Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data

Richard W. Lusk
doi: https://doi.org/10.1101/002279
Richard W. Lusk
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Background Trace quantities of contaminating DNA are widespread in the laboratory environment, but their presence has received little attention in the context of high throughput sequencing. This issue is highlighted by recent works that have rested controversial claims upon sequencing data that appear to support the presence of unexpected exogenous species.

Results I used reads that preferentially aligned to alternate genomes to infer the distribution of potential contaminant species in a set of independent sequencing experiments. I confirmed that dilute samples are more exposed to contaminating DNA, and, focusing on four single-cell sequencing experiments, found that these contaminants appear to originate from a wide diversity of clades. Although negative control libraries prepared from ‘blank’ samples recovered the highest-frequency contaminants, low-frequency contaminants, which appeared to make heterogeneous contributions to samples prepared in parallel within a single experiment, were not well controlled for. I used these results to show that, despite heavy replication and plausible controls, contamination can explain all of the observations used to support a recent claim that complete genes pass from food to human blood.

Conclusions Contamination must be considered a potential source of signals of exogenous species in sequencing data, even if these signals are replicated in independent experiments, vary across conditions, or indicate a species which seems a priori unlikely to contaminate. Negative control libraries processed in parallel are essential to control for contaminant DNAs, but their limited ability to recover low-frequency contaminants must be recognized.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY Unported 3.0 license.
Back to top
PreviousNext
Posted February 06, 2014.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data
Richard W. Lusk
bioRxiv 002279; doi: https://doi.org/10.1101/002279
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data
Richard W. Lusk
bioRxiv 002279; doi: https://doi.org/10.1101/002279

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (2430)
  • Biochemistry (4791)
  • Bioengineering (3332)
  • Bioinformatics (14677)
  • Biophysics (6639)
  • Cancer Biology (5168)
  • Cell Biology (7428)
  • Clinical Trials (138)
  • Developmental Biology (4365)
  • Ecology (6873)
  • Epidemiology (2057)
  • Evolutionary Biology (9919)
  • Genetics (7346)
  • Genomics (9527)
  • Immunology (4554)
  • Microbiology (12684)
  • Molecular Biology (4945)
  • Neuroscience (28329)
  • Paleontology (199)
  • Pathology (808)
  • Pharmacology and Toxicology (1391)
  • Physiology (2024)
  • Plant Biology (4498)
  • Scientific Communication and Education (977)
  • Synthetic Biology (1299)
  • Systems Biology (3914)
  • Zoology (726)