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Proteasome inhibition elicits an evolutionarily conserved response wherein proteasome subunit mRNAs are 
upregulated, resulting in recovery of proteasome activity. We previously demonstrated that the 
transcription factor Nrf1 mediates this homeostatic response in mammalian cells. We show here that Nrf1 is 
initially translocated into the lumen of the ER, but is rapidly and efficiently retrotranslocated to the cytosolic 
side of the membrane in a manner that depends on p97/VCP. Normally, retrotranslocated Nrf1 is degraded 
by the proteasome and active species do not accumulate. However, in cells with compromised 
proteasomes, retrotranslocated Nrf1 escapes degradation and is cleaved N-terminal to Leu-104 to yield a 
fragment that is no longer tethered to the ER-membrane. Importantly, this cleavage event is essential for 
Nrf1-dependent activation of proteasome gene expression upon proteasome inhibition. Our data uncover
an unexpected role for p97 in activation of a transcription factor by relocalizing it from the ER lumen to the 
cytosol.
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INTRODUCTION 

Transcription factor Nuclear factor erythroid derived 2-related factor 1 (Nrf1) 

belongs to the cap ‘n’ collar basic leucine zipper (CNC-bZIP) family of proteins that are 

known to be activated in response to cellular stress (Sykiotis and Bohmann, 2010).  Other 

members of this family include p45 NF-E2, Nrf2, Nrf3, Bach1, and Bach2 (Andrews et 

al., 1993; Kobayashi et al., 1999; Moi et al., 1994; Oyake et al., 1996).  The CNC-bZIP 

transcriptions factors heterodimerize with small Maf proteins (Maf F, Maf G, and Maf K) 

and preferentially bind to anti-oxidant response elements (AREs) present in the promoter 

region of their target genes (Motohashi et al., 2002).  The most-studied member of the 

CNC-bZIP family is Nrf2, which in response to oxidative stress directs a transcriptional 

program that helps maintain cellular redox homeostasis (Kensler et al., 2007).  Owing to 

their sequence similarity, Nrf1 was initially thought to have an overlapping function with 

Nrf2 in regulating antioxidant gene expression, but a growing body of emerging evidence 

contradicts this notion.   

Recently, we demonstrated that in mouse embryonic fibroblasts, Nrf1 but not 

Nrf2 is necessary for elevated expression of proteasome subunit mRNAs observed in 

cells treated with proteasome inhibitor, leading to a recovery or “bounce-back” of 

proteasome activity (Radhakrishnan et al., 2010).  Consistent with our observation, 

TCF11 (a longer isoform of Nrf1 found only in humans) was subsequently reported to be 

a mediator of proteasome bounce-back response after proteasome inhibition in human 

cells (Steffen et al., 2010).  Thus it appears that Nrf1 functions to combat proteotoxic 

stress caused by proteasome inhibition in mammals akin to transcription factors RPN4 in 

yeast (Xie and Varshavsky, 2001) and Cnc-C in Drosophila (Grimberg et al., 2011).  
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From the standpoint of cancer treatment, blockade of this bounce-back response may be a 

viable strategy to enhance the efficacy of proteasome inhibition therapy, given that Nrf1 

depletion slows the rate of recovery of proteasome activity following transient 

application of a covalent proteasome inhibitor and results in enhanced proteasome 

inhibitor-mediated apoptosis in cancer cells (Radhakrishnan et al., 2010). However, since 

the molecular requirements for Nrf1 activation have not been described, there remains no 

known mechanism to exploit this possibility. 

In addition to its role in the induced synthesis of proteasome subunit (PSM) 

genes, Nrf1 has also been found to regulate their basal expression in certain scenarios.  

For instance, in Nrf1-/- mouse neurons, PSM gene expression is diminished resulting in 

impaired proteasome function and neurodegeneration (Lee et al., 2011).  Also, a liver-

specific knockout of Nrf1 in mice caused a similar attenuation of PSM expression in 

hepatocytes (Lee et al., 2013).   

Despite the importance of Nrf1 in proteasome biology and its potential as an anti-

cancer target, a thorough understanding of the molecular mechanism behind its activation 

is currently lacking.  What is known is that Nrf1 exists in two forms, p120 and p110, both 

of which are unstable and accumulate when the proteasome is inhibited (Radhakrishnan 

et al., 2010). Whereas p120 is embedded in the ER membrane, p110 is soluble and can 

enter the nucleus (Biswas and Chan, 2009).  However, the mechanism leading to the 

formation of these species is controversial, with one study pointing to proteolytic 

cleavage (Wang and Chan, 2006) and another to differential glycosylation (Zhang et al., 

2007). We show here that, in striking contrast to other ER membrane-tethered 

transcription factors, the bulk of the Nrf1 polypeptide is inserted into the ER lumen. 
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Activation of Nrf1 depends on p97/VCP-dependent transfer of the luminal segments of 

Nrf1 to the cytosolic side of the ER membrane, followed by a novel proteolytic 

processing step.  

 

RESULTS 

Transcriptionally active Nrf1 p110 is derived from p120 by proteolytic processing   

To discriminate between the possibilities that p110 is derived by cleavage or 

deglycosylation of p120, we first overexpressed 3xFlagNrf1HA in human HEK-293T and 

mouse NIH-3T3 cells.  This construct contains 3 consecutive copies of the Flag tag at the 

N-terminus of Nrf1 and an HA tag at the C-terminus. In the presence of MG132, 

regardless of the cell type used, we observed that whereas the anti-HA antibody was able 

to detect two different forms of Nrf1 (~120 and ~110 kDa), the anti-Flag antibody was 

able to detect only the ~120 kDa form (Fig 1A).  The simplest explanation for this 

observation is that Nrf1 p120 was cleaved somewhere close to the N-terminus to yield 

p110.  To test this hypothesis and to identify the cleavage site, we overexpressed 

Nrf13xFlag (Nrf1 with C-terminal triple Flag tag) in HEK-293T cells and immunopurified 

the protein and subjected the p120 and p110 forms to Edman degradation-based N-

terminal sequencing.  Whereas the ~120 kDa band confirmed the intact N-terminus of the 

full-length Nrf1, sequence from the ~110 kDa band was consistent with a new N-

terminus starting with Leu-104 (Fig 1B; putative cleavage site indicated with a scissor). 

To further confirm this observation, we introduced several mutations flanking the 

predicted cleavage site (m1 through m6 in Fig 1B) and compared these mutants to wild-

type Nrf13xFlag for their ability to be processed into Nrf1 p110.  We found that all mutants 
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were defective to varying degrees in their ability to be processed to the p110 form, 

although the defects of m4 and m6 were relatively modest (Fig 1C).  Interestingly, m4 

and m6 are the only mutants that retain Trp-103 at the P1 position (with respect to the 

cleavage site), implying a crucial role of this Trp residue for protease recognition. 

Although our data suggested that p110 was derived from p120, there is no 

decisive evidence that proves that this is the case. To determine if there is a post-

translational precursor-product relationship between Nrf1 p120 and p110 forms, we 

performed a pulse-chase experiment.  We used L-azidohomoalanine (analog of the amino 

acid L-methionine) to pulse-label newly synthesized proteins and followed the resultant 

pool of Nrf1 during a chase period in which protein synthesis and proteasome-dependent 

degradation were both inhibited by the addition of cycloheximide and MG132.  We 

observed that over time, wild type p120 was processed to p110 but the non-cleavable 

Nrf1(m1)3xFlag was not (Fig 1D).  Taken together, our data are consistent with a model in 

which newly synthesized Nrf1 p120 undergoes proteolytic processing between Trp-103 

and Leu-104 to generate the p110 form. 

 Next, we asked if this proteolytic processing of Nrf1 is biologically relevant.  To 

this end, we compared the ability of wild-type and non-cleavable mutant Nrf1 to 

reconstitute the bounce-back response in Nrf1-/- mouse embryonic fibroblasts (Fig 2A).  

As expected, wild-type Nrf13xFlag was able to reinstate the induction of proteasome 

subunit (PSM) genes in response to MG132 treatment in these cells (Fig 2B).  In contrast, 

non-cleavable Nrf1(m1)3xFlag was defective in inducing PSM genes under the same 

conditions, implicating a necessary role for proteolytic processing in Nrf1’s 

transcriptional program. 
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p97 is required for Nrf1 activity and its proteolytic processing 

 p97 is a homo-hexameric AAA ATPase that is implicated in numerous cellular 

processes ranging from cell-cycle regulation to membrane fusion and protein degradation 

(Ye, 2006).  p97 has also been implicated in the turnover of the TCF11 isoform of human 

Nrf1 via the endoplasmic reticulum-associated degradation (ERAD) pathway (Steffen et 

al., 2010). Similar to inhibition of the proteasome, depletion of p97 leads to strong 

accumulation of ubiquitin conjugated substrates (Wojcik et al., 2004), underscoring its 

role in enabling degradation of a subset of the ubiquitinated proteome by the proteasome 

(Kolawa et al., 2013).  Given that cells depleted of p97 or treated with proteasome 

inhibitors accumulate both ubiquitinated proteins and Nrf1, we asked if p97 depletion 

was also sufficient to trigger the Nrf1-mediated bounce-back response.  To this end, we 

made use of NIH-3T3 mouse fibroblasts that have been engineered to stably express a 

doxycycline-inducible form of an shRNA targeting p97.  Unlike proteasome inhibition, 

depletion of p97 upon addition of doxycycline did not induce the bounce-back response 

(Fig 3A; compare bars 1 and 3 for the PSM genes).  By contrast, we observed that 

MG132-mediated bounce-back response was severely impaired when p97 was knocked-

down (Fig 3A; compare bars 3 and 4 for the PSM genes). 

To investigate the molecular basis for the lack of bounce-back response in p97-

depleted cells, we examined the fate of Nrf1. Consistent with Steffen et al (Steffen et al., 

2010), Nrf1 accumulated in cells depleted of p97 (Fig 3B compare lanes 1 and 3). To 

address the key question of whether p97 contributes to processing of Nrf1, which is 

essential for its activation, we evaluated the forms of Nrf1 that accumulated in control vs. 

p97-depleted cells treated with MG132. Whereas the control cells accumulated p110 
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(indicative of Nrf1 activation), this form was markedly absent in p97-depleted cells (Fig 

3B, compare lanes 2 and 4). This failure to process p120 is sufficient to account for the 

lack of bounce-back response in these cells. However, one concern was that due to the 3-

4 days required for p97 knock-down, the p120 form we observed in p97-depleted cells 

could represent an aberrant dead-end species that only accumulated upon sustained 

deprivation of p97 activity, and was not a true intermediate in the processing pathway.  

To address this possibility, we made use of the recently described compound NMS-873, a 

reversible inhibitor of p97 (Magnaghi et al., 2013; Polucci et al., 2013).  Treatment of 

NIH-3T3 mouse fibroblasts or HEK-293-Nrf13xFlag cells with NMS-873 led to a robust 

accumulation of p120 Nrf1 (Fig 3C; lane 1) which was then efficiently converted to the 

p110 form with a half-life of ~30 min. upon wash-out of NMS-873 in the presence of 

cycloheximide and MG132 (Fig 3C; lanes 2 – 6).  The overproduced protein behaved 

similarly in HEK-293 cells, although the conversion of p120 to p110 was not as efficient 

as for the endogenous protein (Fig 3C; compare left and right panels). Thus, our results 

are consistent with a model in which p97 controls not only the degradation of Nrf1, but 

also its processing to the active p110 form. 

p97 re-positions the C-terminal domain of Nrf1 into the cytosol 

 It has been proposed that during synthesis, Nrf1 becomes anchored in the ER 

membrane via an N-terminal transmembrane region (residues 7-24) (Zhang and Hayes, 

2010).  Given the role of p97 in Nrf1 processing and activation, we hypothesized that 

either p97 promotes processing of cytosolically-exposed Nrf1 and possibly its subsequent 

extraction from binding partners (as is the case for Spt23 and Mga2 in yeast; (Hoppe et 

al., 2000; Rape et al., 2001)), or p97 could be involved in re-positioning the TAD and 
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DBD of Nrf1 from the luminal to the cytosolic side of the ER membrane to facilitate its 

processing.  To distinguish between these possibilities, we performed a series of protease 

protection experiments to assess the topology of Nrf1 under various conditions (Fig 4A – 

D).  Regardless of p97 status (normal in the absence of doxycycline, or depleted in the 

presence of doxycycline; Fig 4A), 3xFlagNrf1 was susceptible to Proteinase K (PK) 

digestion in the absence of detergent, implying that the N-terminus was oriented towards 

the cytosol at all times.  Interestingly, however, the orientation of the C-terminus of 

Nrf13xFlag showed a strong dependence on p97 status (Fig 4B).  In mock-depleted cells, 

Nrf13xFlag was largely susceptible to digestion by PK (Fig 4B; compare lanes 4 and 5).  In 

stark contrast, when p97 was depleted by the addition of doxycycline, Nrf13xFlag was 

largely resistant to PK (Fig 4B; compare lanes 7 & 8, or lanes 10 & 11). The different 

behaviors of 3xFlagNrf1 and Nrf13xFlag and the failure to observe detectable trimming of 

Nrf13xFlag are consistent with a topology wherein only a very small amino-terminal 

segment of newly-synthesized Nrf1 is exposed to the cytosol (amino acids 1-6), whereas 

the bulk of Nrf1 (amino acids 25-742) remains in the lumen of the ER when the 

retrotranslocation activity of p97 is blocked. Interestingly, when we overexposed our 

blots, a small, protease-resistant pool of p120 was detectable at steady-state (Fig 4C lanes 

1 and 2). This pool quickly disappeared upon chasing with cycloheximide plus MG132 

(lanes 4-11). We propose that retrotranslocation of p120 constitutively occurs at such a 

fast rate that, at steady-state, only a tiny fraction of luminal p120 can be detected unless 

retrotranslocation is blocked by depletion of p97 as in Fig 4B.  

If the type II transmembrane orientation (Ncytosol/Clumen) for Nrf1 indicated by the 

protease protection experiments represents a true intermediate in its biogenesis, 
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accumulation of this species should be reversed upon restoration of p97 activity. To test 

if this is the case, we utilized the p97 inhibitor NMS-873.  Whereas Nrf13xFlag was largely 

resistant to digestion by PK in HEK293 cells treated with NMS-873 (Fig 4D lanes 1 & 

2), it became sensitive to PK upon wash-out of NMS-873 in the presence of MG132 plus 

cycloheximide (Fig 4D lanes 4 & 5).  In this case, the Nrf1 was detected as a p120 

species, because the tagged protein was chased to p110 less efficiently than was the 

endogenous protein (Fig 3C), and the p110 that did form during the chase fractionated 

with soluble proteins upon preparation of the membrane fraction. Nrf1(m1)3xFlag mirrored 

the behavior of the wild type protein (Fig 4D), indicating that the lack of processing 

observed for non-cleavable mutant was not due to defective retrotranslocation. 

To corroborate the results from the protease protection experiments, we also 

monitored the glycosylation status of Nrf1.  We reasoned that when the C-terminal 

domain (CTD) is oriented towards the lumen, Nrf1 should be glycosylated on a set of 

Asn-X-Ser/Thr sites C-terminal to the transmembrane domain (Zhang et al., 2007), 

whereas when the CTD is retrotranslocated to the cytosol, it should become 

degylcosylated. To evaluate the glycosylation status of Nrf1, we monitored its sensitivity 

to the degylcosylating enzyme Endoglycosidase H (Endo H). Nrf1 p120 that accumulated 

in cells treated with NMS-873 was sensitive to Endo H (Fig 4E; compare lanes 1 & 2 or 5 

& 6), whereas it became largely resistant to Endo H upon being chased in the presence of 

MG132 plus cycloheximide (Fig 4E; compare lanes 3 & 4 or 7 & 8). This behavior is 

consistent with the protease protection data that indicated that the CTD of p120 flips from 

a luminal to a cytosolic orientation upon restoration of p97 activity.  Notably, the 

cytosolically-oriented Nrf1 that accumulated upon restoration of p97 activity migrated 
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more slowly than expected for Nrf1 that has been deglycosylated and proteolytically 

processed.  This was paraticularly evident when the migration of the primary translation 

product for amino acids 104-742 was compared to the species of Nrf1 that accumulated 

in cells subjected to various perturbations (Fig. 4–figure supplement 1).  Our data suggest 

that once it is retrotranslocated to the cytosol, Nrf1 is not only deglycosylated and 

proteolytically cleaved after Trp103, but it also gains one or more additional 

modifications, the nature of which remain unknown. 

 

DISCUSSION 

Mouse Nrf1 and its human ortholog TCF11 are transcription factors that enhance 

the accumulation of mRNAs that encode proteasome subunits upon inhibition of 

proteasome activity (Radhakrishnan et al., 2010; Steffen et al., 2010). Prior work 

established that Nrf1 is initially integrated into the ER membrane but is turned over 

rapidly (Biswas and Chan, 2009; Radhakrishnan et al., 2010). Upon proteasome 

inhibition, it accumulates, migrates to the nucleus, and activates gene expression.  In this 

work, we make several critical new observations about the biogenesis and processing of 

Nrf1 that allow us to formulate a model that explains how it becomes activated in 

response to proteasome inhibition. Specifically, we show that the domains of Nrf1 that 

are implicated in transcriptional activation are initially translocated into the lumen of the 

ER, but subsequently are retrotranslocated to the cytosolic side of the membrane in a 

manner that depends on the AAA ATPase p97/VCP.  In unperturbed cells, the 

retrotranslocated Nrf1 is promptly degraded by the proteasome, resulting in a futile cycle 

of continuous synthesis, membrane insertion, retrotranslocation, and degradation (Fig 5, 
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left-hand side).  However, in cells with compromised proteasome activity, some of the 

retrotranslocated Nrf1 escapes degradation and is cleaved on the N-terminal side of Leu-

104 to yield a p110 fragment that is no longer tethered to the ER membrane and can 

migrate to the nucleus (Fig 5, right-hand side).  Importantly, this cleavage event is 

essential for Nrf1-dependent activation of proteasome gene expression upon inhibition of 

the proteasome.   

This model raises two important questions.  First, what is the identity of the 

protease that clips p120 to yield p110?  This remains unclear, but the available evidence 

rules out the most likely candidates.  Cleavage by the site-1 and site-2 proteases involved 

in mobilization of SREBP appears unlikely, because CHO cell lines deficient in these 

activities (Rawson et al., 1998; Rawson et al., 1997) were nonetheless able to accumulate 

p110 upon proteasome inhibition (R. Rawson, personal communication). In addition, the 

proteasome, which cleaves Spt23 and Mga2 from the ER membrane in yeast (Hoppe et 

al., 2000), appears to be dispensable for cleavage because we observed robust formation 

of p110 in two different cell lines with three different proteasome inhibitors across a wide 

range of concentrations (Fig 1 and data not shown).  Finally, an inhibitor of ER-localized 

rhomboid protease(s) (Pierrat et al., 2011) failed to impede accumulation of p110 in cells 

treated with MG132 (data not shown). The second question is, why does p110 not 

normally accumulate in unperturbed cells?  Although it will be easier to address this 

question when the protease is in hand, a reasonable working hypothesis is that in 

unperturbed cells, p97-dependent retrotranslocation and proteasome-dependent 

degradation are so intimately coupled that there is no opportunity for the cleavage event 

to occur as Nrf1 is threaded from the membrane into the maw of the proteasome. 
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However, when the proteasome is inhibited, Nrf1 accumulates on the cytosolic side of the 

membrane where it is susceptible to cleavage.  Even if the protease occasionally 

intercedes before the proteasome can act and small amounts of p110 are generated, p110 

is intrinsically unstable (Radhakrishnan et al., 2010) and thus does not accumulate to 

substantial levels.  

It should be immediately evident from the foregoing discussion how the 

activation of Nrf1 differs markedly from the activation of all other ER membrane-

tethered transcription factors that have been studied to date, including SREBP, ATF6, 

OASIS, CREB-H, Spt23, and Mga2 (Brown and Goldstein, 1997; Hoppe et al., 2000; 

Kondo et al., 2005; Ye et al., 2000; Zhang et al., 2006).  In all of those cases, the 

precursor is inserted into the ER membrane such that the functional domains involved in 

transcription are displayed on the cytosolic side of the membrane.  Cleavages in the 

cytosolic or intramembrane domains can therefore liberate soluble fragments that 

translocate to the nucleus.  By contrast, since Nrf1 begins its life with its functional 

domains in the ER lumen, it must be retrotranslocated to the cytosol before processing 

can yield a functional fragment that can relocalize to the nucleus.  However, because the 

p97-dependent retrotranslocation pathway traversed by Nrf1 is normally employed to 

clear misfolded proteins from the ER (Wolf and Stolz, 2012), the inevitable consequence 

of Nrf1 piggybacking on this mechanism is that it is rapidly degraded by the proteasome 

as soon as it gains access to the cytosol.  This precludes accumulation of Nrf1 precursor 

on the cytosolic side of the ER membrane, except under circumstances where there is 

insufficient proteasome activity to keep pace with the appearance of substrates. 
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Recently, Zhang and Hayes (Zhang and Hayes, 2013) put forth a model for Nrf1 

activation that shares some features with the model proposed here but is very different in 

its key aspects, leading to a fundamentally different view regarding the biogenesis and 

maturation of p120 into an active transcription factor.  Specifically, Zhang and Hayes 

proposed that p120 spans the ER membrane at least 3 times. They argued that turnover of 

this species is promoted by calpain, not the proteasome. p120 that escapes degradation 

was envisioned to remain stably integrated as a multispanning transmembrane protein 

until it is mobilized by an unknown signal, which triggers retrotranslocation of the 

luminal domains followed by their deglycosylation to yield active Nrf1. It was proposed 

that Nrf1 is later cleaved by the proteasome to yield lower molecular weight soluble 

species, but appearance of active Nrf1 precedes this cleavage event.  However, the causal 

relationship between cleavage and activation could not be evaluated because the cleavage 

site(s) was not identified. Another key distinction is that Zhang and Hayes do not perform 

true chase experiments, and thus their data do not distinguish whether there is a 

precursor-product relationship between the various Nrf1 species, or they arise from 

newly-synthesized Nrf1 following different biogenetic pathways.  We do not understand 

the basis for the multiple discrepancies between our data and those of Zhang and Hayes.  

Our observation that a functional transcription factor can begin its life in the 

lumen of the ER is unexpected but not without precedent. Ricin, a plant toxin, and some 

bacterial toxins including cholera toxin, and shiga toxin likewise are retrotranslocated 

from the ER lumen to the cytosol, where they exert their biological functions (Inoue et 

al., 2011).  Another example is the Hepatitis E Virus capsid protein ORF2, which co-opts 

the ERAD machinery to gain access to the cytosol (Surjit et al., 2007). To our 
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knowledge, the only host protein that undergoes retrotranslocation from the ER but 

escapes degradation by the proteasome is calreticulin (Afshar et al., 2005; Gold et al., 

2010). Upon inhibition of the proteasome, presumably the entire complement of ERAD 

substrates mimics Nrf1 in that these proteins are retrotranslocated from the luminal to the 

cytosolic side of the ER membrane but are not degraded. Our observations provoke the 

question of whether some of these proteins, like Nrf1, exert novel functions upon their 

accumulation in the cytosol. An obvious question that emerges from our findings is, why 

is Nrf1 regulated by such a baroque mechanism? Targeting Nrf1 to the ER may ensure 

that the basal level of Nrf1 activity is essentially zero in the absence of proteasome stress, 

due to the normally tight coupling between retrotranslocation and degradation (Wolf and 

Stolz, 2012).  In cells that experience insufficient proteasome activity – brought about 

either through environmental insults including proteasome or chaperone inhibitors 

produced by microbes, or through changes in gene expression – accumulation of active 

Nrf1 can restore an adequate level of proteasome function. 

Our finding that p97 is required for the Nrf1-mediated proteasome bounce-back 

response potentially has therapeutic implications.  Previously, we demonstrated that in 

cancer cells, depletion of Nrf1 slows down recovery of proteasome activity upon 

transient inhibition of the proteasome and enhances apoptosis caused by a covalent 

proteasome inhibitor (Radhakrishnan et al., 2010).  Although inhibition of transcription 

factors with small molecules has proven difficult (Berg, 2008), p97 is a druggable target 

(Chou et al., 2011; Chou et al., 2013; Magnaghi et al., 2013).  Indeed, recent papers have 

reported enhanced killing of cancer cells when proteasome and p97 inhibitors are used in 

combination (Auner et al., 2013; Chou et al., 2013).  It will be interesting to see whether 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 30, 2013. ; https://doi.org/10.1101/001602doi: bioRxiv preprint 

https://doi.org/10.1101/001602


blockade of the Nrf1-mediated bounce-back response through inhibition of p97 enhances 

the efficacy of proteasome inhibitor therapy in multiple myeloma or enables expansion of 

proteasome inhibitor therapy into new indications. 

 

MATERIALS AND METHODS 

Constructs 

 3xFlagNrf1 (RDB-2411) and 3xFlagNrf1HA (RDB-2412) constructs have been 

described previously (Radhakrishnan et al., 2010).  Human Nrf1 coding region along 

with a C-terminal 3xFlag sequence was cloned into pcDNA3.1+ (Invitrogen) to establish 

the wild-type construct Nrf13xFlag (RDB-2867).  The following mutants were derived 

from Nrf13xFlag via site-directed mutagenesis using the indicated forward primers together 

with their corresponding reverse complement primers:  Nrf1(m1)3xFlag (RDB-2868; 

forward primer: 5’-ACA GGT TCC AGG TGC CAA CCA CTG AGG TAG CTG CCG 

CGG CGG CTG CCC GAG ACC CAG AGG G-3’), Nrf1(m2)3xFlag (RDB-2869; forward 

primer: 5’-GGT GCC AAC CAC TGA GGT AGC TGC CGC GCT GGT TCA CCG 

AGA-3’),  Nrf1(m3)3xFlag (RDB-2870; forward primer: 5’-CAC TGA GGT AAA TGC 

CGC GCT GGT TCA CCG AGA C-3’), Nrf1(m4)3xFlag  (RDB-2871; forward primer: 5’-

GAG GTA AAT GCC TGG GCG GTT CAC CGA GAC CC-3’), Nrf1(m5)3xFlag  (RDB-

2872; forward primer: 5’-CCA CTG AGG TAA ATG CCG CGG CGG TTC ACC GAG 

ACC CAG-3’), and Nrf1(m6)3xFlag (RDB-2873; forward primer: 5’-ACT GAG GTA 

AAT GCC TGG GCG GCT GCC CGA GAC CCA GAG GGG TC-3’). 

 The doxycycline-inducible shRNA expression construct pTRIPZ-p97sh (RDB-

2874) targeting p97 was based on a 21-mer sequence (AAC AGC CAT TCT CAA ACA 
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GAA) present in the coding region of both human and mouse genes and was cloned into 

the pTRIPZ vector (Open Biosystems). 

Cell Culture  

HEK-293T, HEK-293, and NIH-3T3 cell lines were grown in Dulbecco's 

modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (Atlanta 

Biologicals), penicillin and streptomycin (Invitrogen) at 37°C in 5% CO2.  Immortalized 

Nrf1-/- mouse embryonic fibroblasts (MEFs) (Radhakrishnan et al., 2010) were grown as 

above except that the medium was additionally supplemented with -mercaptoethanol 

and non-essential amino acids (Invitrogen). 

Transient Transfection and Retroviral Transduction 

 Transfection reagents Lipofectamine 2000 (for HEK-293T, HEK-293 cells) or 

Lipofectamine LTX (for mouse embryonic fibroblasts) were used for transient 

transfections as per manufacturer’s recommendations (Invitrogen). 

 For retroviral production, HEK-293T cells were transfected with the required 

retroviral construct along with helper plasmids.  Forty-eight hours after transfection, 

media supernatant containing the retrovirus was collected every 4-5 hrs for two days.  

This retrovirus-containing medium, supplemented with polybrene (10 µg/ml), was used 

to transduce the target cells.   

Stable Cell Lines 

 NIH-3T3-p97sh cell line (DTC-138) expressing doxycyline-inducible p97-

specific shRNA was generated by transducing the mouse NIH-3T3 cells with the 

pTRIPZ-p97sh retroviral construct and selecting them in the presence of 7.5 µg/ml of 
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puromycin.  The HEK-293-p97sh cell line (DTC-139) was generated similarly except 

that 2 µg/ml puromycin was used for selection. 

 Stable cell lines HEK-293-Nrf13xFlag (DTC-140) and HEK-293-Nrf1(m1)3xFlag 

(DTC-141) were established by transfecting HEK-293 cells with the constructs Nrf13xFlag 

and Nrf1(m1)3xFlag respectively and subjecting the cells to  500 µg/ml Geneticin selection. 

Immunoblot Analysis 

 Cells were lysed in RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% NP40, 

1% Na.Deoxycholate, 0.1% SDS, 1 mM EDTA) supplemented with a protease and 

phosphatase inhibitor cocktail (Pierce).  Immunoblots were performed with antibodies 

specific for Nrf1 (8052S; Cell Signaling), Flag tag (A8592; Sigma-Aldrich), HA tag 

(2013819; Roche Diagnostics), p97 (sc-20799; SantaCruz Biotechnology), Calnexin (sc-

11397; SantaCruz Biotechnology), and -actin (A5441; Sigma-Aldrich). 

N-terminal Edman Degradation Sequencing 

 HEK-293T cell line was transiently transfected with the construct Nrf13xFlag and 

48 hrs later was treated with 5 µM MG132 for 5 hrs.  Cell lysate was prepared in lysis 

buffer (50 mM Tris pH 7.4, 0.5 M NaCl, 1mM EDTA, 1% Triton X-100) supplemented 

with protease and phosphatase inhibitor cocktail (Pierce).  The lysate was then subjected 

to immunoprecipitation with anti-Flag beads (Sigma-Aldrich) and eluted with Flag 

peptide (Sigma-Aldrich).  The eluate was resolved by SDS-PAGE and transferred on to a 

PVDF membrane in the presence of 10 mM CAPS (3-cyclohexylamino-1-propane 

sulfonic acid), pH 11.0 and 10% Methanol.  The membrane was stained with Ponceau S 

solution, and the Nrf1-specific bands (p120 and p110) were excised and sequenced using 

a protein micro-sequencer (Procise cLC 492A sequencer; Applied Biosystems). 
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 Whereas the p120 sample confirmed the intact N-terminus, the p110 sample 

indicated a mix of amino acid sequences LVHRD and VHRD.  The latter sequence is 

likely to be a frayed-end version of the former that was generated during sample 

processing (F Rusnak, personal communication), thus revealing the N-terminus of p110 

to be Leu-104. 

Quantitative Reverse Transcription PCR  

RNA was isolated using the RNeasy kit (Qiagen).  cDNA was prepared using the 

Superscript III first strand synthesis kit (Invitrogen) according to the manufacturer’s 

recommendations.  Quantitative PCR (qPCR) was performed using the SYBR GreenER 

supermix (Invitrogen).  The primers used to quantify murine proteasome subunits (PSM) 

and GAPDH mRNA levels have been described previously (Radhakrishnan et al., 2010). 

Pulse-Chase Assay 

 The pulse-chase experiment to establish the precursor-product relationship 

between Nrf1 p120 and p110 was carried out using the Click-iT Metabolic labeling and 

detection kits (Invitrogen) as per the manufacturer’s recommendations.  Briefly, HEK-

293 cells stably expressing either wild type Nrf13xFlag or Nrf1(m1)3xFlag were starved for 

an hour in methionine-free medium and pulsed for an additional hour with 50 µM L-

azidohomoalanine.  Then the cells were washed with PBS and subjected to a chase with 

the addition of 5 µM MG132, 50 µg/ml cycloheximide, and 2mM L-methionine.  Cells 

were harvested at different time points and the cell lysates were prepared in lysis buffer 

(50 mM Tris pH 7.4, 0.5 M NaCl, 1mM EDTA, 1% Triton X-100) supplemented with 

protease and phosphatase inhibitor cocktail (Pierce).  The lysates were then used for 

immunoprecipitation with anti-Flag beads (Sigma-Aldrich).  The immunoprecipitates 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 30, 2013. ; https://doi.org/10.1101/001602doi: bioRxiv preprint 

https://doi.org/10.1101/001602


were labeled with Tetramethylrhodamine  (TAMRA)-alkyne and resolved by SDS-

PAGE.  The labeled bands were visualized in a Typhoon laser scan imaging system (GE 

Healthcare). 

Protease Protection Assay 

 Cells were washed once in PBS, resuspended in 10 mM Hepes-KOH pH 7.5 

buffer and incubated on ice for 10 min.  The swollen cells were then sedimented, 

resuspended in homogenization buffer (10 mM Hepes-KOH pH 7.5, 10 mM KCl, 1.5 

mM MgCl2, 5 mM EGTA, and 250 mM sucrose) and passed through a 27G syringe 

needle several times.  The homogenate was then subjected to serial centrifugations at 600 

x g (10 min), 3000 x g (10 min) and 100,000 x g (60 min).  The microsomes collected at 

the end of the 100,000 x g ultracentrifugation step were resuspended in membrane buffer 

(10 mM Hepes-KOH pH 7.5, 50 mM KOAc, 2mM Mg(OAc)2, 1mM DTT, and 250 mM 

sucrose).  

 Microsomes were mock-treated or subjected to Proteinase K (0.5 µg/µl) treatment 

either in the absence or presence of 1% Triton X-100 for 60 min on ice.  The samples 

were then precipitated by trichloroacetic acid (TCA), resuspended in boiling sample 

buffer, resolved by SDS-PAGE and subsequently analyzed by immunoblotting with 

appropriate antibodies. 

Deglycosylation Assay 

 Cells were lysed in IP buffer (50 mM HEPES/KOH pH 7.5,  5 mM Mg(OAc)2, 70 

mM KOAc, 0.2% Triton X-100; 10% glycerol, and 0.2 mM EDTA) supplemented with a 

protease and phosphatase inhibitor cocktail (Pierce).  These cell lysates were used for 
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deglycosylation reactions with the enzyme Endoglycosidase H for 1 hour at 37 C as per 

the manufacturer’s recommendations (New England Biolabs). 
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FIGURE LEGENDS 

Fig 1.  Nrf1 p110 is derived from p120 by proteolytic processing.  (A)  Human HEK-

293T or mouse NIH-3T3 cells were transduced with a retrovirus expressing 3xFlagNrf1HA  

and 72 hrs later were left untreated or treated with 5 µM MG132 for 5 hrs. The cell 

lysates were then used for immunoblotting with anti-Flag and anti-HA antibodies.  -

actin protein levels were evaluated as a loading control.  (B)  Amino acids 99 to 108 from 

human Nrf1 are shown.  The scissor indicates the cleavage position predicted by the 

Edman degradation sequencing.  Also shown are mutants 1 through 6 with the mutated 

amino acids highlighted.  (C)  HEK-293T cells were transiently transfected with wild-
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type or various mutant constructs (m1 through m6) of Nrf13xFlag and 48 hrs later were left 

untreated or treated with 5 µM MG132 for 5 hrs. The cell lysates were then processed for 

immunoblotting with anti-Flag antibody.  -actin was used as a loading control.  (D)  

HEK-293 cells stably expressing either wild type Nrf13xFlag or Nrf1(m1)3xFlag were pulse-

labeled for 1 hr with L-azidohomoalanine and then chased with MG132, cycloheximide 

(CHX), and excess methionine.  Cells were harvested at the time points indicated (from 0 

min to 120 min) and the lysates were subjected to immunoprecipitation with anti-Flag 

beads.  Nrf1 species were visualized using the tetramethylrhodamine based click-

chemistry method as described in Materials and Methods. 

Fig 2.  Non-cleavable Nrf1 mutant is functionally defective.  (A)  Nrf1-/- MEFs were 

transfected with constructs expressing either Nrf13xFlag, Nrf1(m1)3xFlag, or vector control 

and 48 hrs later were subjected to Geneticin selection.  These antibiotic resistant cells 

were treated with 1 µM MG132 for 10 hrs as indicated.  Lysates from these cells were 

immunoblotted with anti-Flag antibodies to detect exogenous Nrf1.  -actin was used as a 

loading control.  (B)  RNA from Nrf1-/- MEFs transfected and selected as described 

above was used for quantitative RT-PCR to assess the mRNA levels of representative 

PSM genes.  The values were normalized to GAPDH mRNA levels.  Error bars denote 

SD (n=3).   

Fig 3.  p97 is required for processing and activation of Nrf1.  (A)  NIH-3T3-p97sh 

cells stably expressing doxycycline (Doxy)-inducible shRNA targeting p97 were either 

mock-treated or induced with Doxy (1 µg/ml) for 3 days after which the cells were 

further treated with DMSO or 1 µM MG132 as indicated for 10 hrs.  The RNA from 

these cells was used for quantitative RT-PCR to assess the mRNA levels of the 
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representative PSM genes.  The values were normalized to GAPDH mRNA levels.  Error 

bars denote SD (n=3).  (B)  NIH-3T3-p97sh cells were subjected to Doxy and MG132 

treatments as above and the cell lysates were fractionated by SDS-PAGE and 

immunoblotted to detect p97 and Nrf1.  -actin was used as a loading control.  (C)  NIH-

3T3 (left panel) or HEK-293-Nrf13xFlag cells (right panel) were pulsed for an hour with 10 

µM NMS-873 and then chased with MG132 plus cycloheximide (CHX).   Cells were 

harvested at the time points indicated (from 0 min to 120 min) and the lysates were 

fractionated by SDS-PAGE and immunoblotted to detect endogenous Nrf1.  -actin was 

used as a loading control. 

Fig 4.  The C-terminus of Nrf1 is re-positioned from the lumen to the cytosol in a 

p97-dependent manner.  (A)  HEK-293 cells stably expressing doxycycline (Doxy)-

inducible shRNA targeting p97 (HEK-293-p97sh cells) were transiently transfected with 

a 3xFlagNrf1 expression construct and 24 hrs later were incubated in the presence or 

absence of Doxy for 4 days after which the cells were further treated or not with 5 µM 

MG132 for 5 hrs.  Microsomes prepared from these cells were subjected to protease 

protection assay with Proteinase K (PK).  SDS-PAGE followed by immunoblotting with 

anti-Flag antibody was used to detect Nrf1.  Formation of a discrete cleavage product of 

Calnexin in the absence of detergent (Triton X-100) was used as an indicator for intact 

microsomes.  (B)  Same as (A), except that cells were transfected with an Nrf13xFlag 

expression construct. (C)   HEK-293 cells stably expressing the non-cleavable 

Nrf1(m1)3xFlag were treated with MG132 plus cycloheximide (CHX) and cells were 

harvested at indicated time points.  Microsomes from these cells were subjected to 

protease protection assay with PK.  Samples were fractionated by SDS-PAGE followed 
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by immunoblotting with anti-Flag antibody.  (D)  HEK-293 cells stably expressing either 

Nrf13xFlag or the non-cleavable Nrf1(m1)3xFlag were pulsed for an hour with 10 µM NMS-

873 and then chased with MG132 plus cycloheximide (CHX).   Microsomes prepared 

from cells harvested at the indicated time points (0 min and 120 min) were used in a 

protease protection assay with PK.  SDS-PAGE followed by immunoblotting with anti-

Flag antibody was used to detect Nrf1.  (E)  Total cell lysates from the pulse-chase 

experiment described above were subjected to deglycosylation by the enzyme 

Endoglycosidase H prior to SDS-PAGE and immunoblotting with anti-Flag.  Species ‘a’ 

refers to full-length Nrf1 (p120) that was fully glycosylated.  Species ‘b’ refers to Nrf1 

that was proteolytically processed to p110 and degylcosylated following p97-dependent 

retrotranslocation. Species ‘c’ refers to species ‘a’ that was deglycosylated with Endo H.  

Note that species ‘b’ migrates slightly more slowly than species ‘c’ even though both 

species were deglycosylated and species ‘b’ lacked the N-terminal 103 residues. The 

unexpectedly slow mobility of species ‘b’ presumably reflects acquisition of additional 

post-translational modifications upon retrotranslocation on Nrf1’s CTD to the cytosolic 

side of the ER membrane.  (TMD – transmembrane domain; Gly – N-linked glycan) 

Fig 5.  A model to explain Nrf1 activation.  Newly synthesized Nrf1 p120 is initially 

inserted into the endoplasmic reticulum (ER) membrane in an Ncytosol/Clumen orientation.  

It is then rapidly and efficiently retrotranslocated to the cytosol, where it is immediately 

degraded by the proteasome.  In cells deficient in proteasome activity, degradation of 

cytosolically-exposed Nrf1 is retarded, allowing sufficient time for proteolytic processing 

of Nrf1 p120 to yield the active p110 form which can then migrate to the nucleus, 

heterodimerize with small Maf proteins, and activate transcription of its targets (eg. PSM 
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genes) by binding to antioxidant response elements (ARE).  Note that the exact 

mechanism of the retrotranslocation step is unknown; what is shown in the figure reflects 

one possibility among several.  Also, although the putative protease is depicted to be in 

the cytosol, it remains possible that it is in the ER membrane or lumen. 

Figure 4–figure supplement 1.  Different forms of Nrf1.  HEK-293 cells stably 

expressing wild type Nrf13xFlag were treated with MG132 and/or cotransin, an inhibitor of  

protein insertion into the Sec61 translocation channel (Garrison JL., et al. 2005, Nature 

436:285-289) as indicated (lanes 1 to 4) and total cell lysates were prepared. Lanes 5 and 

6 contain full-length Nrf13xFlag and Nrf1(104-742)3xFlag that were translated in vitro (IVT) 

in rabbit reticulocyte lysate in the absence of membranes. The HEK293 cell lysates and 

IVT reactions were examined by SDS-PAGE followed by immunoblotting with anti-Flag 

antibody.  Different Nrf1 species are shown (ungly – unglycosylated; unmod – 

unmodified). Nrf1 p120 (species a) was converted to species c, which comigrated with 

the primary translation product (species d) upon expression in cells treated with 

cotransin, suggesting that the slow mobility of p120 arose from modifications (e.g. N-

linked glycosylation) that occurred within the endoplasmic reticulum.  Retrotranslocation 

and processing of p120 (species a) yielded p110 (species b). Species b was not sensitive 

to endoglycosidase H (Fig. 4E), suggesting that it was deglycosylated upon 

retrotranslocation into the cytosol.  Nevertheless, species b migrated considerably more 

slowly than the primary translation product for Nrf1(104-742)3xFlag (species e), indicating 

that p110 must carry additional modifications that remain uncharacterized. Please note 

that deglycosylation by cytosolic enzymes converts the Asn at the site of glycosylation to 

Asp, which could influence migration on SDS-PAGE. 
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