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Abstract

Henrich (2004) argued that larger populations can better maintain complex tech-
nologies because they contain more highly skilled people whom others can imitate. His
original model, however, did not distinguish the effects of population size from popula-
tion density or network size; a learner’s social network included the entire population.
Does population size remain important when populations are subdivided and networks
are realistically small? I use a mathematical model to show that population size has
little effect on equilibrium levels of mean skill under a wide range of conditions. The ef-
fects of network size and transmission error rate usually overshadow that of population
size. Population size can, however, affect the rate at which a population approaches
equilibrium, by increasing the rate at which innovations arise. This effect is small unless
innovation is very rare. Whether population size predicts technological complexity in
the real world, then, depends on whether technological evolution is innovation-limited
and short of equilibrium. The effect of population “connectedness,” via migration or
trade, is similar. I discuss the results of this analysis in light of the current empirical
debate.

1 Introduction

Henrich (2004) used a mathematical model to argue that large populations better facilitate
cumulative cultural evolution, i.e. the process by which human populations acquire more in-
formation, higher skill levels for complex tasks, and better technologies through time. Others
had proposed similar ideas before (Shennan, 2001), but Henrich’s mechanistic hypothesis was
perhaps more original and compelling. The argument is simple: larger populations contain
more exceptionally skilled individuals whom others can copy. Above a critical population
size, the positive effect of imitating the skillful becomes large enough to cancel out the neg-
ative effect of transmission error, leading to increasingly advanced skills and technologies.
Henrich originally used this theory to explain the prehistoric loss of technological complexity
among Tasmanian hunter-gatherers following their isolation from the Australian mainland.
This idea was contentious: see Read’s (2006; 2011) critiques and Henrich’s (2006) rebuttal.

Regardless of the original empirical intent, however, the idea has since taken off. Theorists
have built variations on the original model that include population structure (Powell et al.,
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2009, 2010), alternative social learning biases (Aoki et al., 2011; Bentley and O’brien, 2011;
Vaesen, 2012), various forms of transmission error (Mesoudi, 2011; Vaesen, 2012), overlapping
generations and small social networks (Kobayashi and Aoki, 2012), and trade networks in
economic contexts (Kelly, 2009). Some have applied the model to particular prehistoric
contexts (Powell et al., 2009, 2010; Lycett and Norton, 2010; Marquet et al., 2012). Empirical
tests of the theory includes small-scale lab experiments (Caldwell and Millen, 2010; Derex
et al., 2013; Muthukrishna et al., 2014) and the search for a relationship between population
size and technological complexity in real human populations. Papers of the latter style claim
to find both supporting (Kline and Boyd, 2010; Collard et al., 2013b) and disputing or
ambivalent (Collard et al., 2005, 2013a; Read, 2008, 2012) evidence for the theory.

The purpose of this paper is to distinguish the relative effects of population size and social
network size on cumulative cultural evolution. Henrich’s original model assumed that every
learner could identify the single most skilled individual in the entire population, implying that
one’s social network size (the number of people from whom one could learn) is equal to the
total population size. This is clearly unrealistic for any human population. Does population
size remain predictive of cultural complexity when social networks are realistically small?
Furthermore, how do population size and density separately affect cultural evolution? Does
simply increasing a population’s range, e.g. by adding new subpopulations to its edge, have
the same effect as increasing the density of its subpopulations? This question is important
because these variables may be confounded in empirical studies.

I use a mathematical model similar to Henrich’s to show that population size usually has
very little effect on equilibrium levels of mean skill. Small changes in social network size,
innovation rate, or transmission error rate greatly alter equilibrium skill, suggesting that
cross-cultural variation in these parameters should swamp the effects of population size.
Population size can, however, strongly affect the rate at which the population approaches
equilibrium, because larger populations discover new innovations more often. This effect is
strongest when innovation is very rare because, in that case, the total rate of innovation
in the population is approximately proportional to population size. Whether population
size predicts technological complexity in the reality depends on whether observed levels of
technological complexity represent equilibria, or whether they are just snapshots of a slow
process of growth.

I also show the relative effects of population density (as opposed to total population
size) and migration between subpopulations. I find that, unlike population size, density can
noticeably affect equilibrium skill levels. This effect is still relatively small compared to that
of network size - unless learners can sample the entire subpopulation, in which case network
size and population density are equivalent. Migration between subpopulations has little effect
on equilibrium. Like population size, however, it can increase the rate of skill growth by
making rare innovations available to all subpopulations. Hence population “connectedness,”
like population size, is most important when innovations are rare and populations have not
converged on equilibria.

The next section constructs the model. Section 3 then attempts to explain the basic
results of the model mathematically. Section 4 largely confirms these explanations with
simulation results. Section 5 discusses how my results may clarify disagreements in the
empirical literature.

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2013. ; https://doi.org/10.1101/001529doi: bioRxiv preprint 

https://doi.org/10.1101/001529
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 The model

A population of socially learning organisms is divided into M subpopulations, each of size
N . This allows us to distinguish the effects of total population size (N×M) from population
density (N). Each learning round, individuals sample n others from the local subpopulation
to form a social network, and imitate the most skilled individual in their networks, as detailed
below. A proportion m of the population then migrates to a different subpopulation. This
model structure can apply to both short timescales, where individuals repeatedly learn and
move about within their lifetime, and longer timescales, where individuals learn only once
and social learning occurs across generations.

An individual’s skill level, z, is the proportion of correct “decisions” or techniques he
employs, out of a total number of decisions d. One’s decision vector shows which decisions are
correct and which are incorrect, denoted respectively by 1 and 0. For example, an individual
with decision vector 100101... is correct with respect to decisions one, four and six, and
incorrect for two, three, and five, and so on. Thus z ∈ {0, 1/d, 2/d, ..., (d − 1)/d, 1}; z = 1
implies that the individual makes all correct decisions, and z = 0 implies all incorrect
decisions. The convenience of this formulation lies in the natural maximum and minimum
values for z; unlike Henrich’s original model, for example, indefinite skill growth or decline
is impossible. Although one can imagine cases where this is a useful representation of skill
in some task (e.g. a farmer’s success in crop production depends on such decisions as what,
where, when, and how to plant), I use it mainly for convenience; I do not mean to imply
that this model is any more realistic than others in the literature.

Learners copy the decision vector of the most skilled individual in their network. Trans-
mission error, however, ensures that learners rarely acquire the same vector as their model.
Sometimes a learner acquires the wrong decision even if their model employed the correct
one, and vice versa. The deleterious error rate is denoted by u and the positive innovation
rate by v. I assume u ≥ v throughout, so that deleterious transmission errors are more
common that beneficial ones. This captures Henrich’s original assumption that transmission
error tends to erode mean skill.

Like previous models, mine optimistically assumes that learners always identify and copy
the most skilled individuals in their networks. This is unrealistic: identifying a person’s skill
in complex tasks is difficult (Hill and Kintigh, 2009). Uncertainty in payoffs greatly reduce
the effectiveness of the success-biased learning strategy modeled here (Baldini, 2013), so
including uncertainty will probably lead to lower mean skill levels. I doubt, however, that
the general conclusions of this paper depend on this assumption.

3 The effects of population size: mathematical argu-

ments

The complexity of this model preludes much mathematical analysis. Although it resembles
quantitative genetic models of directional selection under haploid inheritance and finite pop-
ulation size, the classic results of that literature generally fail to apply here. The reason is
that selection, being driven by decision-making forces, can be very strong in this model, and
the mutation rate, analogous here to transmission error and innovation, can be very large.
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Diffusion methods, which provide the most tractable results for finite population sizes, require
the assumption of weak evolutionary forces and are therefore inappropriate. Furthermore,
the effective lack of “cultural recombination” in this model implies appreciable correlation
between different decisions at equilibrium, rendering single-locus models of genetic evolution
inaccurate. Thus, this section provides only the simplest, isolated mathematical arguments,
which provide some grasp on the full dynamics.

3.1 Total population size affects the probability that innovations
arise

Total population size, NM , most strongly affects the rate at which innovations appear in
the population. This effect is largest when innovation is very rare, specifically v � 1/(NM).
To see this, consider the probability that a novel innovation arises for some decision in a
population of size NM . Call this probability P . Then P is

P = 1− (1− v)NM (1)

The expected number of new innovations is this probability times the total number of deci-
sions, d, under evolution:

E(# of innovations) = d
(
1− (1− v)NM

)
(2)

As NM grows, so too does the rate at which innovations arise in the population. The effect
is largest if v � 1/(NM), so that an innovation for some decision is unlikely to arise in any
given generation. In that case, P is approximately proportional to the population size, so

E(# of innovations) ≈ dvNM (assuming v � 1/(NM)) (3)

In contrast, when the population or innovation rate is large such that the inequality v �
1/(NM) is no longer true, then increasing NM has a very small effect on the total innovation
rate. This is because P quickly approaches one; the innovation is already likely to arise
somewhere in the population, so increasing NM has little effect.

3.2 Total population size has little effect on the spread and sur-
vival of innovations

Total population size has relatively little effect on the subsequent survival and spread of
new innovations. To see this, consider the expected growth rate of a brand new innovation.
Since the learning bias modeled here constitutes strong cultural selection, this initial growth
rate may be the most important quantity in determining whether a new innovation will
survive. Assume that other decisions are fixed for either 0 or 1, so that there is no other skill
variation in the population. Let q = 1/(NM) be the innovation’s initial frequency in the
entire population. Then the expected frequency in the next generation, q′, is

q′ =
1

M
(1− u) (1− (1− 1/N)n) (4)
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The expected growth rate upon innovation, λ, is found by dividing by q = 1/(NM), so

λ = N(1− u) (1− (1− 1/N)n) (5)

M drops out, showing that the number of subpopulations has no effect on the expected
initial survival of new innovations. Note, though, that population density (the size of sub-
populations), N , does affect the spread of new innovations. This effect is stronger if n is near
N , i.e. if social learners can sample and accurately judge the skill of most people in the sub-
population. This partly explains why previous models (Henrich, 2004; Powell et al., 2009),
which assumed n = N , found such a strong effect of interaction population size. The effect
of population density is weak if N � n, so that learners only learn from a small subset of a
local subpopulation - say, family and close friends. In that case, λ ≈ (1− u)n, so population
density has a negligible effect on the survival of new innovations.

This derivation assumes that there is no other variation in skill in the population, so
that the person with the new innovation would necessarily be the most skilled person in
the subpopulation, and therefore would be copied whenever he is sampled. In general, there
is likely to be skill variation present in the population for other decisions. This reduces
the probability that the new innovation will be present in a highly skilled person, which
ultimately reduces its probability of spreading. I doubt, however, that accounting for this
process would alter the conclusion that M has little to no effect on the survival of new
innovations.

3.3 Population size, equilibrium skill, and the rate of evolution

What is the overall effect of population size on the model? The above results suggest the
following conclusions. First, suppose that enough time has passed for all innovations to be
present in the population at some non-zero frequency. In this case, equilibrium depends on
the balance between cultural “selection,” which increases mean skill, and the transmission
error rate, which decreases it. Equation (5) suggests that selection depends largely on n and,
to a lesser extent, N . Thus, total population size should have little affect on this equilibrium,
except when NM is so small that drift rivals the strong effects of selection and transmission
error. On the other hand, prior to reaching equilibrium, population size can strongly affect
the rate of cultural evolution. If the innovation rate is very small, then large populations will
improve faster because they innovate more often.

Thus, the importance of population size depends on the rate of innovation in the popula-
tion and, to some extent, the timescale of interest. If innovations are rare enough to preclude
populations from reaching equilibrium in historical time, then population size will correlate
with skill level at any given time. If, instead, populations have reached equilibrium, then
population size will have little effect. Interestingly, these two conditions resemble alternative
models of genetic evolution: one in which long-term adaptation is limited by rare beneficial
mutations and another in which equilibrium is determined by a mutation-selection balance.
Similar conclusions apply in those models as do here.
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4 Simulation results

4.1 Innovation-limited skill evolution: population size important

Figure 1a shows the rates of cultural evolution when innovation is very rare. The per-decision
innovation rate is 1e-6, so v � NM in each case. Populations containing more subpopula-
tions evolve high skill more quickly, simply because they innovate more often. Figure 1 only
considers populations of total size 150 to 5,000, but the pattern holds for larger populations
as long as the innovation rate is suitably small. Note, though, that the effect diminishes for
larger M : the difference between M = 30 and M = 100 is small compared to the difference
between M = 3 and M = 10.
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(a) v = 0.000001
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(b) v = 0.0001. Same population sizes as in (a).
Notice shorter timescale.

Figure 1: Examples of cultural evolution under varying M . N = 50, n = 5, d = 100,
m = 0.01, u = 0.01. All populations eventually evolve to an equilibrium ẑ ≈ 0.99.

Figure 1b shows the same populations when the innovation rate is 1e-4, so that the
inequality v � NM no longer holds. Except for M = 3 (where total population size is
150), the rates of evolution are virtually indistinguishable. This is true despite the shorter
timescale of figure 1b.

On the timescale of figure 1a, mean skill improvement occurs in a stepwise fashion, as can
be seen by close inspection of the plot. Long periods of cultural stasis (between ∼10 to ∼100
generations, depending on M) surround short bursts of growth, during which innovations
quickly spread. All populations converge on about the same equilibrium (see next section),
so M still has little effect asymptotically. On this timescale, however, equilibrium may be
so distant as to be irrelevant. If the generation time for cultural learning is equal to that of
genetic reproduction (∼20 years), then figure 1a spans ∼100,000 years - much longer than
modern human populations have been separated. If the innovation-limited model is accurate
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for some skills or technologies, then it is the transient dynamics depicted in figure 1a, not
the long-term equilibria, that matter.

4.2 Equilibrium skill level: population size not important

When innovations are not very rare, the population approaches equilibrium relatively quickly.
Population size usually has negligible effect in this case. Figure 2a shows, for example, that
increasing network size from five to ten has a larger effect than increasing population size
from 100 to 10,000. This is a consistent finding: large changes in population size rarely alter
ẑ by more than a few percent. Thus, small inter-group variation in sociality and communica-
tiveness likely overshadow the effect of total population size on equilibrium skill level.
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(a) Population size has little effect compared to
network size. Density is held constant at N =
100.
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(b) The effect of density is still small compared
to network size, but larger than that of popula-
tion size. Total population size is held constant
at N ×M = 10, 000.

Figure 2: Effects of network size compared to population size and density. d = 100, m = 0.02,
v = 0.05, u = 0.005.

Population density has a larger effect than population size, as predicted by equation (5).
Figure 2b shows that increasing N from 50 to 100 has a noticeable effect on ẑ. This increase
in density by a factor of two has about the same effect as increasing total population size
by a factor of 100. As N grows, however, the effect becomes smaller: increasing N from 100
to 1,000 has about the same effect as increasing from 50 to 100. Equation (5) predicts this
diminishing effect. In any case, population density is largely trumped by network size and
transmission error rate.

The appendix shows the effect of population size on equilibria under various other pa-
rameter sets. They largely tell the same story: equilibrium skills levels depend much more
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on network size, transmission error, and innovation rate, than on either population size or
density.

4.3 The effect of “connectedness”

Others (Henrich, 2004; Powell et al., 2009) have argued that population “connectedness,”
e.g. through increased migration or trade with other populations, should have essentially the
same effect as population size. A cultural group could be small, but if it frequently interacts
with many other groups, then it might enjoy the benefits of a larger population size.

What affect does migration rate have here? Its primary effect is on the rate at which
innovations spread between subpopulations, meaning that it is most important when inno-
vations are rare. To see this, first imagine a metapopulation in which there is no migration
at all between subpopulations. Then the rate of cultural evolution is simply equal to the
mean of a single population of size N , since each subpopulation must innovate on its own.
If innovation is rare, then subpopulations will evolve much more slowly than if they were
connected by migration. If innovation is not very rare, then each subpopulation approaches
equilibrium relatively quickly (figure 1b), so migration has little effect.
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Figure 3: Example effects of migration on skill
evolution when innovation is rare. N = 50,
n = 5, d = 100, u = 0.01, v = 1e-6. All pop-
ulations eventually evolve to an equilibrium
ẑ ≈ 0.99.

Simulation suggests that, as in genetic
models, the effect of migration depends
largely on the size of Nm. If Nm � 1,
then increasing migration has a large ef-
fect on rate of evolution. If Nm is not very
small, populations behave as if effectively
united, so increasing migration rate has lit-
tle effect. Figure 3 shows cases where Nm
ranges from 0 to 5. At the upper range, as
Nm > 1, the effect of increasing m by an
order of magnitude is small. Otherwise, the
effect is large. Notice that Nm is simply
the expected number of migrants a subpop-
ulation exchanges with others, each gener-
ation. Thus, as long as subpopulations ex-
change ∼1 migrant every generation, then
changes in connectedness will have little ef-
fect. Note that this model assumes island-
style migration, in which each subpopuation
has equal probability of migrating to each
other. A stepping-stone model is probably
more realistic for humans. Such models usu-
ally show higher divergence between pop-
ulations (Charlesworth and Charlesworth,
2010, ch. 7), so it is possible that migration could be important under a wider range of
parameters than found here (see Powell et al., 2009).
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5 Application to the current empirical debate

Although the model treated here could apply to any cumulatively evolving cultural trait,
empiricists have focused mostly on technological evolution. My results suggest that the effect
of population size depends on (1) whether the total innovation rate is the limiting factor on
technological evolution, and (2) whether populations are near equilibrium. If technological
growth proceeds slowly, by the discovery of very rare improvements (by genius or accident)
which readily spread to the rest of the population, then population size may well predict
technological complexity in reality. If this is a good model, then ethnographically observed
levels of technology are only snapshots of a longer evolutionary process.

If, instead, innovation is not very rare, e.g. if a new innovation is likely to arise every
few generations, or populations are near equilibrium, then population size should have little
effect. Rather, network size, transmission error rate, and innovation rate should be most
important. These parameters likely vary across different human groups. Cultures that better
facilitate sociality, information sharing, and effective teaching will better be able to maintain
complex technologies and skills (Henrich, 2010).

Of course, either model may be appropriate, depending on the region, the technology of
interest, and the timescale. Innovations for complex or nonintuitive technologies are probably
much rarer than for simpler technologies, and transmission error much more frequent. This
may help to explain the ambiguous empirical support for the theory: some claim little to no
effect of population size (Collard et al., 2005, 2013a; Read, 2008, 2012), while others find a
strong effect (Kline and Boyd, 2010; Collard et al., 2013b). Collard et al. (2013a) surmises
that population size has the potential to affect technological complexity, but probably will
not always do so. My results here offer some mechanistic insight as to why the effect of
population size would be so heterogeneous.

I suspect, however, that the discrepant findings do not reflect variation in actual tech-
nological processes, but rather reflect imperfect, divergent methods. For example, no study
measures population density, village/band size, or anything akin to social network size. These
have distinct affects from population size, but they are probably all positively correlated:
large populations will, other things being equal, tend to be dense, and people in denser
populations probably have more social contacts. It is unclear, then, whether an observed
relationship between population size and technological complexity implies an actual effect of
population size per se. Furthermore, different studies consider very different regions, often
without accounting for population history or inter-group contact. Studies that limit atten-
tion to specific island regions (Kline and Boyd, 2010; Read, 2012) probably have better
control over these variables, but they also preclude generalization to other regions and larger
geographical areas. Finally, technological complexity itself also affects population growth,
implying a reverse causation that none of our models or statistical studies have considered.

Thus, the debate remains whether population size has an important effect on technological
evolution. For future empirical studies, researchers should use measures of population density
and network size, so as to better distinguish their effects from total population size. Network
size can, perhaps, be estimated by village or band size, at least when these are small.
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A The effect of M on equilibrium skill for various pa-

rameters

I found equilibrium skill levels, ẑ, by fitting a first-order autocorrelated normal model on
each time-series, after convergence to a stationary distribution. I round estimates to the
nearest 0.01; these are accurate in each case with at least 95% confidence (and usually much
more). Tables show first-order interactions of M with each other variable. For each table,
the non-focal parameters are kept at baseline values. These are N = 100, M = 50, n = 10,
m = 0.01, u = 0.05, v = 0.001, and d = 100.

M
ẑ 1 5 10 20 50 100
30 .40 .41 .42 .42 .42 .42
50 .42 .44 .44 .44 .44 .44

N 100 .44 .45 .46 .46 .46 .46
200 .46 .47 .47 .47 .47 .47
500 .48 .48 .48 .48 .49 .49

M
ẑ 1 5 10 20 50 100
2 .17 .17 .17 .17 .17 .17
3 .25 .25 .25 .25 .25 .25

n 5 .34 .34 .34 .34 .35 .25
10 .44 .45 .46 .46 .46 .46
30 .59 .60 .61 .61 .61 .61

M
ẑ 1 5 10 20 50 100

1e-6 .32 .35 .35 .36 .36 .36
1e-5 .34 .36 .36 .36 .36 .36

v 1e-4 .37 .38 .38 .38 .39 .39
1e-3 .44 .45 .46 .46 .46 .46
1e-2 .65 .66 .66 .66 .66 .66

M
ẑ 1 5 10 20 50 100
0 .44 .44 .44 .44 .44 .44

.0001 .44 .45 .45 .45 .45 .45
m .001 .44 .45 .45 .45 .45 .45

.01 .44 .45 .46 .46 .46 .46

.05 .44 .46 .47 .47 .47 .47

M
ẑ 1 5 10 20 50 100

.01 .99 .99 .99 .99 .99 .99

.02 .95 .96 .97 .97 .97 .97
u .05 .44 .45 .46 .46 .46 .46

.1 .21 .22 .22 .22 .22 .22

.2 .09 .09 .09 .09 .09 .09
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