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Many species engage in niche construction that ultimately leads to an increase in the carrying
capacity of the population. We have investigated how the specificity of this behaviour affects evo-
lutionary dynamics using a set of coupled logistic equations, where the carrying capacity of each
genotype consists of two components: an intrinsic part and a contribution from all genotypes present
in the population. The relative contribution of the two components is controlled by a specificity
parameter γ, and we show that the ability of a mutant to invade a resident population depends
strongly on this parameter. When the carrying capacity is intrinsic, selection is almost exclusively
for mutants with higher carrying capacity, while a shared carrying capacity yields selection purely
on growth rate. This result has important implications for our understanding of niche construction,
in particular the evolutionary dynamics of tumor growth.

In models of density-dependent growth the carrying ca-
pacity plays a pivotal role [1]. It represents the maximal
size of the population, and is often viewed as an external
limitation imposed by the environment on a growing pop-
ulation. Different genotypes might however experience
differential carrying capacities by virtue of expressing dif-
ferent phenotypes, that vary in their degree of adaptation
to survive at high densities [2]. This idea has for example
been exploited in a game theoretical context [3], where it
was assumed that the payoff received by each genotype
influenced the carrying capacity, and not reproductive
success, as is commonly assumed.

In many cases an increase in carrying capacity comes
about through niche construction, whereby the organ-
isms alter their environment in such a way that it can
sustain a higher number of individuals [4]. For exam-
ple the ant species Myrmelachista schumanni favours the
growth of the tree Duroia hirsuta, in which it nests, by
producing formic acid that is detrimental to other plants,
and this in turn leads to more nesting sites for the ants
[5]. Another example is the production of biofilm by cer-
tain bacterial species. This protective structure formed
by polysaccharides is known to increase antibiotic resis-
tance, but the chemical composition of the biofilm also
influences colony size [6], and hence the carrying capac-
ity of the strain. Lastly, we mention the importance of
angiogenic factors released by tumor cells that stimulate
the formation of new blood vessels, leading to increased
nutrient and oxygen concentration, that facilitates higher
cell densities and the growth of the tumour as a whole
[7].

In all three examples there exists the possibility of
cheating or free-riding on the genotype that facilitates the
increased carrying capacity. The ability to do so largely
depends on the specificity of the niche construction ac-
tivity. If the modification of the niche is highly specific
to the genotype that generates it, then most likely it is
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harder for other genotypes to exploit it, whereas a more
general modification is easier to free-ride on. A natural
question that arises in this context is how the specificity
of the niche construction activity alters the evolutionary
dynamics of the system.

A simple way of modelling and investigating this phe-
nomena is by considering the carrying capacity of each
genotype as being the sum of two components: an in-
trinsic carrying capacity and a contribution from other
genotypes present in the ecosystem, the relative impact
of the two components being controlled by a specificity
parameter γ.

To investigate the effect of the niche construction speci-
ficity on the evolutionary dynamics we consider a multi-
species system, where the number of organisms of type i,
xi is governed by

dxi
dt

= rixi

(
1− xT

Ki(x)

)
− δxi (1)

where ri > 0 is a species specific growth rate, xT =
∑

i xi
is the total population size, Ki(x) is a species specific
carrying capacity that depends on the current species
composition x = (x1, x2, ..., xn) and δ > 0 is a density
independent death rate assumed equal for all species.

We assume that the carrying capacity for each species
is determined both by a instrinsic/local and mean-
field/global component and use a parameter γ ∈ [0, 1]
to interpolate between the two. On one side of the spec-
trum, where specificity is maximal, we have the situation
where each species only experiences its own intrinsic car-
rying capacity ki, and on the other side we have the case
of minimal specificity, where all species experience the
same carrying capacity K, that is given by the weighted
mean of the constituent species carrying capacities, i.e.

K =
1

xT

n∑
j=1

kjxj . (2)
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We now let

Ki(x) = γki +
1− γ
xT

n∑
j=1

kjxj (3)

where γ = 1 corresponds to the local case (each species
has a unique carrying capacity), and γ = 0 represents
the global case where the carrying capacity is constant
across all species. Please note that in the presence of a
single species the system reduces to the standard logistic
equation for all values of γ.

An important property of such a system is the stabil-
ity of a resident population with respect to an invading
mutant, and we now proceed to investigate this question,
focusing on the impact of the degree of specificity γ.

To this end we consider the situation where only n = 2
species are present, in which case the system of equations
simplifies to

dx1
dt

= r1x1

(
1− x1+x2

K1(x1,x2)

)
− δx1

dx2
dt

= r2x2

(
1− x1+x2

K2(x1,x2)

)
− δx2, (4)

where

K1,2(x1, x2) = γk1,2 +
1− γ
x1 + x2

(k1x1 + k2x2). (5)

The steady-state, corresponding to a monomorphic pop-
ulation, is given by x? = (x1, x2) = (k1(1 − δ/r1), 0),
where we have assumed (without loss of generality) that
species 1 is the resident and 2 is the mutant.

The mutant can invade the resident population if the
steady-state is unstable, i.e. if at least one of the eigen-
values of the Jacobian J evaluated at x? has a positive
real part.

The Jacobian at x? is given by

J(x?) =

[
δ − r1 (r1k1 − (1− γ)(k2 − k1))(1− δ/r1)/k1

0 S(γ)

]
where

S(γ) = r2

(
1− k1

γk2 + (1− γ)k1
(1− δ/r1)

)
− δ. (6)

The eigenvalues of J evaluated at the monomorphic
steady-state x? are therefore given by λ1 = δ − r1 and
S(γ). Now δ − r1 < 0 (or else the equilibrium concen-
tration of the resident would be negative), and hence the
ability of a mutant to invade depends on the sign of S(γ),
where S > 0 corresponds to the ability of the mutant to
invade.

We start by investigating the extreme points γ = 1 and
0, that correspond to a locally versus globally determined
carrying capacity. For the case with maximal specificity
we have

S(1) = r2

(
1− k1

k2
(1− δ/r1)

)
− δ. (7)

For a small death rate (δ � r1) we have S(1) ≈ r2(1 −
k1/k2), which implies that S > 0 if and only if k2 >
k1, i.e. the mutant can invade if it has a larger carrying
capacity than the resident.

In the case of minimal specificity (γ = 0) we have

S(0) = δ

(
r2
r1
− 1

)
, (8)

which implies that the mutant can invade if δ > 0 and
r2 > r1.

This means that when the carrying capacity is geno-
type specific, there is selection for mutants with a higher
carrying capacity, while the case in which the carrying
capacity is global and determined by all genotypes, there
is selection for mutants with a higher growth rate. In the
latter case a non-zero death rate is also required for any
mutant to invade.

In order to get a better understanding of the impact
of the specificity we plot the curve S(k2, r2) = 0 in the
(r, k)-parameter space for three different choices of γ (see
figure 1). The regions above (and to the right) of the
curves correspond to the subset of mutant characteris-
tics, in terms of the relative growth rate (r2/r1) and rel-
ative carrying capacity (k2/k1), for which a mutant can
invade. In the global case (γ = 0) the ability to invade
depends only on the mutant growth rate whereas in the
local case (γ = 1) dependence is almost exclusively in
the k-direction. As is evident from the intermediate case
(γ = 0.5), the transition between the two extreme cases
occurs for low values of γ, and sharpness is controlled by
the death rate δ. For smaller values of δ the transition is
even more sudden.

The impact of the death rate δ on the transition from
the local to the global dynamics is further examined in
figure 2. Panel A shows the minimal carrying capacity
kmin required for a mutant with r2/r1 = 1.1 to invade a
resident population, while B shows the minimal mutant
growth rate required when the ratio of the carrying ca-
pacities is fixed at k2/k1 = 2. From the two plots it is
evident that the mutants carrying capacity largely deter-
mines its ability invade, even for small values of γ, when
the benefit from niche construction is relatively unspe-
cific. However, we note that the sharpness of the transi-
tion decreases as the death rate approaches the resident
growth rate.

These results suggest that a biological system gov-
erned by (1) could experience different evolutionary out-
comes depending on the value of the specificity parame-
ter. From our analysis of the two-species case it seems as
if a system evolving under γ = 1, would, because of the
selection on carrying capacity, increase its total popula-
tion size xT at a faster rate than the same system would
for γ < 1. In addition we would expect evolution to
favour lower growth rates as the specificity γ increases.

In order to test these hypotheses we extended the
model to take into account evolutionary dynamics. We
consider the coupled system of equations (1) with a
single wild-type present with r0 = 1, k0 = 106 and
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FIG. 1. Invasion as a function of mutant r and k. The region
above (and to the right) of the curves correspond to the subset
of mutant characteristics, in terms of the relative growth rate
(r2/r1) and relative carrying capacity (k2/k1), for which a
mutant can invade. In the local case (γ = 1) dependence
is almost exclusively in the k-direction, whereas in the global
case (γ = 0) only the mutant growth rate affects the ability to
invade. As is evident from the curve corresponding to γ = 0.5,
the transition between the two extreme cases occurs for small
values of γ. The death rate was set to δ = r1/10.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2/r1 = 1.1

m
in

im
al

 k
2/k

1 
fo

r  
in

va
si

on
 

ɣ

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B

ɣ

k2/k1 = 2

m
in

im
al

 r 2/r
1 

fo
r  

in
va

si
on

 

increasing ! 

inc
re

as
ing

 ! 

FIG. 2. Ability to invade as a function of γ. (A) shows the
minimal carrying capacity required for a mutant to invade
when the ratio between mutant and resident growth rate is
r2/r1 = 1.1. (B) shows the minimal mutant growth rate re-
quired for invasion when the ratio between mutant and resi-
dent carrying capacity is k2/k1 = 2. The different lines cor-
respond to death rates equal to δ = r1 × (0.1, 0.2, 0.5, 0.67).

x0(0) = 1. The system is solved numerically with time

step ∆t = 0.01, and at each time step we introduce a new
mutant with probability µxT ∆t, where µ = 10−7 is the
per capita mutation rate. The growth rate and carrying
capacity of the mutants are for simplicity assumed to be
independent of the resident population and drawn at ran-
dom from the intervals rm ∈ [0, 2r0] and km ∈ [0, 2k0].
This is of course a gross simplification, since one would
expect correlations both between the resident and mu-
tant phenotype, and between rm and km [8], but suffi-
cient for our purposes.

Figure 3A shows an example of the evolutionary dy-
namics of (1) when γ = 0. Initially the population is
invaded by two mutants that increase the total popula-
tion size, but eventually a mutant appears, that, while
successful at displacing the resident, lowers the popula-
tion size. Figure 3B shows the dynamics for γ = 1, from
which we can discern a clear trend towards a selection
of a higher carrying capacity, where each mutant that
successfully invades the population displaces the resident
and reaches fixation at a higher population size than the
previous resident. Figure 3C shows the total population
size xT after t = 1000 time units as a function of γ, and
the inset shows the mean growth rate r̄ =

∑
i rixi/xT .

The results are averaged over 500 simulations per value
of γ and confirms our two hypotheses – the total popula-
tion size is an increasing function of γ, while the average
growth rate decreases (roughly linearly) with γ.

These results can be understood from an intuitive
point of view by considering the dynamics at the two
extremes of niche construction specificity. When γ = 0
all genotypes contribute in proportion to their abundance
to a carrying capacity shared by all genotypes. The sit-
uation therefore resembles that of a public goods game
in which all participants receive benefit from the pub-
lic good. In analogy with the well-known result that the
public goods game can be invaded by free-riders that con-
tribute less than the resident, our system can be invaded
by mutants with a smaller carrying capacity. However,
this mutant needs to have a growth rate that exceeds that
of the resident in order to spread in the population. In
the case of maximal specificity (γ = 1) a single mutant,
when introduced into a resident population at carrying
capacity, can only spread if, when a resident dies, it has
a chance of dividing and replacing the former resident.
Since the total population size is at the carrying capacity
of the resident, the mutant will only divide and spread if
its carrying capacity is higher than the residents.

Moving between the two extremes, by varying the
specificity parameter γ, results in a rather sharp tran-
sition between the two regimes (see fig. 2). Even for
small values of γ the ability of a mutant to invade is
dominated by its carrying capacity, e.g. a mutant with
r2/r1 = 1.1 needs a carrying capacity of k2 ≈ k1 already
for γ = 0.5. This is also reflected in the evolutionary
model, where the total population size seems to reach a
plateau value already for small values of γ (see fig. 3C).
This suggests that under the dynamics proposed in this
Letter the long-term dynamics of a population are more
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FIG. 3. Evolutionary dynamics for different values of the
specificity parameter γ. (A) shows a simulation in which
γ = 0, where the total population size first increases, but
a successful invasion of a clone with a smaller carrying ca-
pacity leads to a decrease in population size. (B) shows a
simulation for γ = 1, and as expected from the analysis of the
two-species system, clones with higher carrying capacity are
selected for, which leads to an increase in the total popula-
tion size. (C) shows the total population size after t = 1000
time steps as a function of γ, and the inset shows the re-
sulting average growth rate. The results are averaged over
500 simulations for each value of γ (shaded area shows one
standard deviation) and confirms the trend seen in the above
panels – the total population size is an increasing function of
γ, whereas the average growth rate decrases.

likely to resemble that of fig. 3B rather than A, i.e. the
total population size is expected to increase with the in-
troduction of each mutant.

The relationship between selection for carrying capac-
ity and growth rate, usually termed r/K-selection has a
long history in evolutionary biology dating back to the
seminal work of MacArthur in the 1960s [9]. Although
the paradigm has largely been replaced by more detailed
studies of life history evolution, it has provided impor-
tant insight into the evolutionary dynamics of density-
dependent selection. For example it has been shown that
populations that evolve in stable and mild environments
will experience selection for high K-values, while popula-
tions in harsh seasonal environments will evolve towards
higher r [2]. The results presented here suggest a novel
mechanism by which selection can favour either an in-
creased carrying capacity or growth rate. However, the
value of γ can itself be viewed as an outcome of selec-
tion, most likely influenced by the cost of maintaining a
specific response.

The dependence on γ has important implications for
our understanding of tumor growth. Naively one would
expect that since many factors (e.g. angiogenic and au-
tocrine signalling) that positively impact tumor growth
are diffusible and hence highly unspecific in their impact
on different subclones, they would be subject to exploita-
tion. This would then lead to a collapse of the popula-
tion, but our results suggest that there is a persistent se-
lection towards a higher carrying capacity even for very
low levels of specificity. In addition, the results provide a
suggestion as to why tumor tissue has a much higher den-
sity than normal tissue – consecutive selective sweeps of
clones with higher carrying capacity have occurred dur-
ing disease progression.

Differential carrying capacities have in fact largely
been disregarded in models of tumor growth, which have
instead focused on increased growth rates and adapta-
tion to adverse environmental conditions (low nutrients,
cytotoxic therapy etc.). The results presented herein un-
derline the importance of taking carrying capacity into
account when attempting to explain tumour growth dy-
namics, and highlight the potential prognostic value of
increased tissue density.

The model that we have analysed disregards a num-
ber of aspects related to density dependent selection and
niche construction. For example we have not considered
the cost involved in increasing the carrying capacity, and
also assumed that inter- and intraspecific competition are
equal. Despite this the model provides novel insight into
the impact of niche construction specificity on evolution-
ary dynamics, and hints at the importance of including
differential carrying capacities when considering density
regulated growth.
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