Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
Contradictory Results

A Tale of Two Hypotheses: Genetics and the Ethnogenesis of Ashkenazi Jewry

M.A. Aram Yardumian
doi: https://doi.org/10.1101/001354
M.A. Aram Yardumian
Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The debate over the ethnogenesis of Ashkenazi Jewry is longstanding, and has been hampered by a lack of Jewish historiographical work between the Biblical and the early Modern eras. Most historians, as well as geneticists, situate them as the descendants of Israelite tribes whose presence in Europe is owed to deportations during the Roman conquest of Palestine, as well as migration from Babylonia, and eventual settlement along the Rhine. By contrast, a few historians and other writers, most famously Arthur Koestler, have looked to migrations following the decline of the little-understood Medieval Jewish kingdom of Khazaria as the main source for Ashkenazi Jewry. A recent study of genetic variation in southeastern European populations (Elhaik 2012) also proposed a Khazarian origin for Ashkenazi Jews, eliciting considerable criticism from other scholars investigating Jewish ancestry who favor a Near Eastern origin of Ashkenazi populations. This paper re-examines the genetic data and analytical approaches used in these studies of Jewish ancestry, and situates them in the context of historical, linguistic, and archaeological evidence from the Caucasus, Europe and the Near East. Based on this reanalysis, it appears not only that the Khazar Hypothesis per se is without serious merit, but also the veracity of the ‘Rhineland Hypothesis’ may also be questionable.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted December 12, 2013.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Tale of Two Hypotheses: Genetics and the Ethnogenesis of Ashkenazi Jewry
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Tale of Two Hypotheses: Genetics and the Ethnogenesis of Ashkenazi Jewry
M.A. Aram Yardumian
bioRxiv 001354; doi: https://doi.org/10.1101/001354
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A Tale of Two Hypotheses: Genetics and the Ethnogenesis of Ashkenazi Jewry
M.A. Aram Yardumian
bioRxiv 001354; doi: https://doi.org/10.1101/001354

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4230)
  • Biochemistry (9123)
  • Bioengineering (6767)
  • Bioinformatics (23970)
  • Biophysics (12109)
  • Cancer Biology (9511)
  • Cell Biology (13753)
  • Clinical Trials (138)
  • Developmental Biology (7623)
  • Ecology (11675)
  • Epidemiology (2066)
  • Evolutionary Biology (15492)
  • Genetics (10632)
  • Genomics (14310)
  • Immunology (9473)
  • Microbiology (22824)
  • Molecular Biology (9087)
  • Neuroscience (48920)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2566)
  • Physiology (3841)
  • Plant Biology (8322)
  • Scientific Communication and Education (1468)
  • Synthetic Biology (2295)
  • Systems Biology (6180)
  • Zoology (1299)