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Abstract6

Quantifying the proportion of polymorphic mutations that are deleterious or neutral is of fundamental7

importance to our understanding of evolution, disease genetics and the maintenance of variation genome-8

wide. Here, we develop an approximation to the distribution of fitness effects (DFE) of segregating9

single-nucleotide mutations in humans. Unlike previous methods, we do not assume that synonymous10

mutations are neutral, or rely on fitting the DFE of new nonsynonymous mutations to a particular para-11

metric probability distribution, which is poorly motivated on a biological level. We rely on a previously12

developed method that utilizes a variety of published annotations (including conservation scores, protein13

deleteriousness estimates and regulatory data) to score all mutations in the human genome based on how14

likely they are to be affected by negative selection, controlling for mutation rate. We map this score to15

a scale of fitness coefficients via maximum likelihood using diffusion theory and a Poisson random field16

model. We then use our coefficient mapping to quantify the distribution of all scored single-nucleotide17

polymorphisms in Yoruba and Europeans. Our method serves to approximate the DFE of any type of18

segregating mutations, regardless of its genomic consequence, and so allows us to compare the proportion19

of mutations that are negatively selected or neutral across various genomic categories, including differ-20

ent types of regulatory sites. We observe that the distribution of intergenic polymorphisms is highly21

leptokurtic, with a strong peak at neutrality, while the distribution of nonsynonymous polymorphisms22

is bimodal, with a neutral peak and a second peak at s ≈ −10−4. Other types of polymorphisms have23

shapes that fall roughly in between these two.24
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Author Summary25

The relative frequencies of polymorphic mutations that are deleterious, nearly neutral and neutral is26

traditionally called the distribution of fitness effects (DFE). Obtaining an accurate approximation to27

this distribution in humans can help us understand the nature of disease and the mechanisms by which28

variation is maintained in the genome. Previous methods to approximate this distribution have relied29

on fitting the DFE of new mutations to standard parametric probability distributions, like a normal or30

an exponential distribution. Here, we provide a novel method that does away with using parametric31

DFE approximations by relying on genomic scores designed to reflect the strength of negative selection32

operating on any site in the human genome. We use a maximum likelihood mapping approach to fit these33

scores to a scale of neutral and negative fitness coefficients. Finally, we compare the shape of the DFEs34

we obtain from this mapping across populations as well as different types of functional categories. We35

observe a highly leptokurtic distribution of polymorphisms, with a strong peak at neutrality, as well as a36

second peak of deleterious effects when restricting to nonsynonymous polymorphisms.37

Introduction38

Genetic variation within species is shaped by a variety of evolutionary processes, including mutation,39

demography, and natural selection. With the advent of whole-genome sequencing, we can make unprece-40

dented inferences about these and other processes by analyzing population genomic data. An important41

goal is to understand the extent to which segregating genetic variants are impacted by natural selection,42

and to quantify the intensity of natural selection acting genome-wide. Understanding the prevalence of43

different modes of selection on a genomic scale has wide-ranging implications across evolutionary and44

medical genetics. For instance, genome-wide association studies (GWAS) are searching for mutations45

associated with disease in large samples of humans. Because mutations associated with disease are a46

priori likely to be deleterious, quantifying the portion of mutations that are deleterious along with their47

average effects could have significant implications for the design and interpretation of GWAS. Moreover,48

recently, the ENCODE project [1] has claimed that much of the genome is involved in some kind of vital49

molecular function. Although this has been disputed [2], quantifying the DFE in noncoding regions is50

a first step toward understanding the fitness implications of rampant functional activity at the genomic51

level.52
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Traditionally, studies have sought to estimate the distribution of fitness effects (DFE) for nonsyn-53

onymous mutations by using summary statistics based on the number of polymorphisms and substitu-54

tions [3–5] and/or the full frequency spectrum [6–8]. These studies typically assume that synonymous55

variation is neutral. Many of these analyses suggest that the distribution of deleterious fitness effects56

is strongly leptokurtic; that is, while most nonsynonymous mutations are nearly neutral, there is a sig-57

nificant probability that an amino acid changing mutation will be strongly deleterious. While these58

studies were limited to analysis of protein-coding genes, recently work has focused on quantifying the59

DFE in regulatory regions, including short interspersed genomic elements such as enhancers [9, 10] and60

cis-regulatory regions [11]. A review of many of these approaches can be found in ref. [12].61

There are several obstacles to quantifying the DFE of new or segregating mutations genome-wide.62

First, inferences about the DFE are confounded by demography [13]. For example, a high proportion63

of low frequency derived alleles is a signature of negative selection, but can also be caused by recent64

population growth [14]. Hence, a well-supported demographic model must be used to appropriately65

control for population history when inferring the DFE. Second, most current methods rely on dividing66

up polymorphisms into either putatively neutral or putatively selected sites (for example, synonymous67

and nonsynonymous sites). Because of the reduced resolution afforded by having only two classes of sites,68

these studies have relied on fitting the DFE of new mutations to a parametric distribution, typically an69

exponential or gamma distribution [3, 7]. While flexible, these distributions may miss some important70

features of the DFE [15]. For example, mutation accumulation experiments suggest that the DFE may71

be bimodal, with most mutations either being nearly neutral or strongly deleterious, with very few72

in between [16, 17]. Thus, fitting a parametric distribution with a single mode may not capture all73

the relevant information about the DFE (but see [18] for an example of fitting a multimodal DFE to74

population genetic data and [15,19] for nonparametric approaches to estimating the DFE of new amino-75

acid changing mutations). Finally, previous studies have been restricted to analyzing specific subclasses76

of mutations (e.g. nonsynonymous, enhancers, etc.) because until recently, no single metric existed77

that could serve to compare the disruptive potential of any type of variant, regardless of its genomic78

consequence.79

Recently, Kircher et al. [20] developed a method to synthesize a large number of annotations into a80

single score to predict the pathogenicity or disruptive potential of any mutation in the genome. It is81

based on an analysis comparing real and simulated changes that occurred in the human lineage since82
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the human-chimpanzee ancestor, and that are now fixed in present-day humans. The method relies83

on the realistic assumption that the set of real changes is depleted of deleterious variation due to the84

action of negative selection, which has pruned away disruptive variants, while the simulated set is not85

depleted of such variation. A support vector machine (SVM) was trained to distinguish the real from the86

simulated changes using a kernel of 63 annotations (including conservation scores, regulatory data and87

protein deleteriousness scores), and then used to assign a score (C-score) to all possible single-nucleotide88

changes in the human genome, controlling for local variation in mutation rates. These C-scores are meant89

to be predictors of how disruptive a given change may be, and are comparable across all types of sites90

(nonsynonymous, synonymous, regulatory, intronic or intergenic). Thus, they allow for a strict ranking91

of predicted functional disruption for mutations that may not be otherwise comparable. C-scores are92

PHRED scaled, with larger values corresponding to more disruptive effects.93

Importantly, human-specific genetic variation patterns are not used as input to train the C-score SVM.94

In this work, we make use of the C-scores to provide a fine-grained stratification of deleteriousness in95

modern human populations. Using the 1000 Genomes dataset [21, 22], we take advantage of the Poisson96

random field model [23, 24] with a realistic model of human demographic history to fit a maximum97

likelihood selection coefficient for each C-score, creating a mapping from C-scores to selection coefficients.98

Using this mapping, we obtain a high-resolution picture of the DFE in Europeans and Africans, and99

explore the DFE of different mutational consequences.100

Results101

A mapping from C-scores to selection coefficients102

To map C-scores to selective coefficients, we obtained allele frequency information from 176 low-coverage103

Yoruba (YRI) chromosomes from the 1000 Genomes Project Phase 1 data [21, 22]. We tested only104

models of neutral evolution and negative selection, because C-scores are uninformative about adaptive105

vs. deleterious disruption (i.e. a high C-score could either reflect a highly deleterious change or a highly106

adaptive change), and, because we are using polymorphism data only, positive selection should contribute107

little to the site-frequency spectrum [25].108

We began by binning sites into C-scores rounded up to the nearest integer and computed the site109

frequency spectrum for each bin (Figure S1). We then fit the lowest possible C-score (C = 0), presumed110
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to be neutral, to different models of demographic history. We compared constant population size, expo-111

nential growth (fitting the parameters by maximum likelihood; see Methods) and the model inferred in112

Harris and Nielsen [26] from the distribution of tracts of identity by state (IBS) (Figure S2). We find that113

the constant population size and the Harris and Nielsen models fit the data approximately equally well114

and better than any of the exponential growth models we tried. We picked the Harris and Nielsen model115

for downstream analyses, as it is based on haplotype information (the distribution of tracts of identity116

by state), and may thus be a better reflection of the true demographic history.117

We next fit a selection coefficient to the site frequency spectrum for each C < 40 using maximum118

likelihood (see Methods). We restricted to C < 40 because very few sites have C ≥ 40, and hence119

estimates of the selection coefficients for those C-scores are unreliable. Predictably, the lowest C-score120

bin (C = 0) fits the neutral model (s = 0) best, as that was the bin used in the neutral demographic121

fitting. In addition, the next highest bin (C = 1) also maps to s=0. Figure S3 shows that the site122

frequency spectra of the C-score bins are well-modeled by our maximum likelihood fits.123

We aimed to test the robustness of the selection coefficient estimates within each bin. We were specif-124

ically concerned about highly deleterious bins, which are composed of a smaller number of segregating125

sites than neutral or nearly neutral bins, and could produce unstable or biased estimates. We obtained126

bootstrapped confidence intervals for each bin and observe that the mappings are relatively stable up to127

C = 36. As expected, the standard deviation of the bootstrap estimates is strongly negatively correlated128

with the sample-size per bin (Figure S4, Pearson correlation coefficient = -0.933). Thus, most of the129

increase in the width of the confidence intervals observed at higher C-score bins can be explained by the130

small number of polymorphisms available in those bins, and is likely not the result of other unaccounted131

processes, such as positive selection, operating exclusively on highly scored polymorphisms.132

After removing the C-score bins that best fit the neutral model, the remaining C-scores plotted as133

a function of log10(−s) appear to have an odd-degree polynomial shape. Using least-squares regression,134

we fit different polynomial functions to the mapping, as well as an inverted logistic curve, to obtain135

a continuous function from C-scores to log10(−s). Although the 5th and 7th degree polynomials fit136

approximately equally well (residuals of .1962 and .1819, respectively), we chose the 5th degree fit because137

the 7th degree mapping showed signs of overfitting (Figure S5). Figure 1 shows our mapping of C-scores138

to selection coefficients, including confidence intervals obtained by bootstrapping the data in each bin139

100 times. Interestingly, there is a plateau from approximately C = 10 to C = 30 where a variety of C140
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scores correspond to identical selection coefficients. After approximately C = 30, the strength of selection141

increases substantially.142

To test for the robustness of our mapping, we performed the same fitting procedure on a variety of143

other conservation and deleteriousness scores (see Methods). Figure S6 shows that mappings are fairly144

consistent across different choices of scores, except for highly deleterious bins, which we were already145

excluding from the analysis. In the following, we only report results using the C-score mapping, as this146

score has been shown to be a better correlate to functional disruption and pathogenicity than all the other147

conservation scores mentioned above, and also controls for mutation rate variation across the genome,148

while other scores do not [20]. Additionally, Figure S7 show that this score is the best at distinguishing149

nonsynonymous from synonymous changes.150

The distribution of fitness effects of segregating mutations in Yorubans and151

Europeans152

Using the C-score-to-selection coefficient mapping, we obtained the DFE of segregating polymorphisms in153

Yoruba individuals. This distribution is highly leptokurtic when all polymorphisms are considered (Figure154

2, black dashed line), with a considerably high peak at neutrality and a long tail of deleterious mutations,155

as has been observed before when estimating the DFE of coding sequences [3, 5–7, 13]. Interestingly, we156

observe a pronounced drop in frequency for values of s < −10−4. We note that this is not due to our157

capping our mapping at C = 39 as the selection coefficients we are able to map are of a greater magnitude158

than this drop.159

When we partition the data by the genomic consequence of the polymorphisms, some classes exhibit160

a peak of highly deleterious changes around s = −10−4. This peak results in a bimodal distribution161

that is especially pronounced for nonsynonymous sites (Figure 2, red line), and is almost non-existent for162

intergenic sites (Figure 2, pink line). Synonymous polymorphisms also show a highly deleterious peak; this163

may indicate selection for optimal codon usage [27] and may be consistent with a recent finding of strong164

synonymous selection in Drosophila [28], but could also result from widespread patterns of background165

selection during human evolution [35,36]. Other types of polymorphisms—like splice site, 3’ UTR, 5’ UTR166

and regulatory mutations—have a bimodal distribution, though with an smaller deleterious peaks than167

for coding sites (Figure 2). We can compare the selection coefficient distributions to the distributions of168

unmapped C-scores (Figure S8) which are much less tightly peaked at intermediate deleterious values and169
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do not show a sharp decrease in density for highly deleterious polymorphisms, as does the s distribution170

in Figure 2. We show various statistics calculated on each of the selection coefficient distributions in171

Table 1.172

Next, we partitioned the data by whether the polymorphisms were found in the GWAS database [29]173

or not (Figure S9, Table 1). We observe a second deleterious peak among the GWAS SNPs, too, but174

these SNPs are also highly enriched for neutral polymorphisms. In addition, we classified polymorphisms175

by different ENCODE categories using the RegulomeDB classifier [30] (Figure S10, Table 2).176

Finally, we compared the distribution of fitness effects between Yoruba and Europeans. We observe177

a slight excess of deleterious sites in Europeans, consistent with previous studies [6, 31] (Figure 3). This178

is especially prominent for nonsynonymous polymorphisms with s < −10−4: we estimate that 3.1% of179

nonsynonymous segregating polymorphisms in Europeans fall in this category, while the same is true for180

2.5% of nonsynonymous segregating polymorphims in Yoruba. However, we caution that this is based on181

inferring the C-to-s mapping at values of s for which there exist very few segregating mutations.182

Discussion183

The distribution of fitness effects (DFE) describes the proportion of mutations with given selection184

coefficients. Knowledge of the DFE has profound implications for our understanding of evolution and185

health. We believe ours is the first study to estimate the distribution of deleterious fitness effects in human186

polymorphisms genome-wide, without assuming a parametric probability distribution for the DFE. We187

infer a highly leptokurtic distribution for all polymorphisms, with a sudden drop in density at s ≈ −10−4,188

which may be the cutoff between weakly deleterious and nearly neutral segregating mutations and highly189

deleterious mutations that are easily pruned away by negative selection.190

Our inferred non-synonymous distribution is bimodal and looks very similar to the one obtained191

for nonsynonymous mutations in Drosophila in ref. [5], with a peak at neutrality and another peak at192

s ≈ 0.9× 10−4, albeit with the difference that the neutral peak we observe in humans is relatively larger.193

Several experimental studies have also shown that non-synonymous non-lethal mutations tend to have a194

multimodal DFE in model organisms [32, 33] (see ref. [12] for a comprehensive review). We note that it195

is impossible to obtain such kinds of distributions using a gamma or lognormal probability distribution196

unless one approximates bimodality by assuming a second, separate class of nonsynonymous mutations197
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that are completely neutral and do not follow the best-fitting probability distribution [5, 7, 13,18].198

Importantly, unlike previous studies, we also obtain DFEs for other types of mutations, including199

synonymous, splice site, 3’ UTR, 5’ UTR and regulatory polymorphisms, which exhibit bimodality to200

a lesser degree than the nonsynonymous DFE. In particular, 5’ UTR changes constitute the category201

with the smallest proportion of neutral polymorphisms after nonsynonymous changes, likely reflecting202

selection on gene regulation upstream of coding sequences. Futhermore, distributions corresponding to203

mutations in UTR and regulatory regions have a less pronounced trough between the two peaks than204

the ones observed among coding mutations, suggesting that the magnitude of deleterious effects is more205

uniformly distributed in non-coding regions. In contrast, missense mutations appear to have more of an206

"all-or-nothing" effect, as would perhaps be expected when replacing an amino acid inside a protein.207

Our method does not assume that synonymous changes are neutral, as do other studies [3, 5, 13].208

Given that there is evidence for selection for codon usage in humans [34] and that our inferred DFE209

for synonymous polymorphisms also exhibits a highly-deleterious peak, the assumption that synonymous210

sites are neutral may no longer be viable. A second possibility is widespread patterns of background211

selection in human evolution [35,36]. This could also lead to a depletion of synonymous mutations from212

the list of fixed human-chimpanzee differences, resulting in the SVM machine associating synonymous213

mutations with higher C-scores than one would expect under a model with no linked selection. In contrast,214

it seems intergenic polymorphisms are the class of sites most likely to be governed by neutrality. Because215

this class is so abundant, most of the signal observed when all polymorphisms are pooled together closely216

reflects the distribution observed for intergenic polymorphisms.217

Our results have implications for GWAS, as we find a high proportion of GWAS SNPs to be neutral218

or nearly neutral, which could suggest a high rate of false positives in this type of association studies,219

although GWAS studies only aim to find polymorphisms linked to causative variants. Alternatively, if220

the effect size of many GWAS SNPs are sufficiently small, it is possible that many of them are not subject221

to strong selection.222

Additionally, by stratifying our results based on different ENCODE categories, we can elucidate the223

fitness consequences of the molecular activity detected by ENCODE. We find the category with the lowest224

proportion of neutral polymorphisms to be the one corresponding to sites that have eQTL evidence as225

well as evidence for transcription factor (TF) binding, a matched TF motif, a matched DNase footprint226

and that are located in a DNase peak. In general, categories that combine many regulatory signals tend227
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to show lower proportions of neutral mutations than those that do not, suggesting that data integration228

across distinct approaches to detecting selection and functionality is likely to do better than any individual229

approach [37]. Moreover, this suggests that much of the molecular activity detected by ENCODE may230

not have significant fitness consequences.231

There are several limitations to our method. First, we have restricted ourselves to estimating the DFE232

of segregating mutations that have reached appreciable frequencies in the population. An extension of this233

approach would be to infer the DFE of new mutations from the DFE of segregating mutations genome-234

wide. Second, we assumed no dominance or epistasis. Future studies could attempt to incorporate a235

distribution of heterozygous and epistatic effects into our approach. In addition, we have assumed sites236

are independent and have therefore ignored the covariance between linked sites, which likely leads to237

an underestimatation of confidence intervals obtained from the bootstrapping. The free-recombination238

assumption may also affect inference due to Hill-Robertson interference between mutations subject to239

selection [38] as well as linked background selection affecting the SFS of neutral sites in the human240

genome [36]. This may be a more important issue in our case than other genic-only approaches because241

we are also including intergenic mutations in our analysis, so the space between analyzed polymorphisms242

is on average smaller than if we were only looking at coding polymorphisms [13]. We also assume243

no positive selection. This, however, should not be a major problem, because we are only basing our244

inferences on polymorphic sites and advantageous mutations contribute little to polymorphism, assuming245

Nes > 25 [25]. One final limitation is that the type of inference performed here is only possible in species246

in which C-scores have been estimated (for now, humans only). Nevertheless, it should not be hard247

to obtain C-scores for other organisms in the future, although limitations on available annotations for248

non-human organisms may make the approximation to the fitness distribution less accurate.249

Materials and Methods250

Site frequency spectrum likelihoods251

We used the theory developed by Evans et al. [39] to obtain the expected population site frequency252

spectrum with non-equilibrium demography. Writing f(x, t) for the frequency spectrum at frequency x253

and time t and g(x, t) := x(1− x)f(x, t), we can approximate the dynamics of g(x, t) with selection and254

mutation by solving the following partial differential equation:255
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∂

∂t
g(x, t) = −Sx(1− x) ∂

∂x
[g(x, t)] +

x(1− x)
2ρ(t)

∂2

∂x2
[g(x, t)] (1)

subject to boundary condition:256

lim
x↓0

g(x, t) = θρ(t) (2)

where S is the population-scaled selection coefficient (S = 2N(0)s), θ is the population-scaled mutation257

rate (θ = 4N(0)µ) and ρ(t) = N(t)/N(0) is the population size at time t relative to the population258

size at time 0. For the constant population size model, ρ(t) = 1, for the exponential growth model259

ρ(t) = exp(Rt) where R = 2N(0)r is the population scaled growth rate and for the model of Harris and260

Nielsen, ρ(t) is piecewise defined according to their Figure 7.261

We solve for g(x, t) numerically in Mathematica, and can then compute the expected number of262

segregating sites with i copies of the derived allele out of a sample of n genes,263

fn,i(t) =

∫ 1

0

xi−1(1− x)n−i−1g(x, t)dx. (3)

To compute the likelihood of the observed site frequency spectrum, S = (s1, s2, . . . sn−1) where si264

is the number of sites with i copies of the derived allele, for a given model, M , which includes both265

demography and selection, we observe that the probability that a given site in a sample of size n has i266

copies of the derived allele is267

pn,i(t) =
fn,i(t)∑n−1

j=1 fn,j(t)
. (4)

Thus, the likelihood of S is268

L(S|M) =

n−1∏
i=1

pn,i. (5)

We provide Mathematica scripts implementing this computation upon request.269

Maximum likelihood fitting of exponential growth270

The exponential growth model has two free parameters, r, the per generation growth rate and t, the total271

time of exponential growth. We first obtained the site frequency spectrum for all sites with C = 0. Next272

we solved g(x, t) for the exponential growth model across a grid of t and r, and computed the likelihood273
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of the data under each model.274

Maximum likelihood fitting of selection coefficients275

To find the maximum likelihood estimate of s for each C-score bin, we first obtained the site frequency276

spectrum corresponding to each C-score bin. Next, we solved g(x, t) under the Harris and Nielsen277

demography for log10(−s) ∈ [−6,−1.5] in steps of 0.05, along with s = 0. The selection coefficient with278

the highest likelihood was assigned to that C-score bin. After this assignment, the distributions were279

plotted using kernel density estimation with smoothing bandwith = 0.00001.280

Testing robustness of the mapping281

To test how robust the mapping of C-scores to selection coefficients is to different types of conservation282

scores, we obtained PhyloP [40] and PhastCons [41] scores derived from vertebrate, mammal and primate283

alignments (excluding humans), as well as GERP S scores [42], for all YRI SNPs. We attempted to284

equalize the range of all scores by PHRED-scaling them, i.e. converting each score to -log10(p) where p285

is the probability of observing a change as or more disruptive / conserved (based on that particular score286

scale) among all polymorphic YRI sites. We note that this is different from the natural PHRED scale287

of C-scores (where p is the the probability of observing a score as or more disruptive among all possible,288

but not necessarily realized, mutations in the human genome), and so we also re-scaled the C-scores to289

produce a fair comparison. Then, we repeated the maximum likelihood mapping for each PHRED-scaled290

score in bins of 0.25 units (e.g. 0-0.125, 0.125-0.375, 0.375-0.625, etc).291
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Figures390

Figure 1. Mapping of C-scores to selection coefficients using YRI 1000G polymorphisms.
Red dots represent the maximum likelihood selection coefficient corresponding to each C-score bin. The
blue line is a polynomial fitted to the discrete mappings using partial least-squares regression on the
mapping of C-scores to log-scaled selection coefficients (after excluding the neutral bins). The grey
shade is a 95% confidence interval obtained from bootstrapping the data 100 times in each bin.
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Figure 2. Distribution of fitness effects among YRI polymorphisms, partitioned by the
genomic consequence of the mutated site. The right panel shows a zoomed-in version of the same
distributions after removing neutral polymorphisms and log-scaling the x-axis. Consequences were
determined using the Ensembl Variant Effect Predictor (v.2.5). If more than one consequence existed
for a given SNP, that SNP was assigned to the most severe of the predicted categories, following the
VEP’s hierarchy of consequences. NonSyn = nonsynonymous. Syn = synonymous. Splice = splice site.
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Figure 3. Comparison between the fitness effect densities corresponding to Yoruba and
European polymorphisms with s < 0. In all panels, the y-axis is on a log-scale. The density was
computed using a smoothing bandwidth = 0.15. Left panels: distributions of all polymorphisms. Right
panels: distributions of nonsynonymous polymorphisms. The bottom panels are a zoomed-in version of
the top panels, focusing on highly deleterious mutations (−3.5 < log10(−s) < −3).

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 4, 2014. ; https://doi.org/10.1101/002345doi: bioRxiv preprint 

https://doi.org/10.1101/002345
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables391

Table 1. Characteristics of fitness effect distributions estimated for YRI SNPs classified by different
genomic consequence categories.

Category Number of poly-
morphisms

Proportion
s=0

Proportion
|s| >
10−5

Proportion
|s| >
5 ∗ 10−5

Proportion
|s| >
10−4

Mean
log10(−s),
for all
s 6= 0

SD
log10(−s),
for all
s 6= 0

All 15956570 57.76% 25.26% 9.16% 0.08% -4.8276 0.5054
Nonsynonymous 71242 17.80% 75.89% 60.95% 2.51% -4.2885 0.3661
Synonymous 133797 23.05% 67.70% 46.45% 1.35% -4.3989 0.4122
Splice site 21353 33.15% 52.98% 30.27% 0.30% -4.5505 0.4796
5’ UTR 53130 21.77% 65.17% 36.07% 0.30% -4.5116 0.4396
3’ UTR 169336 31.14% 52.71% 23.34% 0.37% -4.6233 0.4681
Regulatory 1511150 39.18% 40.12% 13.45% 0.03% -4.7734 0.4792
Intergenic 6211005 62.43% 21.33% 7.93% 0.12% -4.8560 0.5140
GWAS 9673 45.90% 33.31% 12.28% 0.14% -4.8028 0.5008

Table 2. Characteristics of fitness effect distributions estimated for YRI SNPs classified by different
RegulomeDB regulatory categories.

RegulomeDB Category Number of
polymor-
phisms

Proportion
s=0

Proportion
|s| > 10−5

Proportion
|s| >

5 ∗ 10−5

Proportion
|s| > 10−4

Mean
log10(−s),
for all
s 6= 0

SD
log10(−s),
for all
s 6= 0

eQTL+TF binding+matched TF motif+matched
DNase Footprint+DNase peak

274 28.83% 50.00% 20.80% 0.00% -4.7019 0.4819

TF binding+matched TF motif+matched DNase
Footprint+DNase peak

18080 32.09% 48.74% 22.02% 0.06% -4.6733 0.4891

eQTL+TF binding+any motif+DNase Foot-
print+DNase peak

2140 32.71% 45.79% 16.07% 0.14% -4.7487 0.4772

TF binding+any motif+DNase Footprint+DNase
peak

174285 38.08% 41.94% 16.05% 0.08% -4.7398 0.4893

eQTL+TF binding+any motif+DNase peak 1385 40.36% 40.43% 14.73% 0.14% -4.7572 0.4923
TF binding+DNase peak 592313 40.53% 39.11% 13.84% 0.08% -4.7690 0.4874
eQTL+TF binding+matched TF motif 46 43.48% 36.96% 21.74% 0.00% -4.7214 0.5677
eQTL+TF binding / DNase peak 28697 44.88% 34.67% 11.88% 0.05% -4.8007 0.4902
TF binding+any motif+DNase peak 138492 44.90% 35.59% 13.16% 0.13% -4.7748 0.4958
TF binding+matched TF motif+DNase peak 7691 47.12% 33.86% 11.73% 0.05% -4.7943 0.4914
TF binding or DNase peak 2281669 50.99% 29.70% 10.71% 0.11% -4.8194 0.5030
eQTL+TF binding+matched TF motif+DNase peak 70 51.43% 31.43% 11.43% 0.00% -4.7233 0.4878
TF binding+matched TF motif 6873 58.74% 24.12% 8.29% 0.06% -4.8432 0.5015
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Supplementary Figures392

Figure S1. First 20 bins of the observed SFS for sites under different C-score bins. Note
that the spectrum gets more skewed towards singletons with increasing C-scores, likely reflecting the
action of negative selection on deleterious mutations.
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Figure S2. First 30 bins of the observed SFS for sites with C=0 (blue). The full SFS was fit
to different models of neutral evolution under the Harris and Nielsen (2013) model (green), a model of
constant size (red) or an exponentially growing population size model (here only shown running for
t=10,000 generations at rate 5, grey). The y-axis is on a log-scale. The best-fitting exponential growth
model was the one with the smallest rate (1) and duration (1,000 generations) and looked similar to the
constant and Harris and Nielsen models, but was still not as good a fit as either of the latter two.
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Figure S3. First 30 bins of the observed SFS for a few representative C-score bins and
their corresponding maximum likelihood selection models.
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Figure S4. Comparison of standard deviations and size of bins. Top panel: Standard deviation
per C-score bin plotted as a function of sample size per bin (log-scale). Bottom panel: Same plot but
with the y-axis on a log-scale.
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Figure S5. Fitting of different functions to C-score mappings. We attempted to fit
polynomial functions to log(-s) as a function of C-scores and a logistic function to C-scores
as a function of log(-s). We find that the polynomial functions are a better fit than the logistic
function, and, among the polynomial functions, the 5th degree polynomial (with a sum of least squares
= 0.1962) is the only one that is both monotonically increasing and not showing signs of overfitting.
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Figure S6. Maximum likelihood mapping of different types of scores to a selection
coefficient scale, excluding bins mapped to neutrality. Before mapping, scores were re-scaled on
a common PHRED scale (see main text). The wide fluctuations to the right of the image are due to the
small number of sites per bin at highly deleterious bins. We exclude these bins when fitting C-scores to
selection coefficients in our main analysis.

Figure S7. Distribution of fitness effects at nonsynonymous, synonymous and all
polymorphisms in Yoruba, using different types of conservation scores for mapping. We
note that some form of bimodality at coding sites is observed in all but one of the distributions.
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Figure S8. Distribution of unmapped C-scores among YRI polymorphisms, partitioned by
the genomic consequence of the mutated site. Consequences were determined using the Ensembl
Variant Effect Predictor (v.2.5). NonSyn = nonsynonymous. Syn = synonymous. Splice = splice site.

Figure S9. Distribution of fitness effects among YRI polymorphisms, partitioned by
whether the SNPs are found in the GWAS database or not. The right panel shows a zoomed-in
version of the same distributions after removing neutral polymorphisms and log-scaling the x-axis.
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Figure S10. Distribution of fitness effects among different types of RegulomeDB
regulatory YRI polymorphisms, obtained from various ENCODE assays. The black dashed
line corresponds to the distribution of all YRI SNPs.
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