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Abstract

Principal component analysis (PCA) is routinely used to analyze genome-wide single-nucleotide poly-
morphism (SNP) data, for detecting population structure and potential outliers. However, the size of
SNP datasets has increased immensely in recent years and PCA of large datasets has become a time
consuming task. We have developed flashpca, a highly efficient PCA implementation based on ran-
domized algorithms, which delivers identical accuracy compared with existing tools in substantially less
time. We demonstrate the utility of flashpca on both HapMap3 and on a large Immunochip dataset.
For the latter, flashpca performed PCA of 15,000 individuals up to 125 times faster than existing tools,
with identical results, and PCA of 150,000 individuals using flashpca completed in 4 hours. The in-
creasing size of SNP datasets will make tools such as flashpca essential as traditional approaches will
not adequately scale. This approach will also help to scale other applications that leverage PCA or
eigen-decomposition to substantially larger datasets.

Introduction

Principal component analysis (PCA) is a widely-used tool in genomics and statistical genetics, employed
to infer cryptic population structure from genome-wide data such as single nucleotide polymorphisms
(SNPs) [1,2], and/or to identify outlier individuals which may need to be removed prior to further analysis,
such as genome-wide association studies (GWAS). This is based on the fact that such population structure
can confound SNP-phenotype associations, resulting in some SNPs spuriously being called as associated
with the phenotype (false positives). The principal components (PCs) of SNP data have been shown
to map well to geographic distances between human populations [1, 3], thus capturing the coarse-grain
allelic variation between them these groups.

However, traditional approaches to computing the PCA, such as those employed by the popular
EIGENSOFT suite [1], are computationally expensive. For example, PCA based on the singular value
decomposition (SVD) scales as O(min (N2p,Np2)) and for eigen-decomposition it is O(min (N3, p3)),
where N and p are the number of samples and SNPs, respectively. This makes it time-consuming to
perform PCA on large cohorts such as those routinely being analyzed today, involving millions of assayed
or imputed SNPs and tens of thousands of individuals, with this difficulty only increasing in the future
with the availability of even larger studies.

In recent years, research into randomized matrix algorithms has yielded alternative approaches for
performing PCA that are far more computationally tractable while maintaining high accuracy relative to
the traditional “exact” algorithms [4]. These algorithms are especially useful when we are interested in
finding only the first few principal components (PCs) of the data, as is often the case in genomic analysis.

Here we present flashpca, an efficient tool for performing PCA analysis on large genome-wide data,
based on randomized algorithms. Our approach is highly efficient, allowing the user to perform PCA
on large datasets (100,000 individuals or more), while achieving identical results to traditional methods.
In addition, our tool allows the user to “whiten” the data, producing data corrected for the principal
components which can then be analyzed using standard approaches such as linear models [5].
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Results

First we used an LD-pruned HapMap3 genotype data [6] consisting of 957 human individuals across 11
populations assayed for 14,389 SNPs (Materials). We compared flashpca with smartpca from EIGEN-
SOFT v4.2 1 and shellfish2. In addition, we included the R 3.0.2 prcomp function which is based
on SVD rather than eigen-decomposition, after replacing its original standardization with the one used
by smartpca (Equation 4). The analysis of HapMap3 data revealed the expected ancestry via the first
two PCS (Figure 1a), with individuals of east Asian origin (CHB, CHD, JPT) clustered in the bottom
right-hand side corner, those of European origin (TSI, CEU) in the top, and those of African origin in
the bottom left-hand side corner (ASW, LWK, YRI, and MKK). All methods showed close to perfect
agreement on the top PC (Figure 1b), with an absolute correlation of 1.00 between the 1st PC of each
pair of methods (the sign of the eigenvectors is arbitrary hence the correlation may be negative as well).
The next nine PCs showed close to perfect agreement as well (see the the online documentation).

Next, we analyzed an LD-pruned celiac disease Immunochip dataset consisting of 16,002 individuals
and 43,049 SNPs [7] (Materials). We created an artificial dataset of 160,020 samples by duplicating the
original dataset 10 times. We then randomly sampled subsets of the large dataset with increasing size
(N = 500, 1000, 2500, 5000, 7500, 10,000, 15,000), and recorded wall time for flashpca, smartpca, and
shellfish performing PCA on these subsets. Due to the substantial time required by shellfish and
smartpca to complete the largest runs, we also ran larger subsets (N = 50000, 100,000, 150,000) using
flashpca only (we attempted to run shellfish on the N = 50,000 dataset but it did not complete due
to running out of memory, and stopped smartpca after 100,000sec). Each experiment was repeated three
times. All programs used multi-threaded mode with 8 threads. All experiments were run on a machine
with 4× 10-core Intel Xeon E7-4850 CPU @ 2.00GHz with 512GiB RAM running 64-bit Ubuntu Linux
12.04.

Figure 2 shows that flashpca was substantially faster than either smartpca or shellfish: for analysis
of 15,000 samples, flashpca took an average of 8 minutes, whereas smartpca required an average of
almost 17h (×125 slower). Examining the large subsets, flashpca was able to analyze a dataset of N =
150,000 in ∼4h, which would not be sufficient time for smartpca to complete a PCA on 10,000 samples,
as 6.5h were required for that. While shellfish was also substantially faster than smartpca, it was still
considerably slower than flashpca when the number of individuals was large, with a run time of ∼ 1h
for N = 15, 000 (and did not complete for subsets with N ≥ 50,000).

Importantly, the time taken by flashpca to compute PCA on N = 150, 000 does not differ much
from the time taken on the N = 100, 000 subset; this is because flashpca automatically transposes the
data when N > p, as the PCA can be computed on the original data or its transpose with only minor
modifications to the algorithm; computing the p × p covariance matrix and its eigen-decomposition has
lower computational complexity than using the N×N covariance matrix, for the same values of N and p,
hence when N > p the main computational cost will not grow substantially with N .

Discussion

Principal component analysis is an important tool in genomics for discovery of population structure
or other latent structure in the data, such as batch effects. Early approaches such as smartpca from
EIGENSOFT have proven useful for this goal and have been widely used for analysis of SNP datasets.
However, many current datasets assay tens of thousands of individuals, making traditional approaches
extremely time consuming. In contrast, our approach, flashpca, is based on careful combination of
randomized algorithms for PCA together with parallelization, and allows the analyst to easily perform

1http://www.hsph.harvard.edu/alkes-price/software/
2http://www.stats.ox.ac.uk/~davison/software/shellfish/shellfish.php
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PCA on large datasets consisting of many thousands of individuals in a matter of minutes to hours and
with no loss in accuracy.

More generally, the approach behind flashpca could prove useful for accelerating other methods that
depend on performing a large number of eigen-decompositions across many samples, such as varLD [8]
which assesses local differences in SNP LD between populations or FaST-LMM which implements linear
mixed models of SNP data [9].

Materials and Methods

Datasets

HapMap3

The HapMap3 phase 3 dataset consists of 1184 human individuals across 11 populations (ASW: African
ancestry in Southwest USA; CEU: Utah residents with Northern and Western European ancestry from
the CEPH collection; CHB: Han Chinese in Beijing, China; CHD: Chinese in Metropolitan Denver,
Colorado; GIH: Gujarati Indians in Houston, Texas; JPT: Japanese in Tokyo, Japan; LWK: Luhya in
Webuye, Kenya; MEX: Mexican ancestry in Los Angeles, California; MKK: Maasai in Kinyawa, Kenya;
TSI: Toscani in Italia; YRI: Yoruba in Ibadan, Nigeria) assayed for 1,440,616 SNPs [6]. We performed
QC on the data, including removal of SNPs with MAF< 1%, missingness > 1%, and deviation from
Hardy-Weinberg equilibrium P < 5 × 10−6. We removed non-founders and individuals with genotyping
missingness > 1%, leaving 957 individuals. Next, we removed several regions of high LD and/or known
inversions (chr5: 44Mb–51.5Mb, chr6: 25Mb–33.5Mb, chr8: 8Mb–12Mb, chr11: 45Mb–57Mb) [10]. Fi-
nally, we used PLINK [11] --indep-pairwise 1000 10 0.02 to thin the SNPs by LD (r2 < 0.02),
leaving 14,389 SNPs.

Celiac Disease Immunochip

The celiac disease Immunochip dataset [7] consists of 16,002 case/control individuals of British descent,
assayed for 139,553 SNPs. The QC has been previously described [7]. In addition, we removed SNPs
with MAF < 0.5% and non-autosomal SNPs, leaving 115,746 SNPs. Next, we removed the same four
regions as for HapMap3, and finally, we thinned the SNPs by LD with PLINK --indep-pairwise 50

10 0.5, leaving 43,049 SNPs.

Principal Component Analysis

We represent the genotypes as an N × p matrix X, where the N samples index the rows and the p SNPs
index the columns.

PCA relies on finding the eigenvectors of the N×N covariance matrix Σ = XXT (for notational clarity
we will ignore the scaling 1

N−1 factor which can be accounted for later). This decomposition is performed
using either the singular value decomposition (SVD) of the matrix X or the eigen-decomposition of the
covariance matrix itself.

The SVD of X is
X = UDVT , (1)

where U an is an N × k orthogonal matrix (UTU = I) the columns of which are the eigenvectors of
XXT , D is a k×k diagonal matrix of singular values (square-root of the eigenvalues of XXT and XTX),
and V is a p× k orthogonal matrix (VTV = I) of the eigenvectors of XTX, where k is the matrix rank
(this SVD is also called the “economy SVD”). Note that SVD does not require the covariance matrix Σ
to be computed explicitly.
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In the eigen-decomposition approach, the covariance matrix Σ is first explicitly computed, then the
eigen-decomposition is performed such that

Σ = UΛUT , (2)

where diag(Λ) = λ1, . . . , λk are the eigenvalues and U is the matrix of eigenvectors as before.
The principal components (PCs) P of the data are given by the projection of the data onto the

eigenvectors
P = XV = UD, (3)

where we usually truncate the matrix P to have as many columns as required for any down-stream
analysis (say, 10).

Note that some tools, such as smartpca and shellfish, output the eigenvectors U as the principal
components without weighting by the singular values D, leading to different scales for the PCs. In
addition, since the (empirical) covariance is typically scaled by a factor of 1

N−1 , then in order to maintain
the interpretation of the singular values D as the square-root of the eigen-values of the scaled covariance

1
N−1XXT , the singular values must be scaled by a factor of 1√

N−1 as well (as implemented in R’s prcomp).

Note, however, that these scale differences have no effect on the interpretation of the principal components
for ascertaining or correcting for potential population structure in data.

In traditional PCA, such as that implemented in R’s prcomp, prior to running the SVD/eigen-
decomposition itself, the matrix X is first mean-centered by subtracting the per-column (SNP) aver-
age from each column. In contrast, EIGENSOFT [1], first centers the data, then divides by a quantity
proportional to the standard deviation of a binomial random variable with success probability pj

X̃ij =
Xij − µj√
pj(1− pj)

, (4)

where pj = µj/2 and µj = 1
N

∑N
i=1 Xij . To maintain compatibility with smartpca, flashpca employs

the same standardization method by default.

Fast Principal Component Analysis

Performing PCA on large matrices (with both N and p large), is time consuming with traditional ap-
proaches. To enable fast PCA, we employ an algorithm based on a randomized PCA approach [4]. Briefly,
randomized PCA relies on first constructing a relatively small matrix that captures the top eigenvalues
and eigenvectors of the original data, with high probability. Next, standard SVD or eigen-decomposition
is performed on this reduced matrix, producing near identical results to what would have been achieved
using a full analysis of the original data. Since in most genomic applications we are interested only in a
few of the top eigenvectors of the data (typically 10), this allows reduction of the data to a substantially
smaller matrix, and the computational cost of decomposing this matrix is negligible (see Algorithm 1).
(Note, however, that this method is general and is as useful for extracting a much larger number of PCs).

Focusing on the eigen-decomposition approach (Equation 2), the two main computational bottlenecks
are (i) computing the N ×N covariance matrix Σ and (ii) when N is large, the eigen-decomposition step
itself. In our fast PCA approach, the first bottleneck cannot be avoided but can be mitigated through
parallel computation (see Implementation). The second bottleneck is circumvented via the randomized
approach, by constructing a matrix B of size (d+ k)× p, from which the small (d+ k)× (d+ k) matrix
BBT is formed and used for the eigen-decomposition, where d is the number of required eigenvectors
(say 10), and k is the number of auxiliary dimensions used to increase accuracy which can be discarded
later. We have found that a total dimension of 200 is more than sufficient for producing good results
in the first 10 PCs; hence the eigen-decomposition need only be performed on 200 × 200 matrix while
producing near identical results to a full PCA on the original data.
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Algorithm 1: Pseudocode for the eigen-decomposition variant of the fast PCA, based on the
randomized algorithm of [4] for the case where N < p. standardize(·) is the standardization in
Equation 4. randn(m,n) is a function generating an m× n iid multivariate normal matrix, k is the
user-defined number of extra dimensions, qr(·) is the QR decomposition, normalize(·) is a function

that divides each column j by its `2 norm
√∑N

i=1 X2
ij , eigen(·) is the eigen-decomposition producing

the eigenvectors Ũ and vector of eigenvalues λ.

M = standardize(X)
R = randn(p, d+ k)
Y = normalize(MR)
Σ = MMT

for iter = 1:maxiter do
Y = normalize(ΣY))

end
[Q,R] = qr(Y)
B = QTM
S = BBT

[Ũ,λ] = eigen(S)
U = QŨ·,1:d

D = diag(
√

λ
N−1 )

P = UD

Another computational shortcut for the case where N > p is simply transposing the data X, then
standardizing the rows instead of the columns. An identical PCA algorithm is then run on the transposed
data, with the only difference being that the estimated matrix U will now contain the eigenvectors of
XTX instead of XXT , and hence the final principal components will be P = XU. This procedure makes
it possible to analyze large datasets with N � p at a cost not much greater than when N = p.

While the SVD approach is generally recommended for reasons of better numerical stability and
speed, we have found that when N and p are in the thousands, the above eigen-decomposition approach
is substantially faster since the decomposition is performed on the small matrix S = BBT which is of size
(d+k)× (d+k) rather than a more expensive SVD of the matrix B, which is an N × (d+k) matrix, with
no discernible effect on accuracy of the top principal components; however, both methods are available
in flashpca.

PCA and ZCA Whitening

Whitening is rotation of data such that the covariance is the identity matrix I (or some scalar multiple of
it). In our case, we are interested in whitening the samples to remove the effects of population structure
or relatedness, making the samples unrelated and the sample covariance matrix XXT = I. The PCA
whitened matrix XPCA is given by

XPCA = D−1UTX, (5)

and the so-called ZCA (zero phase component analysis) whitened matrix is

XZCA = UXPCA. (6)

The difference between the PCA and ZCA whitening matrices is that the former may have a smaller
number of rows than X (and equal to the total number of eigenvalues extracted from the randomized
PCA) whereas the ZCA whitening matrix has the full number of rows as in the original matrix X, and
hence the ZCA matrix is more useful for further downstream analysis replacing the original data X.
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After whitening the genotypes, we may whiten any quantitative phenotypes, represented here as an
N ×K matrix Y using the eigenvalues/eigenvectors

YZCA = UD−1UTY. (7)

This procedure is useful for quantitative trait association studies where we wish to remove the popula-
tion structure component prior to performing an association analysis [5], and is conceptually related to
generalized least squares (GLS).

Note that the whitened data are no longer representable as integer allele dosages but are real numbers
and must be analyzed as such, and that the space requirements for storing whitened data are substantially
higher than for genotypes.

Implementation

flashpca is implemented in C++ and relies on Eigen [12], a C++ header-only library of numerical
and linear algebra algorithms, which allows for native parallelization of certain computations through
OpenMP threads when multiple CPU cores are available. flashpca natively reads PLINK [11] SNP-
major BED files, avoiding the need to convert these files to other formats. flashpca is licensed under
the GNU Public License (GPL) v3; source code and documentation are available at https://github.

com/gabraham/flashpca.
Prior to PCA, thinning of the SNPs by LD and removal of regions with known high LD or other

artefacts such as inversions have been recommended [1, 10], as high correlations between the SNPs can
distort the resulting eigenvectors. For this purpose we recommend using PLINK v2 3 which is substantially
faster than PLINK v1.07. Reducing a dataset to ∼ 10,000–50,000 SNPs is usually sufficient to achieve
an accurate PCA, and can be done using --indep-pairwise.
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Figure Legends

Figure 1: (a) The first two principal components from analyzing the HapMap3 dataset. (b) Scatter
plots showing near-perfect absolute Pearson correlation (lower left-hand corner) between the 1st PCs esti-
mated by smartpa, flashpca, shellfish, and R’s prcomp (using the standardization from Equation 4).
Note that since eigenvectors are only defined up to sign, the correlations may be negative as well as
positive. In addition, the scale of the PCs may differ between the methods, however this has no bearing
on the interpretation of the PCs.

Figure 2: Wall time (seconds) for flashpca versus EIGENSOFT’s smartpca and shellfish on in-
creasing subsets of the celiac disease dataset, employing multi-threaded mode (8 threads), using 43,049
SNPs. shellfish did not complete PCA for the N ≥50,000 subsets, and smartpca was stopped after
100,000sec. The results shown are averages over 3 runs.
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