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Abstract 

Cognitive ageing is a complex process which requires multimodal approach. Neuroimaging can 

provide insights into brain morphology, functional organization and vascular dynamics. 

However, most neuroimaging studies of ageing have focused on each imaging modality 

separately, limiting the understanding of interrelations between processes identified by 

different modalities and the interpretation of neural correlates of cognitive decline in ageing. 

Here, we used linked independent component analysis as a data-driven multimodal approach 

to jointly analyze magnetic resonance imaging of grey matter density, cerebrovascular, and 

functional network topographies. Neuroimaging and behavioural data (n = 215) from the 

Cambridge Centre for Ageing and Neuroscience study were used, containing healthy subjects 

aged 18 to 88. In the output components, fusion was found between structural and 

cerebrovascular topographies in multiple components with cognitive-relevance across the 

lifespan. A component reflecting global atrophy with regional cerebrovascular changes and a 

component reflecting right frontoparietal network activity were correlated with fluid 

intelligence over and above age and gender. No meaningful fusion between functional network 

topography and structural or cerebrovascular signals was observed. We propose that 

integrating multiple neuroimaging modalities allows to better characterize brain pattern 

variability and to differentiate brain changes in healthy ageing. 

 

 

Keywords: multimodal fusion, linked independent component analysis, neuroimaging, healthy 

ageing  
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1. INTRODUCTION 

 

Increasing life expectancy is leading to rapid ageing of the worldwide population (Beard et al., 

2016). The quality of these extra years of life heavily depends on good health, including the 

maintenance of good cognitive function across the lifespan (Beard et al., 2016; Sahakian, 2014). 

There is a pressing need to better understand the neurobiology of cognitive function associated 

with ageing. Neuroimaging studies show age-related changes in brain morphology, functional 

networks, and vascular dynamics (Kennedy & Raz, 2015). However, these effects are usually 

studied separately, whereas their integration could explain how these components influence 

cognitive ageing (Tsvetanov, Henson, & Rowe, 2021). 

 

Brain atrophy is one of the most commonly studied features of ageing (Grajauskas et al., 2019; 

Pini et al., 2016; Romanowski & Wilkinson, 2011). However, atrophy on its own does not fully 

explain cognitive performance and is insufficient for understanding ageing and 

neurodegenerative syndromes with heterogenous clinical features (Grajauskas et al., 2019; 

Murley et al., 2020; Perry et al., 2017; Tsvetanov, Gazzina, et al., 2021; Tsvetanov et al., 2016). 

Instead, we propose that cognitive ageing is multifactorial, reflecting complex processes which 

require multivariate techniques to elucidate (Doan, Engvig, Persson, et al., 2017; Doan, Engvig, 

Zaske, et al., 2017; Douaud et al., 2014; Groves, Beckmann, Smith, & Woolrich, 2011; Murley et 

al., 2020). Neuroimaging is a key contributor to this approach, from its quantification of brain 

morphology, functional networks and vascular dynamics.  

 

Brain functional networks are commonly studied using functional magnetic resonance imaging 

(fMRI), which measures neural activity indirectly via changes in the blood oxygen level-

dependent (BOLD) signal (Chen & Glover, 2015; Grady, 2012; Rosen & Savoy, 2012). Cognitive 

function is dependent on intrinsic interactions within large-scale functional brain networks as 

well as extrinsic interactions between such functional brain networks (Fox et al., 2005; Kelly, 

Uddin, Biswal, Castellanos, & Milham, 2008). These networks show selective vulnerability to 

age and neurodegeneration (Moguilner et al., 2020; Tsvetanov, Gazzina, et al., 2021). Task-free 

fMRI, also known as resting-state fMRI (rs-fMRI), can be used to characterize intrinsic and 
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extrinsic connectivity of functional networks simultaneously (Cole, Bassett, Power, Braver, & 

Petersen, 2014; Smith et al., 2009). Spontaneous activity, which can be measured by rs-fMRI, is 

the most metabolic demanding component of neural activity (Raichle & Mintun, 2006). 

Moreover, activities in resting-state functional networks, such as the default mode network 

(DMN), the salience network (SN) and the frontoparietal network (FPN), are associated with a 

wide range of cognitive functions (e.g., memory, language, attention, visual processes) 

(Corbetta & Shulman, 2002) and playing an increasingly important role in maintaining good 

cognition in old age and progression of some neurodegenerative diseases (Bethlehem et al., 

2020; Tibon et al., 2021; Tsvetanov, Gazzina, et al., 2021; Tsvetanov et al., 2016).  

 

Rs-fMRI signals also reflect the haemodynamic response evoked by neuronal activity and 

therefore fMRI represents both vascular and neuronal signals (Tsvetanov, Henson, & Rowe, 

2021). The interpretations of neurocognitive functions from fMRI could be confounded by 

differences in neurovascular signals associated with normal ageing and other factors (e.g., 

medications, lifestyle changes) instead of cognitive change. Nevertheless, neurovascular 

coupling is also implicated as a major factor in maintaining brain health in ageing and 

neurodegenerative diseases (Iadecola, 2017; Kisler, Nelson, Montagne, & Zlokovic, 2017; 

Sweeney, Kisler, Montagne, Toga, & Zlokovic, 2018). Dissociation of vascular and neuronal 

signals would therefore be particularly meaningful (Tsvetanov, Henson, & Rowe, 2021). 

Consequently, unraveling the interactive effects of changes on morphometry, cerebrovascular 

and functional levels could provide better understanding of the multifactorial neurobiological 

mechanisms underlying cognitive change in ageing and neurodegeneration. 

 

The majority of neuroimaging studies have focused on each imaging modality separately, 

limiting the understanding of interrelations between modalities and the complex neural 

mechanisms associated with cognitive change. Linked independent component analysis (ICA) is 

a data-driven analytic method that allows for simultaneous characterization of multimodal 

imaging modalities while taking into account the co-variance across imaging modalities (Groves 

et al., 2011). By identifying common patterns that are shared by different imaging modalities 
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and identifying independent components that are dominated by single imaging modality, one 

can more accurately characterize the predictors of the outcomes of interest.  

 

We aimed to integrate structural, functional and cerebrovascular neuroimaging signals to 

better understand cognitive variability. Specifically, we tested whether differences in structural, 

cerebrovascular, and functional network topography have independent or convergent patterns 

with age, and whether these patterns are correlated with cognitive function across the lifespan. 

 

 

2. METHODS 

 

2.1 Cohorts and participants 

 

The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) cohort study recruited healthy 

adults from its local general population in the UK, in three stages (Shafto et al., 2014). In Stage 1, 

3000 adults aged 18 and above were recruited for a home interview. In Stage 2, a subset of 700 

participants aged 18-87 (100 per age decile) was selected to participate in neuroimaging (e.g., 

structural MRI and fMRI) and behavioural tests (Shafto et al., 2014). In Stage 3, a subset of 280 

participants (40 per age decile) was selected (referred to as CC280) to participate in further 

neuroimaging (e.g., fMRI, arterial spin labelling (ASL)) and cognitive examinations across key 

cognitive domains (Shafto et al., 2014; Taylor et al., 2017). Details of the neuroimaging 

experiments and cognitive tasks are reported previously (Shafto et al., 2014; Taylor et al., 2017). 

Ethical approval was obtained from the Cambridge 2 Research Ethics Committee, and written 

informed consent was given by all participants. Subjects in Cam-CAN Stage 3 (CC280) were 

analyzed in the main analysis of this study. A subset of Stage 2 that was not included in Stage 3 

was analyzed as a validation cohort (details discussed in 2.4). 

 

2.2 Image acquisition and preprocessing 
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A summary flow chart of the processing and analysis of imaging modalities is presented (Figure

1). Details are discussed below.  

 

Figure 1. Summary of processing and analysis of the imaging modalities, comprising functional,

cerebrovascular and structural measurements. Abbreviations: ASL, arterial spin labelling; DMN,

default mode network; FPN, frontoparietal network; GM, grey matter; ICA, independent

component analysis; RSFA, resting state fluctuation amplitude; rsfMRI, resting-state functiona

magnetic resonance imaging; SN, salience network; T1w, T1-weighted. 

 

2.2.1 T1 structural MRI 

 

Imaging data from Cam-CAN were acquired using a 3T Siemens TIM Trio. A 3D structural MR

was acquired using T1-weighted sequence with generalized autocalibrating partially paralle

acquisition with acceleration factor 2; repetition time (TR) = 2250 ms; echo time (TE) = 2.99 ms;

inversion time (TI) = 900 ms; flip angle α = 9°; field-of-view (FOV) = 256 X 240 X 192 mm;

resolution = 1 mm isotropic; acquisition time of 4 min and 32 s. Preprocessing of T1-weighted

images used standardized preprocessing as described elsewhere (Tsvetanov, Henson, Jones, et

al., 2021). We used Automatic Analysis (Cusack et al., 2014) pipelines implemented in Matlab

(MathWorks). Grey matter images were smoothed with an 8 mm full-width at half maximum

(FWHM) Gaussian kernel (Taylor et al., 2017; Tsvetanov et al., 2018). For the linked ICA grey
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matter images were down-sampled to match the resolution of fMRI and perfusion data. A brain 

mask from Statistical Parametric Mapping 12 (SPM12) 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was applied at a threshold of 0.9 

(i.e., >90% probability being within the brain were included). 

 

2.2.2 Resting-state fMRI 

 

For rs-fMRI, echoplanar imaging (EPI) acquired 261 volumes with 32 slices (sequential 

descending order, slice thickness of 3.7 mm with a slice gap of 20% for whole-brain coverage, 

TR = 1970 ms; TE = 30 ms; flip angle α = 78°; FOV = 192 mm × 192 mm; resolution = 3 mm × 3 

mm × 4.44 mm) during 8 min and 40 s. Participants were instructed to lie still with their eyes 

closed. The initial six volumes were discarded to allow for T1 equilibration. The imaging data 

were analyzed using Automatic Analysis (Cusack et al., 2014) calling functions from SPM12, as 

described previously (Tsvetanov et al., 2016).  

 

Rs-fMRI data were further processed using whole-brain ICA of single-subject time series 

denoising, with noise components selected and removed automatically using the ICA-based 

Automatic Removal of Motion Artifacts toolbox (AROMA) (Pruim, Mennes, Buitelaar, & 

Beckmann, 2015; Pruim, Mennes, van Rooij, et al., 2015). This was complemented with linear 

detrending of the fMRI signal, covarying out six realignment parameters, white matter and 

cerebrospinal fluid signals, their first derivatives, and quadratic terms (Pruim, Mennes, van 

Rooij, et al., 2015). Global white matter and cerebrospinal fluid signals were estimated for each 

volume from the mean value of white matter and cerebrospinal fluid masks derived by 

thresholding SPM tissue probability maps at 0.75. Rs-fMRI data were head motion corrected, 

bandpass filtered and spatially smoothed with a 6 mm FWHM Gaussian kernel.  

 

2.2.3 Cerebrovascular imaging 

 
2.2.3.1 ASL 
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To assess resting cerebral blood flow, pulsed ASL was used (PASL, PICORE-Q2T-PASL in axial 

direction, 2,500 ms repetition time, 13 ms echo time, bandwidth 2,232 Hz/Px, 256 × 256 mm2 

field of view, imaging matrix 64 × 64, 10 slices, 8 mm slice thickness, flip angle 90°, 700 ms TI1, 

TI2 = 1,800 ms, 1,600 ms saturation stop time). The imaging volume was positioned to maintain 

maximal brain coverage with a 20.9 mm gap between the imaging volume and a labeling slab 

with 100 mm thickness. There were 90 repetitions giving 45 control-tag pairs (duration 3’52”). A 

single-shot EPI (M0) equilibrium magnetization scan was acquired. Pulsed ASL time series were 

converted to cerebral blood flow maps using ExploreASL toolbox (Mutsaerts et al., 2018). 

Following rigid-body alignment, the images were coregistered with the T1 volume, normalised 

with normalization parameters from the T1 stream to warp ASL images into MNI space and 

smoothed with a 12 mm FWHM Gaussian kernel (Tsvetanov, Henson, Jones, et al., 2021). 

 

2.2.3.2 Resting state fluctuation amplitude (RSFA) 

 

An index of cerebrovascular reactivity was estimated using the resting state fluctuation 

amplitude (RSFA)(Kannurpatti & Biswal, 2008; Tsvetanov et al., 2015; Tsvetanov, Henson, & 

Rowe, 2021). RSFA was estimated from resting-state EPI as described in section 2.2.2 and 

smoothed with an 8 mm FWHM Gaussian kernel. Subject specific RSFA maps were calculated 

based on the normalized standard deviation across time for processed rs-fMRI time series data. 

Details on the acquisition and processing of RSFA are reported previously (Tsvetanov, Henson, 

Jones, et al., 2021).  

 
2.3 Imaging analysis 

 

2.3.1 Functional network decomposition using group-ICA 

 

In order to identify functional networks from rs-fMRI and study network spatial patterns, an ICA 

was performed using the Group-level ICA of fMRI Toolbox to decompose the rs-fMRI 

(trendscenter.org/software/gift/)(V. D. Calhoun, Adali, Pearlson, & Pekar, 2001). ICA dissociates 

signals from complex datasets with minimal assumptions (V. Calhoun, 2018), to represent data 

in a small number of independent components (ICs) which here are spatial maps that describe 
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the temporal and spatial characteristics of underlying signals (V. D. Calhoun et al., 2001; 

McKeown et al., 1998). Each component can therefore be interpreted as similar BOLD activity 

of a functional network (Rosazza & Minati, 2011).  

 

The data from participants in Cam-CAN Stage 2 (n = 648) were analyzed using ICA. This provided 

a twofold advantage: subjects excluded from the main analysis formed an independent 

validation sample (see below in 2.4); and having a larger sample increases the reliability of ICA 

decomposition results while maximizing statistical power (V. D. Calhoun, Kiehl, & Pearlson, 

2008; Erhardt et al., 2011). The number of components used, N = 15, matched a common 

degree of decomposition previously applied in low-dimensional ICA of rs-fMRI (Beckmann, 

DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 2006; Smith et al., 2009) and generated 

network spatial maps that showed a high degree of overlapping with network templates. Low-

dimensional ICA was used because the purpose was to define each network with a single 

component, and high-dimensional ICA would tend to decompose single network into multiple 

components. Hundred ICASSO iterations were used to ensure the reliability of estimated ICs 

(Himberg & Hyvarinen, 2003). Functional networks were identified from components by 

visualization and validated by spatially matching the components to pre-existing templates 

(Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012), in accordance with previous 

methodology used to identify networks from ICs (Tsvetanov et al., 2016).  

 

2.3.2 Multimodal fusion using linked ICA 

 

Linked ICA was performed using FLICA of FMRIB (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA) 

(Groves et al., 2011; Smith et al., 2004) implemented in Matlab (MathWorks version 2020b). 

Linked ICA was run with 7 spatial map inputs: T1 grey matter images, ASL, RSFA and four maps 

from three resting-state functional networks of those subjects that were included in Stage 3 

(i.e., the DMN, the SN, the right FPN and the left FPN) (Day et al., 2013; Marek & Dosenbach, 

2018; Rosazza & Minati, 2011; Zhou & Seeley, 2014). We refer to these imaging derived inputs 

as modalities. Within each modality, images from all subjects were concatenated into a single 

input image for linked ICA. To ensure that results were not influenced dominantly by non-grey 
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matter regions, a grey matter probability mask from SPM12 was used with a threshold of 0.3. 

We performed linked ICA using a dimensionality of 40, with 1000 iterations based on 

recommendation in previous studies (Doan, Engvig, Zaske, et al., 2017; Doan, Kaufmann, et al., 

2017; Francx et al., 2016; Groves et al., 2012; Li et al., 2020; Wolfers et al., 2017). To ensure 

findings were robust to the model order, we also performed the linked ICA 30 and 50 

dimensions. 

 

2.4 Validation analysis in an independent Cam-CAN subset 

  
To assess the reliability of fusion between neuroimaging modalities using the linked ICA toolbox, 

linked ICA was performed in an independent sample using the same processing steps and 

settings. This sample was a subset of the Cam-CAN cohort, comprised of participants who 

participated in Stage 2 (CC700) but were not included in the main analysis because they were 

either not selected to enter Stage 3 or had missing data from Stage 3 (CC280). This group, 

referred to as CC420, lacked ASL data so the linked ICA included 6 inputs only (DMN, SN, right 

FPN, left FPN, RSFA, T1). Other steps were the same as the main analysis (i.e., the acquisition 

and processing of neuroimaging data, functional network decomposition using group-ICA, and 

multimodal fusion using linked ICA).  

 

2.5 Statistical analysis 

 

Demographic variables were compared between age groups using one-way ANOVA for 

continuous variables and using chi-square test for categorical variable. Matching between 

functional network spatial maps and corresponding network templates was analyzed using 

simple correlation tests.  

 

To investigate the relevance of linked ICA components with cognition, component subject 

loadings from linked ICA output were analyzed using multiple linear regression with robust 

fitting algorithm (Matlab function fitlm.m). Fluid intelligence was selected as a principal 

cognitive measure due to its broad positive correlations with other cognitive tests, and 
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sensitivity to age. Standard Cattell total score was used as a main indication of cognition in this 

study (Cattell, 1971; Cattell, Cattell, Institute for, & Ability, 1960; Shafto et al., 2014).  

 

To investigate the association of linked ICA output components with Cattell score and other 

variates, Cattell score was used as the independent variable with age, gender and head motion 

as covariates in linear regression analysis. Each linked ICA component subject loading was used 

as the dependent variable. The overall model fit was corrected for multiple comparison using 

the Bonferroni correction of family-wise error rate (FWER). A corrected P < 0.05 was chosen as 

the significance level. Only those models with significant overall model fit after FWER-

correction were considered as relevant in this study. To investigate whether there were 

components explained by shared variance between age and Cattell but not by the covariate on 

its own, commonality analysis (Nimon & Reio, 2011) between age and Cattell was performed 

with 10,000 permutations following the multiple linear regression. All statistical analyses were 

performed in Matlab version 2020b. 

 

3. RESULTS 

 

3.1 Characteristics of participants 

 
Participants with imaging data from all modalities (i.e., rs-fMRI, ASL, RSFA, T1) were included, 

except those with image artefacts that could not be resolved (n = 25). The final analytic sample 

for the main analysis (CC280) included 215 subjects. The validation analysis sample (CC420) 

included 433 subjects. The demographic characteristics of participants are reported in Table 1. 

 

3.2 Functional network decomposition using group-ICA 

 
Among the 15 components generated from ICA, whole brain spatial maps associated with the 

following networks of interest specified a priori were identified: the DMN, the SN, and the 

lateralized FPNs (Figure 2). The correlation between each functional network spatial map and 

its corresponding template from a previous study (Shirer et al., 2012) was r = 0.62 for the DMN, 

r = 0.58 for the SN, r = 0.55 for the right FPN, and r = 0.54 for the left FPN.
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Table 1. Characteristics of participants. 

 

  Age range 

Difference 

between 

deciles 

(ANOVA or χ2
) 

  All 18-27 28-37 38-47 48-57 58-67 68-77 78-88 P-values 

CC280          

n 215 17 38 36 35 38 26 25  

Mean age (years) 52.9 24.6 33.5 43.6 52.2 62.8 72.3 81.0  

Gender 

n (%) 
        

0.99 
Males 106 (49.3) 7 (41.2) 19 (50) 19 (52.8) 18 (51.4) 19 (50) 12 (46.2) 12 (48) 

Females 109 (50.7) 10 (58.8) 19 (50) 17 (47.2) 17 (48.6) 19 (50) 14 (53.8) 13 (52) 

Cattell score         
< 0.0001 

Mean ± SD 33.5±6.0 37.8±4.4 38.4±4.5 35.5±3.8 33.6±4.5 32.2±5.0 28.9±4.2 26.4±5.7 

Mini-Mental State 

Examination 
        

0.0099 

Mean ± SD 29.2±1.0 29.3±0.9 29.7±0.6 29.1±1.2 29.3±0.8 29.1±1.0 29.0±1.2 28.7±1.4 

CC420          

n 433 34 66 62 64 62 75 70  

Mean age (years) 55.1 22.8 32.4 42.5 52.5 62.3 72.1 81.3  

Gender 

n (%) 
        

0.98 
Males 212 (49.0) 16 (47.1) 31 (47.0) 28 (45.2) 31 (48.4) 31 (50.0) 38 (50.7) 37 (52.9) 

Females 221 (51.0) 18 (52.9) 35 (53.0) 34 (54.8) 33 (51.6) 31 (50.0) 37 (49.3) 33 (47.1) 

Cattell score         
< 0.0001 

 Mean ± SD 31.0±7.0 37.3±3.7 36.5±4.0 34.9±4.5 33.4±4.6 29.6±5.3 26.4±6.2 23.5±5.6 

Mini-Mental State 

Examination 
        

< 0.0001 

Mean ± SD 28.8±1.3 29.1±1.5 29.4±1.1 29.1±1.1 29.1±1.2 29.0±1.2 28.4±1.3 27.9±1.5 
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Figure 2. The spatial maps associated with the default mode network, the salience network, 

and the lateralized frontoparietal networks, generated from independent component analysis 

of 648 subjects from Cam-CAN cohort Stage 2.

3
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3.3 Multimodal fusion using linked ICA 

 

The relative weight of modalities in each component is shown in Figure 3a. Only modalities with 

significant voxel values (i.e., t-score > 3.34 which corresponds to p < 0.001) are presented. Two 

components with no significant subject loadings from any modality were excluded. Most 

components (> 75%) were dominated by a single input neuroimaging modality. Components 

reflecting structural and cerebrovascular inputs explained overall more variance compared to 

resting-state functional network topography. Fusion between imaging inputs were observed 

between T1, ASL and RSFA maps (i.e., IC4, IC14, IC33). Fusion was also observed between 

different functional networks (i.e., IC19, IC24, IC26, IC38). However, no fusion was observed 

between functional network, cerebrovascular and structural spatial maps. Linked ICA was 

repeated with different numbers of components in order to ensure the results were not 

significantly affected by the ICA dimensionality. Fusion patterns between modalities shown in 

linked ICA with 30, 40, and 50 components, respectively, are summarized in Figure 4.  
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Figure 3. The relative weight of modalities in each component generated from linked ICA and the percentage of variance explained

of each component of the (a) CC280 participants (n = 215), and (b) CC420 participants (n = 433). Note that most components are

dominated by one modality. Abbreviations: DMN, default mode network; SN, salience network; FPN, frontoparietal network; RSFA

resting state fluctuation amplitude; ASL, arterial spin labelling. 
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Figure 4. Degree of fusion between the 7 neuroimaging modalities included in linked ICA CC280

(n = 215) with 30, 40, and 50 components, respectively. Greater number (i.e., darker color) in

the matrix represents more fusion found between the two modalities in linked ICA output

components. Abbreviations: DMN, default mode network; SN, salience network; FPN,

frontoparietal network; RSFA, resting state fluctuation amplitude; ASL, arterial spin labelling. 
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3.4 Age- and behaviour-related effects on linked ICA subject loadings 

 

Results of linear regression analysis with age and cognition are shown in Table 2. The overall 

model fits of 16 components remained significant after FWER-correction. Among these 16 

components, Cattell score was significantly correlated with IC1 which reflected global grey 

matter atrophy with regional ASL and RSFA signals (Figure 5a), adjusting for age, gender and 

head motion covariates. Cattell score correlated with IC16 which reflected right FPN signals 

(Figure 5a) and IC17 which reflected the left FPN signals. IC1, IC4, IC13, IC15, IC16, IC17, IC19, 

IC23, IC25, IC26, IC27 and IC33 showed shared variance between age and Cattell score, 

suggesting age-related differences in cognitive performance indicated by fluid intelligence. 

 

 

Table 2. Linear regression analysis results of the independent component (IC) subject loading 

from linked independent component analysis (7 modalities) of CC280 participants (n = 215), 

followed by common variance analysis between age and Cattell in predicting IC. 

 IC ~ Cattell + age + gender + head motion Common variance 

between age and 

Cattell 

IC 

Overall model fit Age Cattell 

Adjuste

d R
2
 

P 

FWER-

correcte

d P 

t P t P R
2
 P 

IC1 0.56 < 0.0001 < 0.0001 -8.44 < 0.0001 2.79 0.0058 0.17 < 0.0001 

IC2 0.016 0.12 > 0.99       

IC3 0.0053 0.28 > 0.99       

IC4 0.69 < 0.0001 < 0.0001 11.52 < 0.0001 1.43 0.15 0.056 < 0.0001 

IC5 0.0051 0.28 > 0.99       

IC6 0.17 < 0.0001 < 0.0001 -2.45 0.015 -1.22 0.23 -0.0055 0.10 

IC7 0.033 0.026 > 0.99       

IC8 0.0031 0.33 > 0.99       

IC9 0.056 0.0029 0.12       

IC10 0.024 0.060 > 0.99       

IC11 0.021 0.074 > 0.99       

IC12 -0.0051 0.58 > 0.99       

IC13 0.097 < 0.0001 0.0016 -2.64 0.0090 0.39 0.70 0.022 0.0024 

IC14 0.036 0.019 0.76       

IC15 0.27 < 0.0001 < 0.0001 2.71 0.0073 -1.41 0.16 0.038 0.0001 

IC16 0.15 < 0.0001 < 0.0001 -0.83 0.41 2.87 0.0045 0.034 0.0003 
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IC17 0.15 < 0.0001 < 0.0001 0.48 0.63 3.10 0.0022 0.0092 0.044 

IC18 0.10 < 0.0001 0.00098 -3.12 0.0021 -0.54 0.59 0.0087 0.050 

IC19 0.065 0.0012 0.048 2.51 0.013 -0.78 0.44 0.030 0.0006 

IC20 0.046 0.0073 0.29       

IC21 0.073 0.00053 0.021 -0.071 0.94 0.65 0.51 0.0013 0.30 

IC22 0.088 0.00011 0.0044 -2.34 0.020 -0.56 0.58 0.0027 0.20 

IC23 0.12 < 0.0001 < 0.0001 -2.04 0.043 0.13 0.89 0.010 0.030 

IC24 0.055 0.0030 0.12       

IC25 0.12 < 0.0001 < 0.0001 -2.74 0.0068 0.0082 0.99 0.015 0.0088 

IC26 0.18 < 0.0001 < 0.0001 -1.91 0.058 1.68 0.094 0.034 0.0001 

IC27 0.068 0.00084 0.034 -1.20 0.23 0.61 0.54 0.0095 0.041 

IC28 0.059 0.0021 0.084       

IC29 0.0071 0.24 > 0.99       

IC30 0.040 0.014 0.56       

IC31 0.053 0.0040 0.16       

IC32 0.058 0.0024 0.096       

IC33 0.064 0.0012 0.048 -3.31 0.0011 -0.27 0.79 0.017 0.0072 

IC34 0.028 0.040 > 0.99       

IC35 0.030 0.035 > 0.99       

IC36 -0.013 0.86 > 0.99       

IC37 0.0052 0.28 > 0.99       

IC38 0.019 0.0089 0.36       
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Figure 5. Components that were significantly associated with fluid intelligence over and above 

age and gender. (a) CC280 participants (n = 215): spatial maps of linked ICA output component 

1 (IC1) which reflects the subject loading of T1, arterial spin labelling (ASL) and resting state 

fluctuation amplitude (RSFA); and component 16 (IC16) which reflects the subject loading of the

right frontoparietal network (FPN). For visualization the threshold is set to 3 < Z < 30 for T1, 3 < 

Z < 10 for ASL and RSFA in IC1; and 3 < Z < 10 in IC16. (b) CC420 participants (n  = 433): spatial 

maps of linked ICA output component 2 (IC2) which reflects the subject loading of T1 and RSFA, 

and component 7 (IC7) which reflects the subject loading of the right FPN. For visualization the 

threshold is set to 3 < Z < 40 for T1 and 3 < Z < 10 for RSFA in IC2, and 3 < Z < 10 in IC7. 

 

 

 

 

 

3.5 Validation analysis in an independent Cam-CAN subset 

 

CC420 results were consistent with those of CC280 sample. The relative weight of modalities in

each linked ICA output component is shown in Figure 3b. Only modalities with significant voxe

values (i.e., t > 3.34) are presented. 

 

Results of linear regression analysis are shown in Table 3. The overall model fits of 19

components remained significant after FWER-correction and therefore these components were
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considered as relevant in this study. Models that were not significant after FWER-correction 

were considered as components related to noise signals but not related to the predictors in the 

models. Among the 19 relevant components, including age, gender and head motion as 

covariates and correcting for multiple comparisons, Cattell score was significantly correlated 

with IC2 which reflected global grey matter atrophy with regional RSFA signals (Figure 5b) and 

this component was similar to IC1 in CC280 analysis. Cattell score was significantly correlated 

with IC7 which reflected right FPN signals (Figure 5b), and this component was similar to IC16 in 

CC280 analysis. Cattell score was also significantly correlated with IC10 which reflected the SN 

signals. 

 

 

 

 

 

 

Table 3. Linear regression analysis results of the validation analysis of the independent 

component (IC) subject loading from linked independent component analysis (6 modalities) of 

CC420 (n = 433), followed by common variance analysis between age and Cattell in predicting IC. 

 IC ~ Cattell + age + gender + head motion Common 

variance between 

age and Cattell 

IC 

Overall model fit Age Cattell 

Adjuste

d R
2
 

P 

FWER-

corrected 

P 

t P t P R
2
 P 

IC1 0.14 < 0.0001 < 0.0001 -6.22 < 0.0001 -0.27 0.79 0.036 < 0.0001 

IC2 0.43 < 0.0001 < 0.0001 -7.03 < 0.0001 3.72 0.00023 0.12 < 0.0001 

IC3 0.043 0.00021 0.0084 -2.64 0.0086 0.92 0.36 0.029 0.0001 

IC4 0.0077 0.13 > 0.99       

IC5 0.28 < 0.0001 < 0.0001 3.50 0.00051 -1.75 0.082 0.046 < 0.0001 

IC6 0.053 < 0.0001 0.0011 -1.30 0.19 0.10 0.92 0.00079 0.30 

IC7 0.26 < 0.0001 < 0.0001 -2.63 0.0088 2.64 0.0087 0.046 < 0.0001 

IC8 0.00036 0.39 > 0.99       

IC9 0.66 < 0.0001 < 0.0001 -17.92 < 0.0001 1.59 0.11 0.23 < 0.0001 

IC10 0.26 < 0.0001 < 0.0001 -3.75 0.00021 2.05 0.041 0.061 < 0.0001 

IC11 0.18 < 0.0001 < 0.0001 -2.35 0.019 0.88 0.38 0.018 0.0002 

IC12 -0.0033 0.62 > 0.99       

IC13 -0.0042 0.68 > 0.99       

IC14 0.22 < 0.0001 < 0.0001 -2.86 0.0044 -1.93 0.054 -0.0047 0.061 
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IC15 0.0070 0.14 > 0.99       

IC16 0.020 0.016 0.64       

IC17 0.067 < 0.0001 < 0.0001 -3.54 0.00045 -0.023 0.98 0.014 0.0013 

IC18 0.025 0.0065 0.26       

IC19 0.13 < 0.0001 < 0.0001 -0.13 0.90 1.38 0.17 0.0026 0.13 

IC20 0.043 0.00018 0.0072 -0.96 0.34 -1.96 0.051 -0.0018 0.19 

IC21 0.050 < 0.0001 0.0021 2.68 0.0076 0.31 0.75 0.0089 0.011 

IC22 0.050 < 0.0001 0.0021 2.01 0.045 -1.40 0.16 0.027 < 0.0001 

IC23 0.11 < 0.0001 < 0.0001 -4.74 < 0.0001 -0.71 0.48 0.027 < 0.0001 

IC24 
-

0.00067 
0.45 

> 0.99 
      

IC25 0.0096 0.093 > 0.99       

IC26 0.093 < 0.0001 < 0.0001 4.11 < 0.0001 -0.22 0.83 0.024 < 0.0001 

IC27 0.014 0.044 > 0.99       

IC28 0.027 0.0044 0.18       

IC29 -0.0047 0.72 > 0.99       

IC30 0.047 < 0.0001 
0.0036 

-0.55 0.58 -1.18 0.24 
-

0.00047 
0.36 

IC31 0.011 0.068 > 0.99       

IC32 -0.0077 0.93 > 0.99       

IC33 0.0023 0.29 > 0.99       

IC34 0.13 < 0.0001 < 0.0001 2.45 0.015 -0.20 0.84 0.012 0.0024 

IC35 0.0071 0.14 > 0.99       

IC36 0.0046 0.21 > 0.99       

IC37 -0.0026 0.57 > 0.99       

IC38 -0.0087 0.98 > 0.99       

IC39 -0.0041 0.68 > 0.99       

IC40 -0.0040 0.67 > 0.99       

 

 

 

 

 

4. DISCUSSION 

 

In the current study, multivariate data-driven analysis characterized the patterns of structural 

and functional change in the brain across the adult lifespan in two sets of healthy subjects from 

18 – 88 years old. There was evidence for concordant changes in morphometry and 

cerebrovascular signals, but not between resting-state network spatial maps and morphometry 
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or cerebrovascular signals. The age-related variance in expression of few linked ICA 

components was cognitively relevant. In particular, the joint changes in diffuse brain atrophy 

with regional cerebrovascular changes and the right FPN activity correlated with fluid 

intelligence over and above age and gender. The principal findings were replicated in the 

second cohort. We propose that multimodal integration allows to better characterize structural 

and functional brain changes of healthy ageing. 

 

The linked ICA identified a strong effect of global grey matter atrophy, in IC1 from the main 

analysis and IC2 from the validation analysis. This is consistent with previous studies of ageing 

using linked ICA (Doan, Engvig, Zaske, et al., 2017; Douaud et al., 2014). Cerebrovascular 

measures were identified in the same component, suggesting that the atrophy effects were 

partly linked to cerebrovascular health. This accords with large-scale lifespan studies showing 

global brain atrophy association with cerebrovascular changes (Asllani et al., 2009; Iadecola, 

2017; Kennedy & Raz, 2015; Lemaitre et al., 2012; Peelle, Cusack, & Henson, 2012).  

 

Significant correlation between Cattell score and right FPN activity was observed in the main 

analysis and the validation analysis. The FPN is an important control network, in which 

functional integration is positively correlated with cognitive ability (Marek & Dosenbach, 2018; 

Sheffield et al., 2015). The current results are compatible with previous reports that the across-

network connectivity of resting-state FPN is positively correlated with fluid intelligence 

(Bethlehem et al., 2020; Cole, Ito, & Braver, 2015; Hearne, Mattingley, & Cocchi, 2016).  

 

In contrast with atrophy and cerebrovascular indices, there was little fusion between resting-

state functional networks and other modalities (Maglanoc et al., 2020). In other words, the 

topography of resting-state functional networks was not matched to the topography of 

cerebrovascular or structural neuroimaging signals in independent components. However, the 

activity of the right FPN functional network correlated with fluid intelligence over and above 

age and gender. In contrast, in components reflecting signals from the DMN (IC19, IC26), the SN 

(IC23, IC26), and the left FPN (IC17, IC19), there was common variance between age and Cattell 
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score in predicting the IC subject loading. This suggests that the network components reflected 

age-related differences in fluid intelligence.  

 

The main advantage of linked ICA is its ability to combine imaging modalities with different 

spatial dimensions or features by applying ICA on each modality while accounting for the spatial 

correlation of each modality, enabling us to model shared variance across different imaging 

modalities (Groves et al., 2011; Groves et al., 2012). Hence, the derived components may be 

more sensitive to an effect of interest especially when the effect is present across different 

imaging modalities (Francx et al., 2016). Linked ICA has revealed morphological patterns that 

are related to age, cognition, and Alzheimer’s disease (Alnaes et al., 2018; Doan, Engvig, 

Persson, et al., 2017; Doan, Engvig, Zaske, et al., 2017; Douaud et al., 2014; Groves et al., 2012) 

and predicted brain morphological patterns in neuropsychiatric disorders such as depression 

(Maglanoc et al., 2020), schizophrenia (Brandt et al., 2015; Doan, Kaufmann, et al., 2017), 

bipolar disorders (Doan, Kaufmann, et al., 2017), and attention-deficit/hyperactivity disorder 

(ADHD) (Francx et al., 2016). However, many previous studies using linked ICA focused on co-

modelling brain structural effects across modalities, for example combining only grey matter 

morphological measures (e.g. grey matter density, cortical thickness) or combining grey with 

white matter properties (Doan, Engvig, Zaske, et al., 2017; Doan, Kaufmann, et al., 2017; 

Douaud et al., 2014; Francx et al., 2016). Here we showed the potential to characterize joint 

changes in functional, cerebrovascular and structural measures and disentangle their 

relationships with cognition and ageing.  

 

We found no cognitively relevant fusion between functional network spatial maps and 

structural or cerebrovascular spatial maps. The majority of components were dominated by a 

single neuroimaging measurement. It suggests that variability of brain patterns in healthy 

ageing subjects is better characterized by multiple independent components dominated by one 

of the structural, cerebrovascular or functional network measurements, but not captured in a 

single component reflecting all of these signals. It also showed that in this sample of healthy 

participants, global grey matter atrophy and the right FPN activity were the dominant 
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components correlated with fluid intelligence. Although global atrophy was largely typical of 

ageing effects, by decomposing this dominant atrophy component from other components 

using linked ICA, it was possible to identify subtle effects across multiple imaging modalities 

which might otherwise be overlooked using other analysis approaches. 

 

There are limitations in the present study. First, there is no standard dimensionality to be used 

in ICA. However, the number of components used in ICA and linked ICA in the present study 

was based on the most stable and favorable dimensionality indicated by previous literature 

(Beckmann et al., 2005; Damoiseaux et al., 2006; Doan, Engvig, Zaske, et al., 2017; Doan, 

Kaufmann, et al., 2017; Francx et al., 2016; Groves et al., 2012). Moreover, linked ICA was 

repeated with several dimensionalities and the results were similar: the fusion patterns in the 

derived components were similar and the cognitively relevant components were consistent 

across analyses with 30, 40 and 50 dimensions. Second, the Cattell test, which quantifies fluid 

intelligence, informed components with behavioural relevance. Future research could 

investigate more detailed or domain-specific brain-behavior relationships, for example by using 

specific cognitive tests which might enable us to dissociate domain-general from domain-

specific associations. Third, the functional network spatial maps used in linked ICA were based 

on associations of components with the topography of functional networks. As joint 

consideration of activity and connectivity might better characterize the brain dynamics and 

cognitive performance in normal ageing (Tsvetanov et al., 2018), it is possible that connectivity 

between functional nodes could indicate more information than the functional network 

topography alone. Future research could consider investigating the intercorrelations between 

functional connectivity and multiple neuroimaging modalities.  

 

 

5. CONCLUSION 

 

We demonstrate the insights from linked ICA to bring together measurements from multimodal 

neuroimaging with their independent and additive information. We propose that using linked 

ICA to integrate multiple neuroimaging modalities allows to better characterize brain pattern 
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variability and to differentiate brain changes in healthy ageing. Across the lifespan, the most 

significant predictors of differences in fluid intelligence are global grey matter atrophy and right 

FPN activity. Linked ICA may provide new insights into the relative brain structural, functional 

and vascular contributors to cognitive impairment in disorders associated with ageing, including 

dementia and other neurodegenerative disease.  
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