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Abstract 
 
Recent advances in sequencing technology have helped unveil the unexpected complexity and 
diversity of small RNAs.  A critical step in small RNA library preparation for sequencing is the 
ligation of adapter sequences to both the 5’ and 3’ ends of small RNAs.  Two widely used 
protocols for small RNA library preparation, Illumina v1.5 and Illumina TruSeq, use different 
pairs of adapter sequences.  In this study, we compare the results of small RNA-sequencing 
between v1.5 and TruSeq and observe a striking differential bias.  Nearly 100 highly expressed 
microRNAs (miRNAs) are >5-fold differentially detected and 48 miRNAs are >10-fold 
differentially detected between the two methods of library preparation.  In fact, some miRNAs, 
such as miR-24-3p, are over 30-fold differentially detected.  The results are reproducible across 
different sequencing centers (NIH and UNC) and both major Illumina sequencing platforms, 
GAIIx and HiSeq.  While some level of bias in library preparation is not surprising, the apparent 
massive differential bias between these two widely used adapter sets is not well appreciated.  As 
increasingly more laboratories transition to the newer TruSeq-based library preparation for small 
RNAs, researchers should be aware of the extent to which the results may differ from previously 
published results using v1.5. 
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Introduction 
 
Small RNAs, such as microRNAs (miRNAs), are important regulators of gene expression in a 
wide variety of normal biological and pathological processes(1,2).  Numerous technologies, 
including quantitative PCR (qPCR), microarray, and deep sequencing, are presently in use for 
high-throughput miRNA profiling(3-5).  Though each of these methods has both advantages and 
limitations, deep sequencing has emerged as the gold standard for discovery and quantification 
of miRNAs, particularly for those that are of low abundance.  There are several small RNA 
sequencing technologies, including Illumina, Applied Biosystems (ABI) SOLiD, and 454 Life 
Sciences that are commercially available.  Recent studies have demonstrated that each of these 
technologies harbors different limitations that lead to variable biases(6,7). 
 
A critical step in the preparation of a small RNA library for deep sequencing is the ligation of 
adapter sequences to both ends of small RNAs.  These adapters provide the template for primer-
based reverse transcription, amplification, and sequencing.  The efficiency of adapter ligation is 
thought to depend on the adapter sequence, the ligase, as well as the nucleotide composition and 
secondary structures of the small RNAs to be sequenced(8,9).  Illumina introduced the v1.5 
small RNA library preparation method in February 2009 and the TruSeq method more recently 
in November 2010.  Because one critical difference between these methods is the adapter 
sequences, some level of differential bias between these two methods is expected.  However, the 
extent of the bias has not been evaluated previously and could be important for guiding accurate 
comparison of miRNA expression results between these two methods. 
 
In this study, we directly compared the small RNA sequencing results between Illumina v1.5 and 
TruSeq.  We also performed the sequencing on two different Illumina platforms (GAIIx and 
HiSeq) and at two different sequencing centers (UNC and NIH).  While we expected some level 
of bias in the library preparation, the apparent extensive differential bias between these two 
widely used Illumina adapter sets is striking and not reported previously.  For example, nearly 25 
of the most abundant miRNAs are >10-fold differentially detected between v1.5 and TruSeq.  
This finding serves as an important caution, particularly to laboratories/facilities that used v1.5 
but are now transitioning to the newer TruSeq protocol.  In general, the findings of this study add 
to the growing body of literature on bias in small RNA sequencing that merits continued 
investigation, particularly with regard to the development of strategies for bias remediation. 
 
Materials and Methods 
 
Sequencing and bioinformatic analysis 
 
Mouse insulinoma (MIN6) cells were cultured as previously described(10).  Cells were lysed and 
RNA was isolated using either the Norgen Total RNA Purification Kit (UNC) or TRIzol-
mediated extraction (NIH).  Only samples with an RNA Integrity Number (RIN) of 8.5 or higher, 
as measured by Agilent Bioanalyzer 2100, were considered for further analysis.  Small RNA 
libraries were generated using either the Illumina v1.5 protocol or the Illumina TruSeq protocol.  
Sequencing was performed on either the Illumina GAIIx or Illumina HiSeq 2000 platforms.  
Small RNA-seq reads were trimmed using cutAdapt (-O 10 –e 0.1) to remove remnants of the 3’-
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adapter sequence.  Subsequent mapping of trimmed reads to the mouse genome and 
miRNA/isomiR quantification were performed exactly as previously described(10). 
 
Real time quantitative PCR analysis 
 
MIN6 cells were cultured and lysed as above and RNA was isolated using the Norgen Total 
RNA Purification Kit.  Complementary DNA (cDNA) was synthesized using the TaqMan 
miRNA Reverse Transcription kit (Applied Biosystems; Grand Island, NY) according to the 
manufacturer’s instructions.  Real-time PCR amplification was performed using TaqMan 
miRNA assays in TaqMan Universal PCR Master Mix on a BioRad CFX96 Touch Real Time 
PCR Detection system (Bio-Rad Laboratories, Inc., Richmond, CA).  Reactions were performed 
in triplicate using U6 as the internal control.  miRNA levels were expressed as relative 
quantitative values, which represent fold differences relative to miR-30e-5p.  All TaqMan assays 
used in this study where purchased from Applied Biosystems, Inc. (Grand Island, NY) and 
include: mmu-miR-24-3p (4427975-000402), mmu-miR-27b-3p (4427975-000409), mmu-miR-
29a-3p (4427975-002112), mmu-miR-375-3p (4427975-000564), miR-30e-5p (4427975-
002223), and U6 (4427975-001973). 
 
Results 
 
We isolated RNA from a widely-used pancreatic beta-cell-like cell line (MIN6) and performed 
small RNA-seq according to three different methods: [1] Illumina v1.5 library preparation 
sequenced on GAIIx platform (v1.5-GAIIx), [2] Illumina TruSeq library preparation sequenced 
on GAIIx platform (TS-GAIIx), and [3] Illumina TruSeq library preparation sequenced on HiSeq 
platform (TS-HiSeq).  TS-GAIIx and v1.5GAIIx were carried out at the NIH Intramural 
Sequencing Center (NISC) on June 25th, 2013 and TS-HiSeq was performed at the UNC High 
throughout Sequencing Facility (HTSF) on June 6th, 2013.  Three replicate small RNA libraries 
were generated for each method, yielding a total of nine small RNA-seq datasets. 
 
We used our previously published bioinformatic pipeline(10) to analyze the small RNA-seq 
reads in each dataset.  Results of the 3’-adapter trimming and genome mapping are provided in 
Table S1.  Total number of reads across the nine datasets range from ~17 million to ~24 million 
(Table S1).  In each of the datasets, >70% of the align-able reads map to annotated miRNAs and 
>1000 distinct mature miRNAs are represented by at least ten reads.  Among these miRNAs, 315 
have a relative expression of at least 100 reads per million mapped reads (RPMM) in at least one 
library (Table S2).  We refer to these miRNAs as “highly expressed.”  To compare miRNA 
expression profiles across datasets, we correlated the expression profiles of these abundant 
miRNAs across all nine datasets. 
 
The miRNA expression profiles from replicates within each method are very highly correlated 
(r2 > 0.99), clearly demonstrating that both the method of library preparation and the sequencing 
platform yield exceptionally reproducible results (Figure 1).  Furthermore, we also observed a 
very strong correlation (r2 > 0.90) among TS-GAIIx and TS-HiSeq samples, but substantially 
lower correlation (r2 ~ 0.6) among TS-GAIIx (or TS-HiSeq) and v1.5-GAIIx samples (Figure 1).  
These results indicate that neither sequencing platform (GAIIx vs. HiSeq) nor sequencing facility 
(UNC vs. NIH) is a major contributor to technical variation, but that the method of library 
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preparation (TS vs. v1.5) is a significant factor. 
 

Among the 315 highly expressed miRNAs included in the correlation analysis, only 8 are >10-
fold differentially detected between TS-GAIIx and TS-HiSeq (Figure 2A).  Moreover, most of 
these differentially detected miRNAs are on the lower end of the expression spectrum (Table 
S2).  In stark contrast, when comparing TS-GAIIx with v1.5-GAIIx, 48 are >10-fold 
differentially detected and 96 are >5-fold differentially detected (Figure 2B).  Strikingly, ~79% 
(n=38/48) of the former and ~70% (n=67/96) of the latter set of miRNAs are present at greater 
abundance in the samples prepared by v1.5 compared to the samples prepared by TruSeq (Figure 
2B).  These miRNAs include several that are known regulators of beta cell development and 
function, including miR-24-3p(11), miR-29b-3p(12), and miR-200c-3p(13), which are ~36-fold, 
~31-fold, and ~13-fold more highly detected in the samples prepared by v1.5, respectively.  For 
example, miR-24-3p is among the top ten most highly expressed miRNAs in MIN6 cells 
according to v1.5, but is consistently not even in the top hundred according to TruSeq (Table 
S2).  It is worth noting that despite the overall bias toward higher miRNA expression levels in 
samples prepared by v1.5, a few miRNAs are more highly detected in samples prepared by 
TruSeq (Figure 2B).  For example, miR-26a-5p, which is known to have functional relevance in 
the beta cell(14), is among the top ten most highly expressed miRNAs in MIN6 cells according 
to TruSeq, but is scarcely in the top fifty according to v1.5 (Table S2).  
 
We selected four of the highly expressed miRNAs, miR-24-3p, miR-27b-3p, miR-29a-3p, and 
miR-375-3p for quantification by TaqMan-based real time quantitative PCR (RT-qPCR).  To 
facilitate a comparison of the findings between RT-qPCR and the sequencing methods, we 
normalized the expression levels of each miRNA to that of miR-30e-5p, which is highly 
expressed and invariant across all of the datasets.  The qPCR result matches that of v1.5 for miR-
24-3p, but more closely resembles that of TruSeq for miR-375 and is completely different than 
both v1.5 and TruSeq for miR-27b-3p and miR-29a-3p.  These results indicate that qPCR is not 
uniformly consistent with one method of library preparation for sequencing. 
 
Discussion 
 
The presence of bias in small RNA profiling is well established in the literature(8,15-17).  
Differential bias across various expression platforms (e.g., microarray, qPCR, sequencing) and 
sequencing technologies (e.g., Illumina, ABI SOLiD, 454 Life Sciences) has also been 
demonstrated(6,7,18).  However, no study has focused on different library preparation methods 
within the same sequencing technology.  Here we compare two of the most popular methods 
from Illumina (v1.5 and TruSeq).  The results of our study point to a massive differential miRNA 
detection bias between these two library preparation methods.  This finding was independent of 
the sequencing center (NIH, UNC) and sequencing platform (GAIIx, HiSeq).  While some level 
of bias in library preparation is not surprising, the apparent extensive differential bias between 
these two widely used adapter sets is striking and not well appreciated.  
 
It is important to note that our study does not suggest that one method of library preparation is 
necessarily always more reliable or accurate for miRNA detection than the other; rather, it likely 
depends on the miRNA.  Specifically, the ligation efficiencies of different adapter sequences 
may differ based on features that vary across miRNAs, such as nucleotide sequence, chemical 
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modification, and secondary structure(8,9,19).  The factors that control the differential biases 
specifically between the adapter sets used in v1.5 and TruSeq merit further detailed 
investigation.  Researchers seeking to ameliorate the influence of these biases on miRNA 
expression levels can consider using pools of different adapter sets during library 
preparation(20,21) or alternative RNA cloning methods(22). 

 
As increasingly more laboratories transition to the newer TruSeq-based library preparation for 
small RNAs, researchers should be aware of the extent to which the results may differ from 
previously published results using the v1.5 method.  We strongly caution researchers against 
merging together small RNA-seq data generated from v1.5 and TruSeq library preps.  Also, in 
any standard small RNA-seq study, in which only one adapter set is used for library preparation, 
one should be aware of the potential pitfalls of applying arbitrary cutoffs based on expression 
(such as “top 100 detected”) to identify miRNAs for further functional analysis, because some 
miRNAs that appear lowly expressed could be inefficiently detected for purely technical reasons 
(such as miR-24 in the TruSeq datasets presented in this study).  In general, we recommend 
against using small RNA-seq data to make calls on the “absolute” levels of miRNAs, unless 
additional precaution has been taken to substantially mitigate the biases discussed here.  Despite 
these issues, deep sequencing is still an extremely valuable method for de novo discovery of 
isomiRs and novel small RNAs, as well as for studying relative miRNA expression changes 
across different conditions or time points. 
 
Data Availability 
 
MIN6 TS_HiSeq reads are available at Gene Expression Omnibus (GEO) under the accession 
number GSE44262.  MIN6 v1.5_GAIIx and TS_GAIIx reads are will also be made available at 
GEO (submission in progress). 
 
Supplementary Material 
 
Supplementary Data are available online at http://biorxiv.org/. 
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Figures 

 

Figure 1.  Comparison of miRNA expression profiles between two different Illumina 
library preparation protocols reveals massive differential bias.  A comparison of the 
following three methods is shown: Illumina v1.5 library preparation sequenced on GAIIx 
platform (v1.5_GAIIx), Illumina TruSeq library preparation sequenced on GAIIx platform 
(TS_GAIIx), and Illumina TruSeq library preparation sequenced on HiSeq platform (TS_HiSeq).  
Three replicate small RNA libraries were generated for each of the three methods.  Correlation 
values were calculated by Pearson’s metric.  Similar results were obtained based on the 
calculation of Spearman’s correlation coefficient (rho).  Red and white colors indicate strongest 
and weakest correlation, respectively. 
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Figure 2.  Nearly fifty of the most abundant miRNAs are greater than ten-fold 
differentially detected between Illumina v1.5 and TruSeq.  (A) Relative expression levels of 
the most abundant (n=315) miRNAs according to the GAIIx and HiSeq sequencing platforms are 
shown.  (B) Relative expression levels of the most abundant (n=315) miRNAs according to the 
v1.5 and TruSeq (TS) library preparation methods are shown.  Relative miRNA expression 
levels were calculated according to the following: log10(miRNA RPMM / miR-30e-5p RPMM), 
where RPMM is reads per million mapped reads.  miR-30e-5p represents a housekeeping 
miRNA, due to its invariance and robust expression across all datasets.  Similar results were 
obtained from using another invariant but lowly expressed housekeeping miRNA, miR-130b. 

 

Figure 3.  Results from quantitative PCR are not uniformly consistent with one method of 
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library preparation.  Comparison of relative expression levels for four miRNAs (miR-24-3p, 
miR-27b-3p, miR-29a-3p, and miR-375-3p) across four different methods of miRNA detection 
are shown.  miRNA expression levels were normalized to miR-30e-5p, which represents a 
housekeeping miRNA due to its invariance and robust expression across all datasets. 
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