann, 2018a] based on the branching ratio. We found that according to this453

estimator the Billeh model operates in the same slightly subcritical regime as neural networks in the454

brain.455

Another unexpected result of the model was that its computational performance (accuracy) remained,456

without adaptation of synaptic weights or other parameters, within the range of observed behavioral457

performance even when we drastically increased the noise during testing. In fact, we identified a high458

noise regime where the power law behavior of the PCA spectrum that was found in area V1 of mouse459

[Stringer et al., 2019a] was destroyed, but not the task performance of the model. This modeling result460

rise to an immediate question for further experimental work: Can one also destroy in the living brain461

this power law without significantly reducing behavioural performance for visual processing tasks?462

But even before this prediction can be tested experimentally, our result has an immediate consequence463

for the theory in the Supplement of [Stringer et al., 2019a], where it had been shown that this power464

law is in a precise sense essential for effective neural coding and learning. Our result implies that this465

theory does not apply to the 5 visual processing tasks that we considered (although the experimentally466

found power law appears to be helpful for solving them, since training for these tasks caused the model to467

approximate this power law). Since these 5 tasks were among the most challenging visual processing tasks468

that mice appear to be able to solve, our result gives rise to the question of whether more challenging469
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visual processing tasks can be found that can be accomplished by mice, and for which the found power470

law of the PCA spectrum is essential.471

Another suggestion for further research that results from our results is that it would be good to take a472

closer look at the amplitude and statistical structure of noise both in the brain. Noise has often also been473

neglected in models of neural circuits in the brain, and if noise was included, often little attention has474

been placed on calibrating its amplitude and distribution on the basis of experimental data. Data-based475

large-scale models offer an excellent venue for studying the impact of specific forms of noise on concrete476

neural coding and computing properties, and for comparing these results. As we have seen, such analysis477

appears to be relevant for testing the validity of theories on neural coding and computation.478

Computational properties of neural networks in the brain have so far been primarily investigated in479

generic networks of recurrently connected networks of artificial neurons or generic spiking neurons. We480

have demonstrated that one can expand such investigations now to include also rather detailed data-based481

models, whose properties appear to be in several fundamental aspects quite different. In addition, these482

more detailed models make it much easier to compare modeling results with biological data, since these483

models are able to make specific predictions for the spike output of specific types of neurons on specific484

layers of cortical microcircuits.485

Finally, an unexpected result of training the data-based model of [Billeh et al., 2020] was that this model486

was easier to train, i.e., it learned faster, than control models where essential features of this data-based487

model, such as laminar structure or generalizations of LIF neuron models that also model slower internal488

processes, were deleted (Fig. 8). It will be interesting to see whether this effect also arises for biologically489

more realistic learning methods. We did not try to train the Billeh model through a method that can be490

argued to be biologically realistic, such as [Bellec et al., 2020], because training with such methods tends491

to take substantially more trials, and therefore exceeded our computing resources. But since we now492

know that the Billeh model is in fact able to carry out the 5 visual processing tasks that we considered,493

one can now look for various biologically more realistic ways in the network initialization and/or learning494

algorithm -also for smaller instances of the Billeh model- that can induce a similar computing capability495

or neural coding features.496

An interesting side result is that the trained Billeh model is able to solve the 5 visual processing tasks in an497

energy-efficient sparse firing regime of around 4 Hz. This demonstrates that visual processing is possible498

in large networks of spiking neurons with spike- rather than rate-coding, hence in an operating regime499

that is desirable for the design of architectures and algorithms for highly energy-efficient spike-based500

neuromorphic chips [Davies et al., 2021].501

4 Methods502

4.1 Neuron model503

We base our study on the “core” part of the point-neuron version of the realistic V1 model introduced by504

[Billeh et al., 2020], containing 51,978 neurons from 111 different data-based neuron types. Each neuron505

type was modeled by the GLIF3 model [Teeter et al., 2018]. To make it gradient-friendly, we replaced506

the hard reset of membrane potential after a spike emerges with the reduction of membrane potential507

zj(t)vth, where zj(t) = 1 when neuron j fires at time t and zj(t) = 0 otherwise. vth is the firing threshold508

of membrane potential. We simulated each trial for 600 ms. The dynamics of the modified GLIF3 model509
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was defined as510

vj(t+ 1) = αvj(t) +
1− ατ
C

(
Iej (t+ 1) +

∑
m

Imj (t+ 1) + gEL + Isyn
j (t)

)
− zj(t)vth

zj(t) = H (vj(t)− vth)

Iej (t) =
∑
i

W in
ji xi(t) + qKquick

j (t) + sKslow
j

(2)

where C represents the neuron’s capacitance, EL, the resting membrane potential, Ie, the external511

current, Isyn, the synaptic current, Θ, the spiking threshold. W in
ji is the synaptic weight from LGN512

neuron i to V1 neuron j. The scales of the quick noise Kquick
j (t) and the slow noise Kslow

j to neuron j are513

q = 2 and s = 2, respectively. Kj was randomly drawn from the empirical noise distribution on which514

will be elaborated later. The decay factor α is given by e−δt/τ , where τ is the membrane time constant.515

δt denotes the discrete-time step size, which is set to 1 ms in our simulations. H denotes the Heaviside516

step function. Owing to the term −ztjvth , the neuron membrane potential is reduced by a constant value517

after an output spike, which relates our model to the spike response model [Gerstner et al., 2014]. To518

introduce a simple model of neuronal refractoriness, we further assumed that ztj is fixed to 0 after each519

spike of neuron j for a short refractory period depending on the neuron type. The after-spike current520

Im(t) was modeled as521

Im(t+ 1) = fmIm(t) + z(t)δIm; m = 1, . . . , Nasc, (3)

where the multiplicative constant fm = exp (−kmδt) and an additive constant, δIm. In our study,522

Nasc = 2. All neuron parameters depended on the neuron type as in [Billeh et al., 2020].523

4.2 Synaptic Characteristics524

Postsynaptic current-based synaptic mechanisms were used with dynamics described by an alpha-function:525

526

Isyn(t) =
eW rec

τsyn
te
− t
τsyn (4)

where Isyn is the postsynaptic current, τsyn is the synaptic port time constant, and W rec is the recur-527

rent connection weight. The τsyn constants for the mechanisms were 5.5 ms for excitatory-to-excitatory528

synapses, 8.5 ms for inhibitory-to-excitatory synapses, 2.8 ms for excitatory-to-inhibitory synapses, and529

5.8 ms for inhibitory-to-inhibitory connections, which were extracted from [Billeh et al., 2020]. The synap-530

tic delay is spread in [1, 4] ms, which was extracted from the Fig. 4E of [Billeh et al., 2020] and converted531

to integers as the integration step is 1 ms.532

4.3 Initial conditions533

The initial conditions of spikes and membrane potentials were zero. The initial conditions of W in and534

W rec were given by the values in [Billeh et al., 2020] unless stated otherwise.535

4.4 Noise models536

The noises currents Kquick
j (t) and Kslow

j in Eq. 2 were randomly drawn from an empirical noise distribu-537

tion. The quick noiseKquick
j (t) was drawn independently for all neurons in every 1 ms; the slow noiseKslow

j538
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was drawn independently for all neurons once 600 ms. The empirical noise distribution (Fig. 2A) was539

from the additive noise decoded from experimental data of mice response to 2,800 nature images [Stringer540

et al., 2019a] (https://figshare.com/articles/Recordings_of_ten_thousand_neurons_in_visual_541

cortex_in_response_to_2_800_natural_images/6845348). The decoding method was cross-validation542

principal component analysis (cvPCA) [Stringer et al., 2019b]; more precisely, the code in https:543

//github.com/MouseLand/stringer-pachitariu-et-al-2018b.544

4.5 Readout populations545

In total, there were 15 readout populations in the V1 model, encoding the network decisions for the 5546

visual processing tasks. Each population was 30 randomly selected excitatory neurons in layer 5, within547

a sphere of a radius of 55 µm. They were spatially located far away from each other (Fig. 3A).548

4.6 Visual tasks549

To demonstrate that the realistic V1 model is able to perform multiple tasks, we trained the model550

with five tasks together; each task was distributed in different 64 bathes. All stimuli of these tasks were551

given via the LGN model (Fig. 3A). As the requirement of the LGN model input, the original image was552

converted to gray-scale images and scaled the gray value of the image pixels to [−Int, Int], Int > 0. The553

LGN model output was sent to the neural network model as external current, i.e.,554

Isti = Winput · LGN(GInt), (5)

where GInt the scaled gray images in [−Int, Int].555

Fine orientation discrimination task We set up the fine orientation discrimination task as in [Stringer556

et al., 2021] and [Rumyantsev et al., 2020] (Fig. 3C). Stimuli were sinusoidal drifting gratings (spatial557

frequency, 0.05 cycles per degree, drifting rate, 2 Hz). The intensity of the grating was 2 (Int in Eq. 5).558

The initial phase was randomly sampled. The inputting sequence consisted of 50 ms delay, 100 ms drifting559

gratings, and 50 ms delay. In the post-delay period, one readout population needed to report if the560

orientation in the drifting grating is larger than 45◦. In the training set, the orientation was drawn from561

[43, 47]◦ (i.e., 45± 2) with the precision of 0.1◦. The orientation difference was the same as in [Stringer562

et al., 2021].563

Image classification task To isolate the classifying ability of the neural network, we trained the model564

to classify MNIST dataset (Fig. 3D). MNIST is made of simple curves without complex features and565

structures, which provides a suitable task that the V1 can potentially recognize without other association566

areas. The intensity of the image input to LGN was 2 (Int in Eq. 5). The inputting sequence consisted567

of 50 ms delay, 100 ms static image, and 50 ms delay. The neural network reported the classification in a568

window of 50 ms, 100 ms after the onset of the image. In the post-delay period, ten readout populations569

needed to report the image class.570

Visual change detection task with natural images We trained the model to perform the visual571

change detection task considered in [Garrett et al., 2020, Siegle et al., 2021]. In this task, the model was572

presented with a sequence of images, interleaved by delays of gray screen, and has to report whenever573

the newly presented image differs from the previously shown one (Fig. 3B). More precisely, images were574

presented for 100 ms each, with the gray delays between them lasting for 200 ms. Note that the first575

image was presented after 50 ms. All images were selected from a set of 40 possible images from the576

ImageNet dataset. The changing probability of image identities is 50%. In case of a changed image577
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identity, the model had to perform a report within a time window of 50 ms length after 150 ms of image578

onset (response window).579

Visual change detection task with drifting gratings We also replaced the natural images above580

with static gratings which have different orientations and kept the input sequence the same (Fig. 3B).581

The setting of the static grating is the same as in the fine orientation discrimination task except it is582

static. The changing probability of orientation is 50%; the orientation of static gratings was drawn in583

[120, 150] (i.e., 135± 15) with the precision of 0.1◦.584

Evidence accumulation task A hallmark of cognitive computations in the brain is the capability to585

go beyond a purely reactive mode: to integrate diverse sensory cues over time, and to wait until the right586

moment arrives for an action. A large number of experiments in neuroscience analyze neural coding after587

learning such tasks (see e.g., [Morcos and Harvey, 2016, Engelhard et al., 2019]). We considered the same588

task that was studied in the experiments of [Morcos and Harvey, 2016, Engelhard et al., 2019]. There a589

rodent moved along a linear track in a virtual environment, where it encountered several visual cues on590

the left and right (Fig. 3E). Later, when it arrived at a T-junction, it had to decide whether to turn left591

or right. The network should report the direction from which it had previously received the majority of592

visual cues. The right (left) cue was represented by 50 ms of cue image in which the black dots on the593

right (left) side of the maze. Visual cues were separated by 10 ms, represented by the gray wall of the594

maze. After a delay of 250 ms, it has to decide if more cues were received on the left or right via two595

readout populations.596

For the fine orientation discrimination task and the image classification task, 400 ms delay was added597

after the response window (Fig. 3B, C) to make the simulation time equal with other tasks. Besides the598

visual detection tasks, the spikes and membrane potentials were reset to 0 after a trial.599

4.7 Loss function600

The loss function was defined as601

L = Lcross-entropy + λfLrate reg. + λvLv reg., (6)

where Lcross-entropy represents the cross-entropy loss, λf and λv represent the weights of firing-rate regu-602

larization Lrate reg. and voltage regularization Lv reg., respectively. As an example, the cross-entropy loss603

of visual change detection tasks was given by604

Lcross-entropy = −
∑
n

[
t(n) log σ

(
θ
(
r(n) − r0

))
+
(

1− t(n)
)

log σ
(
θ
(
r(n) − r0

))]
, (7)

where the sum over n is organized into chunks of 50 ms and r(n) denotes the population firing rate of605

the readout neurons in that time interval. Similarly, t(n) denotes the target output in that time window,606

being 1 if a change in image identity should be reported and otherwise 0. r0 denotes a baseline firing607

rate. σ represents the sigmoid function. θ is trainable scale (θ > 0) of firing rate.608

We also used regularization terms to penalize unrealistic firing rates as well as unrealistic membrane609

voltages. Their weights, λrate reg. = 0.1 and λv reg. = 10−5. The rate regularization is given by the Huber610

loss [Huber, 1992] between the target firing rates, y, calculated from the model in Ref. [Billeh et al.,611
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2020], and the firing rates, r, sampled the same number of neurons from the network model:612

Lrate reg. =
N∑
j

|τj − I {δj < 0}| Lκ (δj)

κ
, with

Lκ (δj) =

{
1
2δ

2
j , if |δj | ≤ κ

κ
(
|δj | − 1

2κ
)
, otherwise

(8)

where j represents neuron j, N the number of neurons, τj = j/N , δ = 0.002, δj = rj − rtarget
j . I(x) = 1613

when x is true; I(x) = 0 when x is false.614

The voltage regularization was given by615

Lv reg. =
1

N

j=N∑
j=0

([
vj − EL

EL
− 1

]+
)2

+

([
−vj − EL

EL
+ 1

]+
)2

, (9)

where N represents the total number of neurons, vj , the membrane potential of neuron j, EL, the resting616

membrane potential, []+, rectifier function.617

4.8 Training methods618

We applied back-propagation through time (BPTT) [Scherr and Maass, 2021] to minimize the loss func-619

tion. The non-existing derivative
∂ztj
∂v′j

was replaced in simulations by a simple nonlinear function of the620

membrane potential that is called the pseudo-derivative. Outside of the refractory period, we chose a621

pseudo-derivative of the form622

ψtj = γpdexp

(
− (vtsc)

2

σ2
p

)
,

vtsc =
vt − vth

vth − EL
,

(10)

where the dampening factor γpd = 0.5, the Gaussian kernel width σp = 0.28. During the refractory623

period, the pseudo derivative is set to 0. During the training, we added the sign constraint on the weights624

of the neural network to keep the Dale’s law. Specifically, if an excitatory weight was updated to a625

negative value, it would be set to 0; vice versa.626

4.9 Other simulation details627

The BPTT training algorithm was coded in TensorFlow, which runs very efficiently on multiple GPUs.628

For 5 tasks, we run independent simulations in parallel by distributing each task in a batch with 64629

instances. In every instance of each task, a simulation of the Billeh model for 600 ms of biological630

time was run, taking around 5 s on a NVIDIA A100 GPU. Once all batches finished their tasks (one631

step), gradients were calculated and averaged to update the weights by BPTT. We define an epoch as632

781 iterations/steps because it is one cycle through the full training dataset of MNIST dataset. This633

computation had to be iterated 6 epochs in order to achieve high computational performance for the634

chosen tasks, which took 20 h of wall clock time on 160 GPUs.635
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4.10 Control model636

The control model is a randomly connected recurrent network of spiking neurons with the same numbers637

of neurons and connections, referred to as RSNN. In RSNN, all data-based features of Billeh model were638

removed: GLIF3 neuron model was replaced by standard LIF model; neural connectivity representing639

laminar structure was replaced by random connectivity; diverse neuron types were replaced by a single640

neuron type (the excitatory neuron on L2/3, node type id in Allen brain atlas: 487661754); Dale’s law641

was removed; initial weights were replaced by random values drawn from the Gaussian distribution with642

the same mean and variance with the Billeh model.643

4.11 High-dimensional population responses644

To explore the dimensionality of internal representation in the Billeh model, we input the same stimuli645

to the V1 model as Stringer et al showed to the mice: nature images, whitened images, 4D images, 8D646

images, sparse noise, 1D drifting gratings [Stringer et al., 2019a]. Briefly, 2800 nature image stimuli were647

selected from the ImageNet database. The images were uniformly contrast normalized. Stringer et al648

presented stimulus replicated across all three screens, but at a different rotation on each screen (see their649

Fig. 1c). We chose the one shown on the left screen and resized it for the requirement of the LGN650

model. Additionally, we input a smaller set of 32 images, repeating 90 times, to enable estimation of651

trial-averaged responses. To break the power-law spectrum of natural images, all images were whitened652

by dividing their Fourier transform by the averaged Fourier spectrum across all images with a small653

constant value added for regularization purposes.654

The 4D and 8D stimuli were constructed using a reduced-rank regression model. We first used reduced-655

rank regression to predict the neuronal population responses R from the natural images I (Npixels ×656

Nstimuli) via a d-dimensional bottleneck: R = ATBI, where A is a matrix of size d × Nneurons and B657

is a matrix of size d × Npixels. The dimensionality d was either eight or four depending on the set of658

stimuli being constructed. The columns of B represent the image dimensions that linearly explain the659

most variance in the neural population responses. The stimuli were the original 2800 natural images660

projected onto the reduced-rank subspace B : Ilow−d = BTBI. In addition to natural image stimuli,661

we also presented drifting gratings of 32 directions. They were presented 90 times each. Their spatial662

frequency was 0.05 cycles per degree and their temporal frequency was 2 Hz. To simulate the spontaneous663

activity, we input the image whose pixel values are zero to the LGN model.664

All stimuli were input 50 ms after the simulation and sustained for 500 ms in each trial to be the same665

with experimental procedures, unless stated otherwise. They were played twice to allow cross-validated666

analysis. The initial condition of membrane potential and spike was set to zeros, unless otherwise stated.667

We input the 2800-nature-image stimuli 5 times with different random seeds to draw the noise and668

initial membrane potential from uniform distribution between resting potential and firing threshold, i.e.,669

U ∼ [EL, vth]. The results were not sensitive to the initial condition and noise.670

To reproduce the high-dimensional geometry of population responses in the visual cortex [Stringer et al.,671

2019a], we used cross-validation principal component analysis (cvPCA) to estimate the stimulus-related672

variance. cvPCA provides a way to analyze the dimensionality of the image encoding in neural system.673

cvPCA measures the reliable variance of stimulus-related dimensions, excluding trial-to-trial variability674

from unrelated cognitive and/or behavioral variables or noise. It accomplishes this by computing the co-675

variance of responses between two presentations of an identical stimulus ensemble (Fig. 4A). Because only676

stimulus-related activity will be correlated across presentations, cvPCA provides an unbiased estimate of677

the stimulus-related variance. To be consistent with [Stringer et al., 2019a], we sum the spikes of 500 ms678

in response to stimuli. We ran cvPCA ten times on the response of the neural network fed with the same679
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images that are used in [Stringer et al., 2019a]. On each iteration randomly sampling the population680

responses of each stimulus from the two repeats without replacement. We ran ten different runs and681

found they were very similar to each other, i.e, the s.d. was close to 0. For the trained Billeh model, we682

calculated the eigenspectra in three models trained with different noise and randomly generated data,683

and found the s.d. is 5.95× 10−5. The displayed eigenspectra of the trained Billeh model were averaged684

over these three models.685

Power-law fitting of eigenspectra. Using the least-squares method, we fit power laws to the eigen-686

spectra, f(n), against PC dimension, n. The fitting function is f(n) = n−α(n ∈ [nmin, nmax]), where687

nmin and nmax are lower and higher bounds, respectively. For each possible pair of nmin and nmax, we688

estimated the exponent α and its goodness-of-fit by the coefficient of determination (R2). We then se-689

lected as our estimate of nmin, nmax, and α that gave the maximum R2 (> 0.99) over all possibilities.690

For example, the nmin = 2, nmax = 2253, and α = 1.17 in the eigenspectrum of the trained Billeh model691

response to 2,800 nature images.692

Quantifying the goodness-of-fit of power-law exponent of eigenspectra to theoretical pre-693

diction. The power-law exponent α describes the decaying speed of eigenspectrum; the kernel theory694

predicted that the power-law exponent α characterizes the smoothness of the neural responses [Stringer695

et al., 2019a]. If the sensory stimuli presented can be characterized by d parameters, and if the mapping696

from these parameters to (noise-free) neural population responses is differentiable, then the population697

eigenspectrum must decay asymptotically faster than a power law of exponent α = 1 + 2/d (low dimen-698

sion coding). Conversely, if the eigenspectrum decays slower than this (high dimension coding), a smooth699

neural code (similar stimuli give rise to similar responses) is impossible, allowing small changes in input700

to dominate population activity. Therefore, 1 + 2/d indicates the best coding scheme, at the balance701

between high-dimension (uncorrelated, efficient) and low-dimension (correlated, smooth) representation.702

We thus used the coefficient of determination (R2) to quantify the power-law exponent (α) of eigenspectra703

fitting to the theoretical prediction 1 + 2/d where d is the dimension of input images. The larger value704

of R2, the better fitting. We denoted the α fitted with input image type i as αi and the dimension of705

input image type i as di. If α was the mean of all the observed {αi}, then the variability of {αi} can be706

measured with two sums of squares formulas: the residual sum of squares:707

SSres =
∑
i

[
αi −

(
1 +

2

di

)]2

, (11)

and the total sum of squares (proportional to the variance of the data)708

SStot =
∑
i

[αi − α]2. (12)

The definition of R2 is709

R2 = 1− SSres

SStot
(13)

4.12 d′ for neural responses to visual stimuli710

To estimate how much information the neural activity conveyed about the stimulus identity, following711

[Rumyantsev et al., 2020], we used the metric d′, which characterizes how readily the distributions of the712

neural responses to the two different sensory stimuli can be distinguished [Bishop, 2007]. The quantity713

(d′)
2

is the discrete analog of Fisher information [Averbeck and Lee, 2006]. To be consistent with the714

experimental study [Rumyantsev et al., 2020], we calculated the neural response as the spike counts in715

each bin of 200 ms and evaluated two different approaches to compute d′ values for the discrimination of716
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the two different visual stimuli (gratings in the fine orientation discrimination task; the difference between717

two gratings is 2 ◦.718

In the first approach, i.e., instantaneous decoding, we chose for analysis a specific time bin relative to the719

onset of visual stimulation. To examine the time-dependence of d′, we used the instantaneous decoding720

approach and varied the selected time bin from t = 0 s to t = 2 s relative to the start of the trial. The721

number of dimensions of the neural ensemble activity evoked in response to the visual stimulus was N0,722

the number of recorded neurons (N0). Said differently, the set of estimated spike traces provided an723

N0-dimensional population vector response to each stimulus presentation.724

In the second approach, termed cumulative decoding, we concatenated the responses of each neuron over725

time, from the start of the trial up to a chosen time, t. In this case, the dimensionality of the population726

activity vector was N0 ×Nt, where Nt is the number of time bins spanning the interval [0 s, t].727

In each of the decoding approaches, we arranged the traces of estimated spike counts into three-dimensional728

data structures (number of neurons × number of time bins × number of trials), for each of the two visual729

stimuli. To be consistent with [Rumyantsev et al., 2020], we used the neural response in 2 s, the bin size730

of 200 ms, and 4500 trials for each stimulus.731

To determine d′ accurately despite having about fewer trials than neuron number in the Billeh model, we732

reduced dimensional by using partial least squares (PLS) analysis [Geladi and Kowalski, 1986] to identify733

and retain only five population vector dimensions in which the stimuli were highly distinguishable as in734

[Rumyantsev et al., 2020]. In this five-dimensional representation, the neural dynamics evoked by the735

two stimuli become distinguishable over the first 200 ms of stimulus presentation. In the reduced space736

with NR=5 dimensions, we calculated the (d′)
2

value of the optimal linear discrimination strategy as:737 (
d′opt

)2
= ∆µTΣ−1∆µ = ∆µTwopt (14)

where Σ = 1
2 (ΣA + ΣB) the noise covariance matrix averaged across two stimulation conditions, ∆µ =738

µA − µB is the vector difference between the mean ensemble neural responses to the two stimuli and739

wopt = Σ−1∆µ, which is normal to the optimal linear discrimination hyperplane in the response space740

[Averbeck and Lee, 2006].741

We also calculated (d′shuffled )
2
, the optimal linear discrimination performance using trial-shuffled datasets,742

which we created by shuffling the responses of each cell across stimulation trials of the same type. Owing743

to this shuffling procedure, the off-diagonal elements of ΣA and ΣB became near zero.744

Eigenvalues of the noise covariance matrix To examine how the statistical structure of neural noise745

affects the ability to discriminate neural responses to the two different visual stimuli, we expressed (d′)
2

746

in terms of the eigenvalues λα and eigenvectors eα of the noise covariance matrix Σ:747

(d′)
2

= ∆µTΣ−1∆µ =
∑
α

(
|∆µ · eα|2

λα

)
(15)

which can be viewed as a sum of signal-to-noise ratios, one for each eigenvector. Clearly, the eigenvectors748

well aligned with ∆µ are the most important for discriminating between the two distributions of neural749

responses.750

4.13 Branching ratio751

Based on the work of [Wilting and Priesemann, 2018b], we examined the branching ratio of the networks752

sampled in our model. Summarily, the branching ratio is the ratio of the number of neurons spiking at753
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time t+ 1 to the number of spiking neurons at time t. Critical regimes, by their nature, are balanced and754

avoid runaway gain (positive or negative) and have a branching ratio of 1.0. The methods introduced755

by [Wilting and Priesemann, 2018b] are robust to severe subsampling and thus provide an effective756

alternative approach to assessing critical dynamics in our recordings.757

In a network with A active neurons at time t, if the branching ratio is a fixed value then 〈At+1 | At〉 =758

mAt+h where<|> denotes the conditional expectation, m is the branching ratio and h is a mean rate of an759

external drive/stimulus. Considering subsampling, at is proportional to At on average < at |At〉 = ηAt+ξ,760

where η and ξ are constants. This subsampling leads to a bias: m
(
η2 Var[At]/Var[at]− 1

)
. Instead of761

using time t and t+1, this method focuses on times t and t+k with different time lags k = 1, . . . , kmaximum .762

With this, the branching ratio mk is < at+k | at >= mk = η2 Var [At] /Var [at]m
k = bmk, where b is a763

constant. To compute mk with different k, we obtained an exponential curve and extracted m from this764

curve. For details see [Wilting and Priesemann, 2018a], we examined a range of k and searched different765

results using kmaximum from tens to one thousand. We then chose kmaximum for each animal by checking766

the baseline period. We selected kmaximum as the k that returned m closest to 1.0 during baseline. For767

the seven animals used in this study, kmaximum values were selected for each animal during the recording768

baseline and maintained throughout the remainder of the experiment.769

We input a series of nature images as in the visual change detection task of nature image to stimulate770

the neural network for 15 s.771
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Supplementary materials883

Table S1: Performances on 5 tasks are not sensitive to the noise level. The light cyan highlights
the noise level used in this study unless otherwise stated. VCDN is tested on novel images. FOD,
fine orientation discrimination; IC, image classification; VCDN, visual change detection of nature
images; VCDG, visual change detection of gratings; EA, evidence accumulation.

FOD
acc.

IC
acc.

VCDN
acc.

VCDG
acc.

EA
acc.

q = 1, s = 0 93.67% 89.14% 83.61% 92.37% 93.75%
q = 1, s = 2 93.09% 88.49% 83.42% 89.22% 92.92%
q = 1, s = 3 93.47% 88.97% 82.52% 88.73% 90.17%
q = 1, s = 3.5 93.73% 88.49% 81.11% 88.58% 91.00%
q = 1, s = 4 93.06% 88.81% 82.30% 87.86% 91.50%
q = 2, s = 2 93.15% 88.92% 83.25% 89.25% 90.92%
q = 2, s = 3.5 93.93% 89.19% 82.20% 87.51% 90.58%
q = 3, s = 3 94.10% 88.81% 81.87% 89.52% 92.25%
q = 3, s = 4 93.53% 89.02% 83.06% 88.14% 89.33%
q = 4, s = 3 93.91% 88.91% 82.53% 88.16% 91.33%
q = 4, s = 4 93.47% 88.16% 82.16% 88.17% 89.08%
q = 5, s = 4 93.32% 88.49% 81.41% 89.12% 90.58%
q = 10, s = 10 94.03% 88.54% 82.97% 89.56% 84.33%
q = 20, s = 20 91.01% 86.63% 77.41% 85.95% 77.75%
q = 200, s = 200 54.58% 39.56% 53.09% 53.96% 52.67%
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Figure S1: After learning, the model reliably distinguishes the orientation of gratings in the fine orientation
discrimination task. (A) Colorful lines represent the timing of input images. Numbers on them represent the
orientations of input gratings. The bottom colormap demonstrates the activity of LGN neuron activity. (B) Spike
raster of the laminar V1 model. Red and blue dots represent the spikes of excitatory and inhibitory neurons,
respectively. Note that the spike and membrane potential of the model was reset to 0 after one classification was
done (separated by the think black line). (C) Spike raster of readout neurons. Color codes of panels are the same
as in Fig. 3A. From the top to bottom, there are readout populations of the fine orientation discrimination, the
image classification, the visual change detection of nature images and gratings, and the evidence accumulation
tasks.
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Figure S2: After learning, the model reliably classify the MNIST images. (A) Colorful lines represent the timing
of input images. Numbers on them represent the digits in the input images. The bottom colormap demonstrates
the activity of LGN neuron activity. (B) Spike raster of the laminar V1 model. Red and blue dots represent the
spikes of excitatory and inhibitory neurons, respectively. Red and blue dots represent the spikes of excitatory
and inhibitory neurons, respectively. Note that the spike and membrane potential of the model was reset to 0
after one classification was done (separated by the think black line). (C) Spike raster of readout neurons. Color
codes of panels are the same as in Fig. 3A. From the top to bottom, there are readout populations of the fine
orientation discrimination, the image classification, the visual change detection of nature images and gratings,
and the evidence accumulation tasks.
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Figure S3: After learning, the model reliably reported the image identity change in the visual change detection
task. (A) Colorful lines represent the timing of input images and the colors code the image identity. The bottom
colormap demonstrates the activity of LGN neuron activity. (B) Spike raster of the laminar V1 model. The slow
noise was resampled every 600 ms. Red and blue dots represent the spikes of excitatory and inhibitory neurons,
respectively. (C) Spike raster of readout neurons. Color codes of panels are the same as in Fig. 3A. From the
top to bottom, there are readout populations of the fine orientation discrimination, the image classification, the
visual change detection of nature images and gratings, and the evidence accumulation tasks.
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Figure S4: After learning, the model reliably reported the image identity change in the visual change detection
task. (A) Colorful lines represent the timing of input images and the colors code the image identity. Numbers
on them represent the orientations of input gratings. The bottom colormap demonstrates the activity of LGN
neuron activity. (B) Spike raster of the laminar V1 model. The slow noise was resampled every 600 ms. Red
and blue dots represent the spikes of excitatory and inhibitory neurons, respectively. (C) Spike raster of readout
neurons. Color codes of panels are the same as in Fig. 3A. From the top to bottom, there are readout populations
of the fine orientation discrimination, the image classification, the visual change detection of nature images and
gratings, and the evidence accumulation tasks.
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Figure S5: After learning, the spiking activity in the evidence accumulation task. (A) Colorful lines represent
the timing of input left/right cues. The bottom colormap demonstrates the activity of LGN neuron activity. (B)
Spike raster of the laminar V1 model. Red and blue dots represent the spikes of excitatory and inhibitory neurons,
respectively. Note that the spike and membrane potential of the model was reset to 0 after one classification was
done (separated by the think black line). (C) Spike raster of readout neurons. Color codes of panels are the same
as in Fig. 3A. From the top to bottom, there are readout populations of the fine orientation discrimination, the
image classification, the visual change detection of nature images and gratings, and the evidence accumulation
tasks.

37

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.07.471653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471653
http://creativecommons.org/licenses/by-nd/4.0/


0 10 20 30

Excitatory weight

100

103

106

C
ou

nt
s

Before
training

After
training

A

-15 -10 -5 0

Inhibitory weight

100

103

106

Before
training

After
training

B

Figure S6: Distribution of recurrent weights before and after learning the 5 tasks. (A) Distribution
of excitatory weights. (A) Distribution of inhibitory weights.
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Figure S7: Distribution of recurrent weights between each population before (light blue) and
after learning (dark blue) the task. Each row represents a pre-synaptic neuron population, and each column
represents a post-synaptic neuron population. The histogram represents the distribution of synaptic weights of
all synaptic connections that share the same pre-synaptic and post-synaptic neuron population. Vertical axis in
each panel is log-scale. Horizontal axis is linear scale and horizontal range is from the smallest value to the largest
value of each population. The number is 1 −D where D is from the Kolmogorov–Smirnov test, quantifying the
similarity between distributions [Billeh et al., 2020]. Exc., excitatory neurons.
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Figure S8: Strong noise breaks the power-law eigenspectrum. When s = 10, q = 10, the eigenspectrum
of the trained Billeh model response to 2,800 nature images is not power law.
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