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Abstract 
Advances in high-throughput, single cell gene expression are allowing interrogation of cell 

heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations 

of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression 

in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We 

determine each cell’s phase non-invasively without chemical arrest and use it as a covariate in tests of 

differential expression. We observe bi-modal gene expression, a previously-described phenomenon, 

wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within 

individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its 

source, we show that it should be modeled to draw accurate inferences from single cell expression 

experiments.  To this end, we propose a semi-continuous modeling framework based on the 

generalized linear model, and use it to characterize genes with consistent cell cycle effects across three 

cell lines. Our new computational framework improves the detection of previously characterized cell-

cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use 

our semi-continuous modelling framework to estimate single cell gene co-expression networks.  These 

networks suggest that in addition to having phase-dependent shifts in expression (when averaged over 

many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single 

cells.  We estimate the amount of single cell expression variability attributable to the cell cycle.  We find 

that the cell cycle explains only 5%-17% of expression variability, suggesting that the cell cycle will not 

tend to be a large nuisance factor in analysis of the single cell transcriptome. 
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Introduction 
With the advent of single cell expression 

profiling [1–4], the assessment of cell 

population heterogeneity and identification of 

cell subpopulations from mRNA expression is 

achievable [5–7]. However, at the single cell 

level, there is concern that cell cycle might 

interfere with the characterization of gene 

expression variability [8]. As many biological 

samples are prepared from asynchronous cell 

populations, where each cell is in an unknown 

phase of the cell cycle, it is imperative to 

understand the impact of cell cycle in order to 

account for its effect on observed expression 

patterns and downstream data analysis. Here, 

we have measured mRNA expression and cell 

cycle from 930 single cells derived from three 

cell lines in order to explore this hypothesis.  

A distinctive feature of single-cell gene 

expression data is the bimodality of expression 

values. Genes can be on (and a positive 

expression measure is recorded) or off (and the 

recorded expression is zero or negligible)[9,10]. 

This dichotomous characteristic of the data 

prevents use of the typical tools of designed 

experiments such as linear modeling and 

analysis of variance (ANOVA).  We develop a 

novel computational framework to overcome 

this problem. First, a probabilistic mixture 

model-based framework allows the separation 

of positive expression values from background 

noise using gene-specific thresholds. After 

signal separation by thresholding, we model 

separately the frequency of expression (the 

fraction of cells expressing a gene) and the 

continuous, positive expression values.  Our 

semi-continuous framework combines evidence 

from the two salient parameters of single cell 

expression in a statistically appropriate manner, 

an approach dubbed the Hurdle model[11,12]. 

Extending our previous proposal of a two-

sample semi-continuous test akin to the two-

sample t-test, our new framework allows for 

testing arbitrary contrasts and allows the use of 

variance components/mixed models, thus 

bringing to bear the full power of the general 

linear model.  

The Hurdle model allows us to identify many 

genes with an archetypal cell cycle expression 

pattern despite a frequently bimodal distribution 

of expression.  It also suggests that stochastic 

variation in single cell gene expression is 

relatively large compared to the effect of cell 

cycle.  We find that even in the most tightly 

regulated gene, cell cycle explains only 27% of 

the variability, while in the median gene in our 

data set, cell cycle explains 5%-18% of the 

variability, depending on the assumptions we 

make regarding latent technical variability.  The 

semi-continuous model also provides a 

framework for estimating co-expression 

networks – in which edges connect genes 

whose partial correlations remain after 

removing the effect of all other genes – while 

adjusting for population-level nuisance factors 

that could bias network inference.  Applying this 

framework to our data, we show that only a 

subset of canonical cell cycle genes are highly 

co-expressed in single cells.  

Results 

Periodic expression associated with 

cell cycle is observed at the single-

cell level 

In order to assess differential expression 

associated with actively cycling cells, 

expression of 333 genes was interrogated in 

930 cells, across three cell lines: H9 (HTB-176), 

MDA-MB-231 (HTB-26), and PC3 (CRL-1435) 

(Figure 1A). Single cell expression was 

measured from flow-sorted cells and compared 

between cell cycle phases and cell lines via 

nCounter single cell profiling, a multiplexed  
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Figure 1. Individual cells were flow sorted by DNA 

content, and gene expression profiled. (A) H9, 

MB231, and PC3 cells were cultured and sorted into 

lysis buffer. The resulting lysate was amplified via 

multiplexed target enrichment (MTE) and digital 

counts of expression were optically read via 

nCounter. (B) Individual cells were sorted into three 

populations based on retention of Hoechst dye 

(G0/G1, S and G2/M).  (C) The density distribution 

of log counts for each gene was generally bimodal 

with some genes showing clear changes in 

distribution between cell cycle phase. 

 

hybridization-based detection technology that 

utilizes fluorescent barcodes to count individual 

target nucleic acid molecules [13]. This platform 

has been recently adapted to enable 

expression profiling from single cells via 

hybridization after a multiplexed target 

enrichment (MTE) in which mRNA is first 

converted to cDNA and then amplified [14].   

Each cell was categorized as being in G0/G1, S 

or G2/M phase by measuring DNA content via 

flow-cytometry based on retention of Hoechst 

dye (Figure 1B and S1)[15]. Probes were 

selected for cell cycle associated genes (n = 

119). These genes provided coverage of the 

entire cell cycle (Data Set S1) based on peak 

expression and periodicity information obtained 

from Cyclebase, an integrated database of bulk 

cell cycle expression profiling experiments that 

scores and ranks genes based on strength of 

evidence for a cell cycle associated expression 

pattern[16]. Probes were also included for non-

cell-cycle associated genes with primary roles 

in the inflammatory response, and 

housekeeping controls without a Cyclebase 

ranking (n=214). We denote probes with a 

Cyclebase rank (i.e. genes with the strongest 

evidence for cell cycle associated periodic 

expression) as the ranked set. 

253 genes were expressed and passed quality 

control (see Methods).  Genes showed a 

bimodal expression pattern in log-transformed 

mRNA levels (Figure 2), consistent with a burst-

model of “on/off” transcription at the single cell 

level [17] and consistent with the kinetics of 

PCR amplification with low starting template 

concentrations, described by us and other 

authors [9,10].  

Expression levels for each gene were most 

different between cell lines (Figure 2). Many 

genes, including those in the ranked set 

showed cell line-specific expression patterns. 

For example, expression of TOP2A in G0/G1 

varied from 70% of cells in MB-231 and PC3 to 

nearly universal in H9. This cell line effect was 

a nuisance factor we needed to adjust for in 

differential expression tests on cell cycle. 

Nonetheless, many genes from the ranked set, 

such as KIF23, TOP2A, HJURP, NUSAP1, and 

TPX2 exhibited expression patterns consistent 

with cell cycle regulation (Figure 2).  Figure 2 

also reveals that changes in both the positive 

expression mean (i.e. the mean over the cells 

expressing that gene; PEM), and changes in  
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Figure 2. Top 5 cell cycle genes detected by the 

Hurdle model.  A violin plot shows the density of log 

counts of mRNA in each condition.  The expression 

threshold estimated for each gene is shown as a 

dashed line, so that the ratio of area above the 

dashed line reflects the proportion of cells 

expressing a gene. Blue shades of the violin depict 

genes with more expressing cells in a condition.  

The positive mean and 95% confidence interval is 

depicted as a box with solid line.  The Hurdle model 

(see Methods) combines evidence for changes in 

either of these parameters, after adjusting for cell 

line, to determine statistical significance. 

 

the frequency of cells expressing a gene, occur 

throughout the cell cycle. The frequency and 

PEM in these genes also vary widely between 

cell lines, so it was important to adjust for cell 

line effects for accurate assessment of 

differential expression. 

In order to test for significant differences in 

expression between cell cycle phases that were 

consistent across cell lines, we developed an 

ANOVA-like model (Hurdle model, see 

Methods) that permits adjustment for additive 

effects due to cell line. The Hurdle model 

improves the power to detect changes in single-

cell expression by testing both the frequency of 

expression (corresponding to the relative 

distribution of cells between the two modes), 

and the PEM. Combining evidence from the 

discrete and continuous components of the 

data provides better sensitivity to changes in 

expression compared to test statistics based on 

frequencies of expression (discrete) or on the 

PEM (continuous) alone; or a union test (see 

Materials and Methods) while remaining 

competitive in specificity (Figures S3, S4) 

Within the three cell lines tested here, 

significant differential expression (Bonferroni-

adjusted for 253 tests at P<0.05) was observed 

for 78 genes in the ranked set and 28 genes in 

the unranked set (Figure 3A). Genes showing 

the strongest cell cycle associated expression 

patterns in bulk measurements were more likely 

to be identified as significant in the single-cell 

populations (Figure 3A-B). 

For each gene, peak time was determined 

based on the phase (G0/G1, S or G2/M) with 

maximum average expression across all cell 

lines. Despite large cell-line-specific expression 

variability, peak times were broadly consistent 

with Cyclebase annotations (Figure 3C), and 

especially so within the subset of genes with 

strongest evidence of cycle regulation in our 

data (e.g. Bonferroni significant at P<0.05). 

The majority of genes in the unranked set 

(115/143 or 80%) did not exhibit significant cell 

cycle effects, in concordance with their primary 

roles in functions unrelated to the cell cycle. Of 

the 28 unranked genes that exhibited a 

significant cell cycle phase association, we 

noted genes involved in cytoskeletal 

organization (PLAT), proliferation (PDGFA), 

and signaling pathways (IFNA1, IFNB1) that 

have been previously demonstrated to 
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modulate progression through the cell cycle 

[18]. 

 

Figure 3.  The Hurdle model identifies genes with 

cell cycle phase-dependent expression. (A) Hurdle 

model strength of evidence of cell cycle phase 

dependent expression for genes within our panel 

versus Cyclebase rank. P-values (-log10(p)) are 

shown on the y-axis. Ranked genes (red) are 

ordered on the x-axis according to Cyclebase rank. 

Unranked genes (blue) appear in alphabetical order. 

Genes significant after Bonferroni adjustment are 

annotated with their names (B) Hurdle model 

strength of evidence of cell cycle phase dependent 

expression in ranked genes versus phase of peak 

expression estimated from bulk data in Cyclebase.  

Experimentally observed peak times broadly match 

the times estimated from bulk data. Concordance in 

observed peak times is greater for genes with 

stronger evidence of differential expression.   (C) 

Cumulative number of significant (red) or all (blue) 

ranked genes versus Cyclebase rank.  Genes with 

lower Cyclebase rank, and hence stronger evidence 

of cycle regulation in bulk expression, are detected 

more often than genes with weaker evidence as 

shown by the minimal gap between significant (red) 

and all (blue) ranked gene lines at Cyclebase rank < 

150. 

  

Cell cycle explains a small portion of 

the gene expression variability 

It has been argued that a substantial portion of 

the stochastic variability observed in single cell 

gene expression experiments may be caused 

by global changes in transcription due to cell 

cycling [19]. We explore this idea by examining 

the proportional change in the Hurdle model fit 

associated with inclusion and omission of cell 

cycle as an explanatory variable.  Because the 

Hurdle model accounts for both the 

dichotomous (on/off) and continuous nature of 

single cell data, the change in deviance 

(generalized linear model log-likelihood) 

between nested models can be used to 

calculate the amount of variability explained by 

cell cycle.  The total deviance can be 

partitioned into components corresponding to 

cell cycle effects, nuisance effects described 

below, and residual effects.  The ratio of cell 

cycle deviance to the sum of cell cycle plus 

residual deviance can then be interpreted as 

the analog to the coefficient of determination in 

linear least squares. 

We consider expression changes due to main 

effects and interactions of cell cycle by cell line 

and account for amplification efficiency and  
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Figure 4. Box and Whiskers Plot of Cell Cycle 

Deviance Ratio in Ranked and Unranked Genes. 

The proportion of stochastic variability in the Hurdle 

Model explained by cell cycle is shown on the 

primary y-axis (left) for ranked and unranked genes, 

with box giving the 25th, 50th and 75th percentiles, 

and whiskers showing 1.5 times the inter-quartile 

range. The deflated scale on the secondary y-axis 

(right) shows the deviance as a percentage of the 

most completely explained gene (TOP2A, 27%) and 

is intended as an upper bound for the amount of 

remaining biological deviance in non-cell-cycle 

genes. Under this conservative rescaling, cell cycle 

explains only 25% of the deviance in 75% of 

unranked genes. 

 

average cell line effect (see Materials and 

Methods).  Only modest amounts of the single 

cell expression variability can be explained by 

cell cycle (Figure 4). Within the ranked gene 

set, cell cycle phase explains 8% of the 

deviance in the median gene and 27% of the 

deviance in the top gene (TOP2A).  In unranked 

genes, phase explains only 5% of the deviance 

in the median gene.   

To derive these estimates, it is important to be 

able to account for the nuisance factors by 

using the Hurdle model.  If cell-to-cell variation 

in amplification efficiency is not removed, we 

underestimate the explanatory power of cell 

cycle on in the median ranked gene by 26% 

since the unmodeled deviance would include 

this large additional component. Similarly, other 

unmeasured factors may inflate the residual 

deviance and attenuate the apparent role of cell 

cycle.  These factors could include errors in 

inferring the cell cycle phase via FACS or 

imperfect modeling of changes in amplification 

or detection efficiency between samples. To 

guard against this attenuation, we set an upper 

bound on cell-cycle-dependent variation as 

follows: We suppose that transcription of the 

gene with the most deviance attributable to cell 

cycle (TOP2A, 27%) would be entirely 

regulated in a phase-dependent manner, and 

we characterize other genes’ cell-cycle-

dependent deviance relative to this maximum.  

For example, a gene with 13.5% cell-cycle-

dependent deviance has half as strong a cell 

cycle effect as TOP2A, leading to the 

conclusion that at most 50% of this gene’s 

deviance could be attributable to cell cycle.  

Even under these generous upper bounds, cell 

cycle phase explains only 18% (eg, .05/.27) and 

29% (eg,.08/.27)  of the deviance in the median 

gene in the unranked and ranked sets, 

respectively, suggesting that even when 

allowing for cell line-specific cell cycle effects, 

cycle is generally a small factor, compared to 

residual variability, in gene expression 

variability in the human transcriptome. 

Network analysis reveals gene co-

expression at the single-cell level 

Single-cell gene expression data sets have the 

resolution to reveal not only differential 

expression in response to biological variables 

like cell cycle phase, but also to provide insight 

into co-expression between genes at the 

cellular level (e.g. the influence of one gene on 

another’s expression or the sharing of upstream 

regulatory elements).  In bulk-gene expression  
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data (e.g. microarrays), apparent co-expression 

arises from tissue-level factors inducing shared 

marginal changes in genes. For example, 

different radiation doses in samples will induce 

correlation amongst all the genes affected by 

radiation, regardless of whether these genes 

interact or even participate in the same 

biological processes.  In contrast, single cell 

data allow isolation of co-expression arising 

from cellular-level factors, giving access to 

more fundamental biological relationships.  If 

two genes are correlated across cells drawn 

from the same environment, then the two genes 

are likely to share an intimate biological 

relationship: they may be regulated by the 

same transcription factor, or one gene may 

directly regulate the other.  The distinction 

between cellular and marginal co-expression 

follows from a probabilistic identity on 

conditional covariances (see Materials and 

Methods). 

 

Figure 5. Coexpression networks estimated using the Hurdle Model.  Data from three cell lines and three cycles 

are combined and adjusted for additive effects of cell line and pre-amplification efficiency.   Networks of the top 

60 edges (ranked by partial correlation) using logistic regressions on discretized expression (A,D), linear 

regressions on positive, continuous expression values (B,E), and combining the top 30 edges from discrete and 

continuous components are shown (C,F).  Panels A-C adjust for additive cell cycle effects, while panels D-F are 

unadjusted.  The shape of the glyph corresponds to the cycle with peak expression from cyclebase, while the 

saturation of the glyph corresponds to the ranking.  Blue and green edges are partial correlations detected from 

discrete expression and continuous expression, respectively.   Red edges are detected in both discrete and 

continuous expression. 
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When cell cycle is not adjusted for (Figure 5 D-

F), known cell cycle genes with strong evidence 

of marginal regulation comprise the majority of 

the network.  These genes generally peak in 

phase G2/M, suggesting that the co-expression 

is mostly driven by the coincident peak in 

average expression.   The networks adjusted 

for cell cycle at least partially remove marginal 

effects (Figure 5 A-C).  In some cell cycle 

genes, substantial evidence for co-expression 

remains, but now additional co-expression is 

detected in genes without a previously 

described cell cycle role.  In the unadjusted 

estimates, marginal shifts in expression in 

canonical cell cycle genes overwhelm subtler 

co-expression in unranked genes.  Even though 

cell cycle variability is modest compared to 

residual variability, cell cycle is a substantial 

source of biological variability in the ranked 

genes and is in a sense confounded with the 

co-expression patterns.  

In an attempt to quantify the performance of the 

Hurdle model and the effect of cell-cycle 

adjustments, we examined network properties 

when varying the number of edges.  We call an 

edge peaktime concordant if it connects nodes 

that have the same peaktime annotated in cycle 

base (eg, G0/G1-G0/G1 or S-S).  Over a range 

of network densities (30-240 edges) the 

unadjusted Hurdle or Raw networks contain 

between 45%-80% peaktime concordant edges, 

while the adjusted Hurdle contains only 32%-

38% peaktime concordant edges.   

 

Cell cycle adjustment in networks estimated on 

the raw data is not very effective compared to 

the unadjusted, raw networks (Figure S6). This 

is unsurprising, as this would occur when the 

model for the mean of the response is mis-

specified, as is true when ignoring the bi-

modality that the data exhibit (eg, Figures 2 and 

S2).   If the Hurdle model is correct and cell 

cycle is additive, then the identity link cannot 

recover this additivity.  On the other hand, the 

Hurdle model can still recover an additive mean 

model under a linear link by taking the discrete 

coefficient estimates to be null.  Overall, the 

adjusted and unadjusted Hurdle networks in 

Figure 5 are rather different, sharing 39% of 

nodes (Jaccard similarity) and 51% of edges 

(Hamming Distance / #edges). 

Combining both discrete and continuous 

networks (with the top 30 edges from discrete 

and continuous networks) allows a richer set of 

genes to be characterized.  When discrete 

expression is used alone, networks primarily 

consist of G2/M peaking genes and unranked 

genes (Figure 5A).  When positive, continuous 

expression is also used, S and G0/G1 peaking 

genes enter the networks (Figure 5B-C).   

The adjusted, semi-continuous network 

depicted in Figure 5C consists of two primary 

sub-networks, one consisting entirely of ranked 

genes, and another largely consisting of weakly 

ranked and unranked genes. While we cannot 

rule out that measurement error of the inferred 

cycle is not partially responsible for the 

persistence of a subset of ranked genes, 

previously described mutual regulation in RNA-

interference experiments [20] of some of these 

genes suggests that this subset is co-

expressed at the single cell level as opposed to 

being co-expressed on average at the 

population level. The sub-network of ranked 

genes contains the central node of NUF2, a 

highly-conserved protein required for stable 

kinetochore localization of centromere-

associated protein E (CENP-E) [21]. NUF2 is 

connected to other actors in mitotic organization 

such as ANLN, KIF23, and CENPF, as well as 

the check-point genes CCNA2 and BUB1, 

reflecting the central role of these genes in 

mitosis. 
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The sub-network of primarily unranked genes 

contains two key nodes: TUBB and CCR3. The 

predominance of genes associated with cell 

growth, like TUBB, and transmembrane 

proteins, like CCR3, in the unranked cluster is 

likely related to the actively dividing nature of 

the profiled cells, i.e. dividing cells must 

generate new scaffolding and membrane-

related materials to support growth. This 

relatively large sub-network of unranked and 

weakly ranked genes is largely missed by the 

unadjusted analysis that is biased by the 

population level cell-cycle effect. 

Discussion 
Stochastic, bimodal expression is a hallmark of 

single cell data [22–24]. Within a population of 

cells, detectable expression for any given gene 

typically resides in one of two modes, 

corresponding to an “on” or “off” state.  Both 

technical and biological factors likely contribute 

to this bimodality.  Quantities of some species 

of cDNA may be minute after reverse-

transcription, and in this case random variation 

in the number of template-primer-enzyme 

complexes that form during each annealing 

phase may dominate the kinetics of the PCR 

[25].  But regardless of its origin, modeling 

bimodality improves the power of differential 

expression tests. 

Here, we show how the Hurdle model can be 

adapted to complex study designs, extending 

our previous results describing its use for two-

sample comparisons. We demonstrate the 

model’s ability to identify many genes with a 

periodic expression pattern from 

asynchronously cultured cells utilizing a 

combination of FACS sorting and these new 

analytical techniques, including genes with little 

previous evidence of cell cycle associated 

periodic expression like MEF2D [26] and 

FAM189B. The Hurdle model is able to identify 

phase-dependent patterns of expression 

despite the fact that G2 and M phases are 

indistinguishable by DNA content. The similar 

rank ordering of differentially expressed genes 

in our single cell experiment as compared to 

bulk experiments and concordance in the phase 

of peak expression demonstrates the power of 

the Hurdle model. While we have applied the 

Hurdle model to our specific problem, the 

approach is general and can be applied to test 

any effect of interest in a single-cell gene 

expression dataset. We offer this modeling 

framework as an R package for other interested 

users at github.com/RGLab/SingleCellAssay. 

Although we recommend the Hurdle model in 

general for testing for differential expression, it 

should be noted that its desirability is contingent 

on the frequency of the gene under 

consideration.  For example, if a gene is highly 

expressed (eg, > 90% expression), then the 

information to be derived from the 10% of cells 

that do not express a gene may not be worth 

the cost of an extra degree of freedom in the 

chi-square null distribution of the test statistic. 

However, even when this is the case, the 

Hurdle model might be preferred for 

methodological simplicity, since it is powered—

although perhaps not always optimally—

regardless of expression frequency, and does 

not require extensive pre-test simulations of 

power to yield acceptable performance.  The 

data set considered here offers a relatively 

stringent test of the relative sensitivity of the 

Hurdle model, owing to the high expression 

frequency of the genes in this experiment 

(interquartile range ranked genes: .7-.9; 

unranked genes: .56-.88). 

Single cell data also allows unparalleled 

resolution of genes’ co-expression patterns. 

While bulk expression data can reveal 

correlation induced by varying biological 

conditions, single-cell data has the possibility to 

reveal co-expression driven by shared 

regulatory elements within the cell. However, 
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when inferring gene expression networks, it is 

important to adjust for population level 

covariates that could confound the network 

estimation, especially for genes that are 

marginally affected by such a population level 

covariate (like known cell cycle genes in our 

experiment.) By measuring a limited set of cell 

cycle associated genes, we are able to identify 

a network of co-expressed genes with known 

roles in cell cycle regulation even after adjusting 

for cell cycle phase.  It should be noted that the 

unadjusted network estimate would be 

appropriate in some circumstances, for 

example when a summary of the co-expression 

occurring on average in the population of cells 

is desired, as opposed to inference of co-

expression occurring conditionally within 

defined subsets. 

Work remains to derive network estimators that 

optimally combine information from discrete and 

continuous portions.  Our current approach is 

likely theoretically naïve, since it is essentially a 

union test of the discrete and continuous 

portions, rather than a summation of signal from 

the two domains.  We also have left unresolved 

the asymptotic consistency of our proposed 

network procedure under dimensional scaling. 

It is crucial to understand the relationship 

between cell cycle and the stochastic nature of 

single cell expression as it determines the 

magnitude of the cell cycle’s distorting effect on 

single cell analyses. In contrast to earlier 

estimates of Zopf et al. [19] we find little 

evidence of periodic regulation of expression 

among non-cell cycle associated genes. Our 

results are consistent with genome-wide mRNA 

profiling efforts utilizing bulk expression 

methodologies in mammalian cells where 

genes with cycle-dependent periodic 

expression patterns are limited and well-

characterized [16,27,28]. Disparity between our 

findings and those of Zopf et al. may arise from 

differences between yeast and mammalian 

cells.  Moreover, Zopf et al. primarily focus on a 

single, synthetic promoter while we sample 

hundreds of transcripts presumably driven by 

many different promoters. Whether the 

substantial remaining variability is inherent to 

the human single cell, or due to thus far latent, 

unmeasured biological variables remains to be 

explored. 

Materials and Methods 

Cell Lines and Flow Cytometry 

Three human cell lines H9 (HTB-176), MDA-

MB-231 (HTB-26) and PC3 (CRL-1435) were 

commercially obtained and cultured as 

recommended by the supplier (ATCC). Cultured 

cells were re-suspended in culture media 

containing Hoescht 33342 (Sigma) and 

incubated at 37°C for 60 minutes prior to sorting. 

Cultured cells were flow-sorted to isolate 

individual cells from each of the cell lines 

according to phase (G0/G1, M/G2 and S). Cells 

were isolated and sorted using the FACSJazz 

(Becton Dickinson) at 500 events per second 

using a 100 micron nozzle. Single cells were 

defined by gating on forward and side scatter 

area/width.  Phase was inferred from Hoescht 

3342 DNA-fluorescent dye, then cells were 

individually deposited and lysed in wells of a 

96-well PCR plate containing 3uL of Cells-to-Ct 

lysis buffer (Life Technologies).  The proportion 

of cells in G0/G1 phases varied from 54% of 

PC-3 cells to 73% of H9 cells (Supplementary 

Figure S1). 

Genes Assayed 

A set of 333 probes was designed. It contained 

cell cycle associated genes and provided 

coverage of the entire cell cycle based on peak 

expression and periodicity information derived 

from an integrated database of cell cycle 

expression profiling experiments [16]. Non-cell 

cycle associated genes had primary roles in the 
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inflammatory response and included 

housekeeping controls without a Cyclebase 

ranking. Genes with a Cyclebase ranking < 

1000 were placed in the ranked set (n = 119) 

and all other probes were considered part of the 

unranked set (n=214).  

cDNA Conversion and Multiplexed 

Target Enrichment (MTE) 

After lysis, RNA was converted to cDNA with 

SuperScript VILO (Life Technologies). Primers 

for 333 genes were pooled and cDNA was 

enriched in a multiplexed amplification (MTE) 

reaction according to the nCounter Single Cell 

Expression protocol (NanoString). The MTE 

samples were hybridized overnight at 65°C with 

an nCounter CodeSet containing probes for all 

enriched targets (cell cycle related, unrelated 

genes and controls) and internal controls as 

recommended by the manufacturer. 

Statistical Analysis 

Dichotomization and Thresholding 

The nCounter Analysis System reports the 

number of counts of each observed nucleic acid 

target. We transformed the counts with a shifted 

log-2 transformation so that 

 2   log count  1lCount  . In examining 

histograms of the transformed data, lCount , we 

found evidence of bi-modality (e.g. Figures 1C, 

2). It has been previously observed [2,9,10] in 

single cell gene expression that genes may 

appear “off” in a cell, lacking detectable 

transcript. Thus we hypothesize that in genes 

with two clusters apparent, the cluster of 

smaller lCount  might represent background 

noise without detectable expression, and the 

cluster of larger lCount  might correspond to 

bona fide signal. The distribution of lCount  in 

positive controls, which were added at known 

concentrations, and negative control probes not 

occurring in human cDNA, additionally 

supported this hypothesis (Figure S2). 

We used an empirical Bayes, model-based 

clustering procedure to discriminate between 

signal and noise clusters. Via maximum 

likelihood estimation, we fitted a Gaussian 

mixture model to an omnibus of expression in 

all genes to insure that both signal and noise 

clusters were initially present. The parameter 

estimates from the omnibus were then used to 

form an empirical Bayes estimate of a prior 

distribution for Bayesian Gaussian mixture 

models fit to each gene separately. The 

function thresholdNanoString available in 

SingleCellAssay implements our thresholding 

framework, while mixture models are estimated 

with the flowClust R package [29]. 

Let 2 2

1 2 1 2, , , , )(      be the MLE estimate 

of the cluster means, variances, and mixing 

proportion for the Gaussian mixture model 

when fit to the omnibus of all genes.   

Then for the gene-specific thresholding, the 

Bayesian formulation of the mixture model 

imposes the prior for cluster 1,2i   in gene g 

2 2

Normal( , )

Inverse-Wishart( , )

Beta( , )

ig i

ig i

g

 

  

  



   

 with 
2,ig ig   and g  all mutually independent.  

The hyperparameters ,  were estimated by 

empirical Bayes using a method-of-moments 

methods, employing the function 

flowClust2Prior with kappa=3, Nt=5, while the 

hyperparameters for the Beta distribution were 

both set to 5, thus the prior has weight equal to 

10 observations in the likelihood.  Then for each 

gene, maximum a posteriori (MAP) parameters 

using Expectation Conditional Maximization, 

subject to the data for that gene and the prior. 

Let 
2 2

1 2 1 2
ˆ ˆ ˆ ˆ ˆ, , , , )ˆ ( g g g g gg        denote the MAP 

estimate for gene g.  After ensuring that 1 2
ˆ ˆ   
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by relabeling the clusters if necessary, we can 

find the posterior probability that an observation 

belongs to cluster 1 by considering 

2
1 1

2 2
1 1 2 2

1 ˆ ˆ,

1 2ˆ ˆ ˆ ˆ, ,

ˆ (lCount)

ˆ ˆ(lCount) (lCount)

N

N N

 

   



 
 

where 2,
(x)N

 
 is the Normal PDF with mean   

and variance 2  evaluated at x. Observations with 

posterior probability >.5 of belonging to the noise 

cluster were truncated (set to zero) while 

observations that more likely belonged to the signal 

cluster were left unchanged. 

 We denoted the truncated, log-transformed 

value as the Expression Threshold (et) in which 

the value zero denotes no detectable 

expression, while positive values correspond to 

increasing values of log-expression. We model 

the zero value specially and separately from 

positive values. 

Normalization 

The log-count measurements were normalized 

to ensure that the mean signal was comparable 

across plates.  This was done in a stepwise 

manner. First data were split into three 

experimental batches, corresponding to cells 

that were run on different dates, and preliminary 

signal and noise clusters for each gene were 

estimated using the above thresholding 

technique. Then letting lCountkip  denote the 

clustered, but un-thresholded log Count for cell 

k, cluster 1,2i   and plate p, we aligned signal 

and noise clusters by estimating the regression 

CyclelCount
kkip ip kip       

and then subtracting the plate-specific signal 

and noise intercepts ip .  This aligned the 

peaks of the signal and noise clusters across 

plates, akin to a non-pooled version of the 

ComBat method [30]. The normalized log 

counts were translated so that the minimum 

normalized value in each gene was zero. Since 

no gene was expressed 100% of the time under 

the preliminary clustering, this was a well-

defined procedure.  Finally, the normalized data 

were thresholded jointly to produce the data set 

used for filtering and testing. 

Filtering  

We adopted a previously published filtering 

approach [9] based on a robust z-scoring, 

removing wells with no expression or otherwise 

outlying in the number of transcripts expressed.  

We applied the SingleCellAssay function filter 

with parameters nOutlier=2, SigmaProportion=2, 

SigmaContinuous=5.   

We removed non-variable genes (i.e. 

detectable expression < 1% in any cell line). 

253 of 333 probes passed these filtering criteria 

and were carried forward in the analysis. After 

thresholding and filtering we found that the 

frequency of expression (the rate at which 

0et  in a gene) varied considerably between 

genes, with a range of .08-.99 and median 

value of .72. 

Amplification Efficiency 

We found in examining principle component 

plots that the first axis of variation corresponded 

to the number of genes expressed in a well. In 

cell k and gene g, let etkg
 be the thresholded 

2log count, and lCountkg
 be the un-thresholded 

2log count. Then we defined 

[ 0]

1

1/ 1 ,
g

kg

N

k g et

g

x N 



    

where there are 
gN  genes total, giving the 

proportion of genes in the panel that were 

expressed in a cell. We considered several 

factors before deciding that kx  corresponded to 

technical variation that should be removed. 
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First, higher-order axes of variation 

corresponded to identifiable biological factors 

(e.g., phase, cell line). Orthogonality of kx to the 

biological axes of variation suggested that this 

factor was technical in nature[31]. Secondly, 

many steps in deriving cDNA from live cells 

could induce technical, cell-specific variation. 

These steps include incomplete lysis, variation 

in reverse transcription to generate cDNA and 

efficiency differences in the multiplexed, 

amplicon-specific pre-amplification step. Cell-to-

cell variability in any of these could appear 

downstream as a source of variability[32]. 

Lastly, we have observed similar phenomena in 

other cDNA-based single cell gene expression 

experiments, including multiplexed qPCR and 

single-cell RNA-seq. As kx contributed variability 

to our data and appeared to derive from 

technical rather than biological sources, we 

chose to adjust for it as a nuisance source of 

variability. 

In fact, kx  is highly correlated to the log-sum of 

expression 

lCount

2

1

log 1/ 2
g

kg

N

k g

g

Ns


 
  

 
 , 

   

which is equivalent to the log-total read count in 

RNA sequencing experiments (Supplementary 

Figure S5). Thus correcting for kx variability can be 

seen as a form of normalization, as is typically 

encountered in RNA-seq. 

 

Hurdle models for zero-inflated 

expression 

In single cell gene expression, we have 

previously found that accounting for both 

changes in the frequency of expression and 

shifts in the PEM produces more sensitive 

measures of differential expression compared 

to using either the frequency or the positive 

values alone, or compared to t-tests on the 

zero-inflated values [9,33]. We sought to extend 

this framework to any model that permits a 

likelihood ratio test on parameters, e.g., 

generalized linear or generalized linear mixed 

models, in order to account for additive cell line 

effects. Let 
ket  denote the expression threshold 

in the kth cell (so thus suppressing the gene 

index). Then we model   

  

 

.

.

Line Cycle Line Cycle

Line Cycle Line

k

Cycle k ,|

logit Pr 0  

     10

k k k k

k k k k

k

k k k

et x

et et x

   

    

    

      

 

where  ,   are cell line effects ,  ,    are 

cell cycle effects and  , '  are interaction 

effects between cell line and cell cycle, and 
k
 

is an independent, normally distributed error.  

The indices  Linek and Cyclek   give the cell line 

and cell cycle of the k th cell. The cell line 

effects ,  and cell cycle effects ,   are 

vectors in 
3
, although with the linear 

constraint that the sum of them is zero, eg,
3

1
0

i i



 , while ,  is a matrix in 

3 3
 with 

the constraints that 
3

1
0iji




  for j 1,2,3 and 

3

1
0ijj




 for 1,2,3i  . 

 The term 
k x   accounts for cell-to-cell 

technical variability resulting from variation in 

reverse transcription and PCR amplification 

efficiency (see previous section).  Jointly 

modeling the PCR efficiency along with the 

biological effects of interest is important as one 

factor can affect the other. Our modeling 

framework can be extended to regression-type 

models when the right hand side is replaced 

with a general term Z  for each component, 

and even to generalized linear mixed models. 

    

 '
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In general, let   be a vector of parameters for 

the distribution of 1( 0 )e t   and let    be a 

vector of parameters for  |et 0et  .  Then when 

the distribution of et  is divided in this fashion, 

inference about    proceeds conditional on 

0et . The log likelihood is then additive in the 

  and    parameters.  Classical hypothesis 

tests with chi-square asymptotic null distribution, 

such as Wald or likelihood ratio tests on specific 

components of   and    are null can be 

conducted separately. Then the test statistics 

are added together, combining and 

summarizing the evidence from the two 

processes, with the degrees of freedom in the 

null distribution doubled for the purpose of 

assigning significance. This approach is dubbed 

the “Hurdle” model and has been used in 

economics for several decades [34,35]. 

Application of Hurdle Model to tests of Cell 

Cycle Expression Regulation 

For each gene, we test whether the cell cycle 

effect, ( ,   ), was equal to zero. The log-

likelihoods under both models  1 : ,  0M     

and  0 : ,  0M     are compared. Let 0  and 

1  be -2 times the log-likelihood under models 

0M  and 1M , respectively.  Then  
cycle 0 1-    

gives Wilks’ likelihood ratio statistic, and in 

large samples, the null hypothesis of no cycle 

effect can be tested by comparing 
cycle  to a 

chi-square distribution with four degrees-of-

freedom, as there are three cycles, but with a 

linear constraint, hence two degrees in each of 

the discrete and continuous et  components. 

Union-Intersection Test of Cell Cycle 

Expression Regulation 

Equivalently,  0 : ,  0M     can be 

represented as the intersection 

( 0, ) ( , 0)         .  This permits 

forming a union test of 0M  versus 1M .  For a 

test of size  of 0M , the rejection region is then 

/2 /2{( , ) ( , )} {( , ) ( , )}l l R l l R 
       , (2) 

where l  and ¢l  are the discrete and continuous 

LRT test with rejection regions /2R   and /2R
  , 

respectively.  In other words, this means to 

reject the intersection hypothesis at level   if 

either discrete or continuous test reject at level 

/ 2  . 

Proportion of Deviance Explained by Cell 

Cycle 

In order to calculate the proportion of deviance 

explained by cell cycle, we compare our Hurdle 

model given by (1) to the same model where all 

cell cycle effects are omitted (i.e. 

   ,  ' , 0)     . Let a  be -2 times the 

log-likelihood under this alternative model. The 

cell cycle deviance ratio is calculated as 

 1- /cycle a ad    , directly analogous to the 

calculation of the coefficient of determination 
2R  in linear least squares. 

The deflated cell cycle deviance ratio is 

calculated as / max ( )cycle cycled d , where 

 cyclemax d  = .27 and occurs in gene TOP2A. 

Network Estimation 

We extend the conditional, neighborhood-based 

algorithm of Meinshausen-Bulmann [36] to 

estimate co-expression networks using the 

Hurdle model.   The standard Meinshausen-

Bulmann algorithm uses L1-penalized 

regressions to estimate partial correlations 

between vertices (genes) by treating each 

vertex as a dependent variable in a regression 

that includes all other vertices as independent 

variables.  If the vertices are jointly Gaussian, 

non-zero coefficients correspond to statistical 

dependences between vertices, conditional on 
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all other factors and so reflect a Gauss-Markov 

Random Field.  Here, since the distribution of 

expression in single cells is not multivariate 

Gaussian, edges in our network correspond to 

conditional correlations (after possible 

application of the logit link).  Although we do not 

attempt to show consistency of our proposed 

approach here, we note that Meinshausen-

Bulmann-like methods have been shown to be 

consistent in estimating non-Gaussian graphical 

models under fairly general conditions [37,38]. 

Then for the k th cell, following equation (1), we 

divide expression into discrete and continuous 

components, so fit regressions of the form 

  
.

. ,

,

logit Pr 0

| 0

 

   

kkg k g g

kg kg k k g g k

et

et et





 

 

   

   

Z et

Z et

(3) 

where 
kget  is the expression of the gth gene in 

the kth cell, and 
,k get  is the expression vector 

of all except the gth gene in the kth cell, and kZ  

is a vector of cellular covariates (eg pre-

amplification effect, cell line, cell cycle, and their 

interaction).  We estimate ( , )   and ( , )   

separately, with distinct L1 penalties   and   

for   and  using the R package glmnet [39].   

Unpenalized vector parameters    and   

adjust for pre-amplification effect kx ; cell line 

and cell cycle. 

Combining Networks 

We connect genes 1g  and 2g  if any one of 

1 2 2 1 1 2 2 1, , , ,, , ,g g g g g g g g
      is non-zero at their 

respective penalties thus take the union of the 

symmetrized sub-networks. To select the 

penalty parameters, we fix a number of edges 

e , then find  and   (constant across genes) 

so that / 2e   edges enter from each of   and 

 . Other ratios of edges are easily attained by 

choosing   and   appropriately. 

Cellular and Marginal Co-Expression 

Even when expression is measured in single 

cells, co-expression estimates may reflect 

cluster-specific shifts in mean expression rather 

than cellular co-expression.  Let 
1 2,G G  be two 

genes, and let Z  be a clustering factor that 

affects expression of at least one of 
1 2,G G .  

Then an elementary probability calculation 

shows that 

1 2 1 2

1 2

, ) E(Cov( , | Z))

Cov(E

Cov

( | Z),E( | Z)),

(G G G G

G G

 
 

so that the unadjusted estimate of covariance 

1 2Co (G, )v G  will include marginal shifts in the 

means 1 2| Z), ZE ( | )( E GG  as well as the 

average covariance 1 2E(Cov( , | Z))G G .  If Z  is 

measured, then it can be used to adjust the 

regressions in equation (3) to remove the effect 

of shifts in the mean and so isolate the effect of

1 2E(Cov( , | Z))G G . 
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Supplemental Material 
 

Figure S1.  Separation of asynchronously cycling cells into three cell cycle phase populations 

(G0/G1, S and G2/M) via fluorescence activated cell sorting (FACS). H9 (A), MB-231 (D) and PC3 

(G) cells were sorted based on DNA content as determined via retention of Hoechst 33342 dye. 

Individual cells were gated on based on forward scatter versus side scatter  for H9 (B), MB-231 (E) and 

PC3 (H) populations . The number and percentage of H9 (C), MB-231 (F) and PC3 (I) cells in a given 

phase within the asynchronous population as determined by FACS analysis. 

 

Figure S2. Histogram of log Counts of mRNA for various controls and genes.  Positive control 

primers (for which 100% expression is expected), negative control primers (for which no expression is 

expected) and two genes with different expression frequencies are shown.  The estimated Gaussian 

mixture densities from the Empirical Bayes model are superimposed. 

 

Figure S3. P values testing for differential expression in the Hurdle model decompose into 

discrete and continuous portions, and a union-intersection on the parameter set. Grey lines 

indicate average (loess smoothed) P-value for a given gene rank.  Both discrete and continuous 

components offer information about differential expression, and combining them via the Hurdle model 

offers more sensitive detection of ranked genes compared to a union-intersection test. 

 

Figure S4: Pseudo ROC plot (A) and number of discoveries versus Bonferroni-adjusted P values 

for ranked (B) and unranked (C) genes.  In panel A the number of discoveries in ranked genes is 

plotted against the number of discoveries in unranked genes as the level of the test varies.  A discovery 

in a ranked gene, as it has been previously found to be cell-cycle regulated, is more biologically 

plausible than a discovery in an unranked gene, so the number discovered at a given level is plausibly 

related to the sensitivity of a test. Likewise, the number of discoveries in unranked genes may be 

plausibly related to the specificity of the test.  In panels B and C the absolute number of discoveries in 

ranked and unranked gene sets are plotted for various P-values.  In both panels, the binomial model 

uses logistic regression on dichotomized expression values, while the continuous model uses only 

values with positive expression. All models adjust for cell line and pre-amplification efficiency. The 

Hurdle, Union and continuous tests are largely equivalent when judged by their area under the curve of 

the panel A; however the Hurdle is more sensitive than the continuous or union when judged by 

absolute number of discoveries in panel B. 

 

Figure S5: The proportion of expressed genes is related to the log-sum of expression in each 

cell in our panel of Ng = 253 genes. 
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Figure S6: The percent of edges joining nodes with same marginal peak time (A) and percent 

nodes in top 100 of CycleBase (B) as the number of edges in the network varies from 30-240. 

The hurdle adjusted  for cell cycle selects half as many edges with the same peaktime compared to the 

adjusted or unadjusted raw models, while the unadjusted hurdle selects modestly more peaktime 

concordant edges than the raw models, especially for richer (>100 edges) networks.  A similar 

phenomenon occurs when examining the distribution of nodes.  The unadjusted hurdle tends to select 

more nodes with previous description of marginal expression regulation.  After adjustment, it selects the 

fewest nodes out of the four models. 

 

Figure S7: Semi-Continuous Hurdle Model Networks, Adjusted for cell cycle, stratified by cell 

line. 
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