Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The Population Genetic Signature of Polygenic Local Adaptation

Jeremy J. Berg, Graham Coop
doi: https://doi.org/10.1101/000026
Jeremy J. Berg
1Graduate Group in Population Biology, University of California, Davis
2Center for Population Biology, University of California, Davis
3Department of Evolution and Ecology, University of California, Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Graham Coop
1Graduate Group in Population Biology, University of California, Davis
2Center for Population Biology, University of California, Davis
3Department of Evolution and Ecology, University of California, Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Adaptation in response to selection on polygenic phenotypes occurs via subtle allele frequencies shifts at many loci. Current population genomic techniques are not well posed to identify such signals. In the past decade, detailed knowledge about the specific loci underlying polygenic traits has begun to emerge from genome-wide association studies (GWAS). Here we combine this knowledge from GWAS with robust population genetic modeling to identify traits that have undergone local adaptation. Using GWAS data, we estimate the mean additive genetic value for a give phenotype across many populations as simple weighted sums of allele frequencies. We model the expected differentiation of GWAS loci among populations under neutrality to develop simple tests of selection across an arbitrary number of populations with arbitrary population structure. To find support for the role of specific environmental variables in local adaptation we test for correlations with the estimated genetic values. We also develop a general test of local adaptation to identify overdispersion of the estimated genetic values values among populations. This test is a natural generalization of QST /FST comparisons based on GWAS predictions. Finally we lay out a framework to identify the individual populations or groups of populations that contribute to the signal of overdispersion. These tests have considerably greater power than their single locus equivalents due to the fact that they look for positive covariance between like effect alleles. We apply our tests to the human genome diversity panel dataset using GWAS data for six different traits. This analysis uncovers a number of putative signals of local adaptation, and we discuss the biological interpretation and caveats of these results.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY Unported 3.0 license.
Back to top
Next
Posted November 07, 2013.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The Population Genetic Signature of Polygenic Local Adaptation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The Population Genetic Signature of Polygenic Local Adaptation
Jeremy J. Berg, Graham Coop
bioRxiv 000026; doi: https://doi.org/10.1101/000026
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The Population Genetic Signature of Polygenic Local Adaptation
Jeremy J. Berg, Graham Coop
bioRxiv 000026; doi: https://doi.org/10.1101/000026

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4688)
  • Biochemistry (10379)
  • Bioengineering (7695)
  • Bioinformatics (26371)
  • Biophysics (13547)
  • Cancer Biology (10719)
  • Cell Biology (15460)
  • Clinical Trials (138)
  • Developmental Biology (8509)
  • Ecology (12842)
  • Epidemiology (2067)
  • Evolutionary Biology (16885)
  • Genetics (11415)
  • Genomics (15493)
  • Immunology (10638)
  • Microbiology (25254)
  • Molecular Biology (10239)
  • Neuroscience (54586)
  • Paleontology (402)
  • Pathology (1671)
  • Pharmacology and Toxicology (2899)
  • Physiology (4354)
  • Plant Biology (9263)
  • Scientific Communication and Education (1588)
  • Synthetic Biology (2561)
  • Systems Biology (6789)
  • Zoology (1470)