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Abstract

The widespread and rapid adoption of high-throughput sequencing technologies has changed the

face of modern studies of evolutionary genetics. Indeed, newer sequencing technologies, like Illumina

sequencing, have afforded researchers the opportunity to gain a deep understanding of genome level

processes that underlie evolutionary change. In particular, researchers interested in functional biology

and adaptation have used these technologies to sequence mRNA transcriptomes of specific tissues,

which in turn are often compared to other tissues, or other individuals with different phenotypes.

While these techniques are extremely powerful, careful attention to data quality is required. In par-

ticular, because high-throughput sequencing is more error-prone than traditional Sanger sequencing,

quality trimming of sequence reads should be an important step in all data processing pipelines.

While several software packages for quality trimming exist, no general guidelines for the specifics

of trimming have been developed. Here, using empirically derived sequence data, I provide general

recommendations regarding the optimal strength of trimming, specifically in mRNA-Seq studies. Al-

though very aggressive quality trimming is common, this study suggests that a more gentle trimming,

specifically of those nucleotides whose Phred score <2 or <5, is optimal for most studies across a

wide variety of metrics.

Introduction1

The popularity of genome-enabled biology has increased dramatically, particularly for researchers2

studying non-model organisms, over the last few years. For many, the primary goal of these works is to3

better understand the genomic underpinnings of adaptive (Linnen et al., 2013; Narum et al., 2013) or4

functional (Hsu et al., 2012; Muñoz-Mérida et al., 2013) traits. While extremely promising, the study5

of functional genomics in non-model organisms typically requires the generation of a reference6

transcriptome to which comparisons are made. Although compared to genome assembly (Bradnam7
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et al., 2013; Earl et al., 2011). transcriptome assembly is less challenging, significant computational8

hurdles still exist. Amongst the most difficult of challenges involves the reconstruction of isoforms9

(Pyrkosz et al., 2013) and simultaneous assembly of transcripts where read coverage (=expression)10

varies by orders of magnitude.11

These processes are further complicated by the error-prone nature of high-throughput sequencing12

reads. With regards to Illumina sequencing, error is distributed non-randomly over the length of the13

read, with the rate of error increasing from 5’ to 3’ end (Liu et al., 2012). These errors are14

overwhelmingly substitution errors (Yang et al., 2013), with the global error rate being between 1%15

and 3%. Although de Bruijn graph assemblers do a remarkable job in distinguishing error from correct16

sequence, sequence error does results in assembly error (MacManes and Eisen, 2013). While this type17

of error is problematic for all studies, it may be particularly troublesome for SNP-based population18

genetic studies. In addition to the biological concerns, sequencing read error may results in problems19

of a more technical importance. Because most transcriptome assemblers use a de Bruijn graph20

representation of sequence connectedness, sequencing error can dramatically increase the size and21

complexity of the graph, and thus increase both RAM requirements and runtime.22

In addition to sequence error correction, which has been shown to improved accuracy of the de novo23

assembly (MacManes and Eisen, 2013), low quality (=high probability of error) nucleotides are24

commonly removed from the sequencing reads prior to assembly, using one of several available tools25

(Trimmomatic (Lohse et al., 2012), Fastx Toolkit26

(http://hannonlab.cshl.edu/fastx_toolkit/index.html), biopieces27

(http://www.biopieces.org/), SolexaQA (Cox et al., 2010)). These tools typically use a sliding28

window approach, discarding nucleotides falling below a given (user selected) average quality29

threshold. The trimmed sequencing read dataset that remains will undoubtedly contain error, though30

the absolute number will surely be decreased.31

Although the process of nucleotide quality trimming is commonplace in HTS analysis pipelines, it’s32

optimal implementation has not been well defined. Though the rigor with which trimming is33

performed may be guided by the design of the experiment, a deeper understanding of the effects of34

trimming is desirable. As transcriptome-based studies of functional genomics continue to become more35
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popular, understanding how quality trimming of mRNA-seq reads used in these types of experiments is36

urgently needed. Researchers currently working in these field appear to favor aggressive trimming (e.g.37

(Looso et al., 2013; Riesgo et al., 2012)), but this may not be optimal. Indeed, one can easily image38

aggressive trimming resulting in the removal of a large amout of high quality data (Even nucleotides39

removed with the commonly used Phred=20 threshold are accurate 99% of the time), just as40

lackadaisical trimming (or no trimming) may result in nucleotide errors being incorporated into the41

assembled transcriptome.42

Here, I attempt to provide recommendations regarding the efficient trimming of high-throughput43

sequence reads, specifically for mRNASeq reads from the Illumina platform. To do this, I used a44

publicly available dataset containing Illumina reads derived from Mus musculus. Subsets of these data45

(10 million, 20 million, 50 million, 75 million, 100 million reads) were randomly chosen, trimmed to46

various levels of stringency, assembled then analyzed for assembly error and content These results aim47

to guide researchers through this critical aspect of the analysis of high-throughput sequence data.48

While the results of this paper may not be applicable to all studies, that so many researchers are49

interested in the genomics of adaptation and phenotypic diversity suggests its widespread utility.50

Materials and Methods51

Because I was interested in understanding the effects of sequence read quality trimming on the52

assembly of vertebrate transcriptome assembly, I elected analyze a publicly available (SRR797058)53

paired-end Illumina read dataset. This dataset is fully described in a previous publication (Han et al.,54

2013), and contains 232 million paired-end 100nt Illumina reads. To investigate how sequencing depth55

influences the choice of trimming level, reads data were randomly subsetted into 10 million, 20 million,56

50 million, 75 million, 100 million read datasets.57

Read datasets were trimmed at varying quality thresholds using the software package Trimmomatic58

(Lohse et al., 2012), which was selected as is appears to be amongst the most popular of read59

trimming tools. Specifically, sequences were trimmed at both 5’ and 3’ ends using Phred =060

(adapter trimming only), ≤ 2, ≤ 5, ≤ 10, and ≤ 20. Transcriptome assemblies were generated for61

each dataset using the default settings of the program Trinity (Grabherr et al., 2011; Haas et al.,62
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2013). Assemblies were evaluated using a variety of different metrics, many of them comparing63

assemblies to the complete collection of Mus cDNA’s, available at64

http://useast.ensembl.org/info/data/ftp/index.html.65

Quality trimming may have substantial effect on assembly quality, and as such, I sought to identify66

high quality transcriptome assemblies. Assemblies with few nucleotide errors relative to a known67

reference may indicate high quality. The program Blat (Kent, 2002) was used to identify and count68

nucleotide mismatches between reconstructed transcripts and their corresponding reference. To69

eliminate spurious short matches between query and template inflating estimates of error, only unique70

transcripts that covered more than 90% of their reference sequence were used. Another potential71

assessment of assembly quality may be related to the number of paired-end sequencing reads that72

concordantly map to the assembly. As the number of reads concordantly mapping increased, so does73

assembly quality. To characterize this, I mapped raw (adapter trimmed) sequencing reads to each74

assembly using Bowtie2 (Trapnell et al., 2010).75

Aside from these metrics, measures of assembly content were also assayed. Here, open reading frames76

(ORFs) were identified using the program TransDecoder77

(http://transdecoder.sourceforge.net/), and were subsequently translated into amino acid78

sequences. The larger the number of complete open reading frames (containing both start and stop79

codons) the better the assembly. Lastly, unique transcripts were identified using the blastP program80

within the Blast+ package (Camacho et al., 2009). Blastp hits were retained only if the sequence81

similarity was >80% over at least 100 amino acids. As the number of transcripts matching a given82

reference increases, so may assembly quality. Code for performing the subsetting, trimming, assembly,83

peptide and ORF prediction and blast analyses can be found in the following Github folder84

https://github.com/macmanes/trimming_paper/tree/master/scripts.85

Results86

Quality trimming of sequence reads had a relatively large on the total number of errors contained in87

the final assembly (Figure 1), which was reduced by between 9 and 26% when comparing the88

assemblies of untrimmed versus Phred=20 trimmed sequence reads. Most of the improvement in89
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accuracy is gained when trimming at the level of Phred=5 or greater, with modest improvements90

potentially garnered with more aggressive trimming at certain coverage levels (Table 1).91

Figure 192
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Figure 1. The number of nucleotide errors contained in the final transcriptome assembly,93

normalized to assembly size, is related to the strength of quality trimming (Trimming of nucleotides94

whose error scores are: Phred >20, 10, 5, 2, or no trimming, though most benefits are observed95

at a modest level of trimming. This patterns is largely unchanged with varying depth of sequencing96

coverage (10 million to 100 million sequencing reads). Trimming at Phred = 5 may be optimal,97

given the potential untoward effects of more stringent quality trimming.98

In addition to looking at nucleotide errors, assembly quality may be measured by the the proportion of99

sequencing reads that map concordantly to a given transcriptome assembly (Hunt et al., 2013). As100

such, the analysis of assembly quality includes study of the mapping rates. Here, we found small but101

significant effects of trimming. Specifically, assembling with aggressively quality trimmed reads102

decreased the proportion of reads that map concordantly to a given contig (Figure 2). The pattern is103
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particularly salient with trimming at the Phred = 20 level. Here, several hundred thousand fewer104

reads mapped compared to mapping against the assembly of untrimmed reads.105

Figure 2106
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Figure 2. The number of concordantly mapping reads was reduced by trimming. The pattern is107

particularly salient with trimming at Phred=20 which was always associated with the successful108

mapping of hundreds of thousands of fewer reads.109

Analysis of assembly content painted a similar picture, with trimming having a relatively small, though110

tangible effect. The number of BLAST+ matches decreased vith stringent trimming (Figure 3), with111

trimming at Phred=20 associated with particularly poor performance.112

Figure 3113
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Figure 3. The number of unique Blast matches contained in the final transcriptome assembly is114

related to the strength of quality trimming for any of the studied sequencing depths. A gentle115

trimming strategy typically yielded the most number of unique matches, while trimming at116

Phred=20 was always associated with much poorer assembly content117

When counting complete open reading frames, low and moderate coverage datasets (10M, 20M, 50M)118

were all worsened by aggressive trimming (Figure 4). Trimming at Phred=20 was the most poorly119

performing level at all read depths.120

Figure 4121
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Figure 4. The number of complete exons contained in the final transcriptome assembly is not122

strongly related to the strength of quality trimming for any of the studies sequencing depths,123

though trimming at Phred=20 was always associated with fewer identified exons.124

Of note, all assembly files will be deposited in Dryad upon acceptance for publication. Until then, they125

can be accessed via https://www.dropbox.com/sh/oiem0v5jgr5c5ir/TYQdGcpYwP126

Discussion127

Although the process of nucleotide quality trimming is commonplace in HTS analysis pipelines, it’s128

optimal implementation has not been well defined. Though the rigor with which trimming is performed129

seems to vary, there seems to be a bias towards stringent trimming (Ansell et al., 2013; Barrett and130

Davis, 2012; Straub et al., 2013; Tao et al., 2013). This study provides strong evidence that stringent131

quality trimming of nucleotides whose quality scores are ≤ 20 results in a poorer transcriptome132

assembly across the majority metrics. Instead, researchers interested in assembling transcriptomes de133

novo should elect for a much more gentle quality trimming, or no trimming at all. Table 1 summarizes134
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my finding across all experiments, where the numbers represent the trimming level that resulted in the135

most favorable result. What is apparent, is that for typically-sized datasets, trimming at Phred=2 or136

Phred=5 optimizes assembly quality. The exception to this rule appears to be in studies where the137

identification of SNP markers from high (or very low) coverage datasets is the primary goal.138

Table 1139

Dataset Size Error Map Orf Blast

10M 20 0 2 2

20M 5 5 2 2

50M 5 5 5 2

75M 20 10 5 0

100M 20 0 2 2

140

Table 1. The Phred trimming levels that resulted in optimal assemblies across the 4 metrics141

tested in the different size datasets. Error= the number of nucleotide errors in the assembly.142

Map= the number of concordantly mapped reads. ORF= the number of ORFs identified.143

BLAST= the number of unique BLAST hits.144

The results of this study were surprising. In fact, much of my own work assembling transcriptomes145

included a vigorous trimming step. That trimming had generally small effects, and even negative146

effects when trimming at Phred=20 was unexpected. To understand if trimming changes the147

distribution of quality scores along the read, we generated plots with the program SolexaQA (Cox148

et al., 2010). Indeed, the program modifies the distribution of Phred scores in the predicted fashion149

yet downstream effects are minimal. This should be interpreted as speaking to the performance of the150

the bubble popping algorithms included in Trinity and other de Bruijn assemblers.151

The results presented here stem from the analysis of a single Illumina dataset and specific properties of152

that dataset may have biased the results. This dataset was selected from several evaluated SRA153

datasets for it’s ’typical’ error profile. The preliminary analysis of a 10 million read subset of another154

typical dataset were concordant with those presented here. Taken together, this suggests that the155

results presented here do not appear to be dependent on the particulars of this dataset, but instead are156

this version posted November 14, 2013. ; https://doi.org/10.1101/000422doi: bioRxiv preprint 

https://doi.org/10.1101/000422


typical of Illumina mRNAseq datasets.157

What is missing in trimmed datasets? — The question of differences in recovery of specific158

contigs is a difficult question to answer. Indeed, these relationships are complex, and could involve a159

stochastic process, or be related to differences in expression (low expression transcripts lost in trimmed160

datasets) or length (longer contigs lost in trimmed datasets). To investigate this, I attempted to161

understand how contigs recovered in the 10 million reads untrimmed dataset but not in the162

Phred=20 trimmed dataset were different. Using the information on FPKM and length generated by163

the program eXpress, it was clear that the transcripts unique to the untrimmed dataset were more164

lowly expressed (mean FPKM=3.2) when compared to the entire untrimmed dataset (mean165

FPKM=11.1; t = -2.2255, df = 70773, p-value = 0.02605). Of note, a similar result was found when166

using the non-parametric Wilcoxan test (W = 18591566, p-value = 7.184e-13).167

Turning my attention to length, when comparing uniquely recovered transcripts to the entire168

untrimmed dataset of 10 million reads, it appears to be the shorter contigs (mean length 857nt versus169

954nt; t = -2.1285, df = 650.05, p-value = 0.03367, W = 26790212, p-value <2.2e-16) that are170

differentially recovered in the untrimmed dataset relative to the Phred=20 trimmed dataset.171

Effects of coverage — Though the experiment was not designed to evaluate the effects of172

sequencing depth on assembly, the data speak well to this issue. Contrary to other studies, suggesting173

that 30 million paired end reads were sufficient to cover eukaryote transcriptomes (Francis et al.,174

2013), the results of the current study suggest that assembly content was more complete as175

sequencing depth increased; a pattern that holds at all trimming levels. Though the suggested 30176

million read depth was not included in this study, all metrics, including the number of assembly errors177

was dramatically reduced, and the number of exons, and BLAST hits were increased as read depth178

increased. While generating more sequence data is expensive, given the assembled transcriptome179

reference often forms the core of future studies, this investment may be warranted.180

In summary, the process of nucleotide quality trimming is commonplace in HTS analysis pipelines, but181

it’s optimal implementation has not been well defined. A very aggressive strategy, where sequence182

reads are trimmed when Phred scores fall below 20 is common. My analyses suggest that for studies183
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whose primary goal is transcript discovery, that a more gentle trimming strategy (e.g. Phred=2 or184

Phred=5) that removes only the lowest quality bases is optimal. In particular, it appears as if the185

shorter and more lowly expressed transcripts are particularly vulnerable to loss in studies involving186

more harsh trimming. The one potential exception to this general recommendation may be in studies187

of population genomics, where deep sequencing is leveraged to identify SNPs. Here, a more stringent188

trimming strategy may be warranted.189
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