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Abstract

Phylogenetic analyses of molecular data require a quantitative model for how sequences
evolve. Traditionally, the details of the site-specific selection that governs sequence evolu-
tion are unknown, and so most phylogenetic models treat this selection crudely with a variety
of free parameters designed to represent general features of mutation and selection. How-
ever, recent advances in high-throughput experiments have made it possible to quantify the
effects of all single mutations on gene function. I have previously shown that such high-
throughput experiments can be combined with knowledge of underlying mutation rates to
create a parameter-free evolutionary model that describes the phylogeny of influenza nucle-
oprotein far better than existing models. Here I extend this work by showing that published
experimental data on TEM-1 beta-lactamase (Firnberg et al., 2014) can be combined with a
few mutation rate parameters to create an evolutionary model that describes beta-lactamase
phylogenies much better than existing models. This experimentally informed evolutionary
model is superior even for homologs that are substantially diverged (about 35% divergence
at the protein level) from the TEM-1 parent that was the subject of the experimental study.
These results suggest that experimental measurements can inform phylogenetic evolutionary

models that are applicable to homologs that span a substantial range of sequence divergence.
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Introduction

Most approaches for the phylogenetic analysis of gene sequences require a quantitative evolu-
tionary model specifying the rate at which each site substitutes from one identity to another. In
maximum-likelihood and Bayesian approaches, the evolutionary model is used to calculate the
likelihood of the observed sequences given the phylogenetic tree (Felsenstein, 1981; Huelsenbeck
et al., 2001). In distance-based approaches, the evolutionary model is used to calculate the dis-
tances between pairs of sequences (Saitou and Nei, 1987; Hasegawa et al., 1985). For all these
approaches, inaccurate evolutionary models can lead to errors in inferred phylogenetic properties,
including incorrect estimates of evolutionary distances (Halpern and Bruno, 1998) and incorrect
tree topologies (Felsenstein, 1978; Huelsenbeck and Hillis, 1993).

Unfortunately, existing phylogenetic evolutionary models are extreme simplifications of the
actual process of mutation and selection that shapes sequence evolution (Thorne et al., 2007). At
least two major unrealistic assumptions afflict these models. First, in order to make phylogenetic
algorithms computationally tractable, it is generally assumed that each site within a gene evolves
independently. Second, most evolutionary models compound the first assumption of independence
among sites with the second unrealistic assumption that all sites evolve identically — a severely
flawed assumption since there is overwhelming evidence that proteins have strong preferences
for certain amino acids at specific sites (Ashenberg et al., 2013; Halpern and Bruno, 1998). It
is the second of these unrealistic assumptions that is remedied by the experimentally informed
evolutionary model described here.

A major reason that most phylogenetic evolutionary models assume that sites evolve identi-
cally is because there has traditionally been insufficient information to do better. In the absence of
a priori knowledge about selection on individual sites, the parameters of an evolutionary model
must be inferred from the same sequences that are being analyzed phylogenetically. For instance,
typical codon-level models infer parameters describing the equilibrium frequencies of different
codons, the relative rates of transition and transversion mutations, the relative rates of nonsynony-
mous and synonymous mutations, and in many cases the shapes of distributions that allow some of
these rates to be drawn from several categories (Goldman and Yang, 1994; Muse and Gaut, 1994;
Yang et al., 2000; Kosiol et al., 2007). There are generally sufficient data to infer these parameters
once for a single general model that applies to all sites in a gene — but inferring them separately
for each site leads to a proliferation of free parameters that can overfit the sequence data (Posada

and Buckley, 2004). Some studies have attempted to predict site-specific substitution rates or clas-
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sify sites based on knowledge of the protein structure (Thorne et al., 1996; Goldman et al., 1998;
Scherrer et al., 2012; Rodrigue et al., 2009; Kleinman et al., 2010) — however, such approaches
are limited by the fact that the relationship between protein structure and site-specific selection is
complex, and cannot be reliably predicted even by state-of-the-art molecular modeling (Potapov
et al., 2009). An alternative approach is to treat the site-specific substitution probabilities as free
parameters that are fit to the sequence data (Lartillot and Philippe, 2004; Le et al., 2008; Wu et al.,
2013; Wang et al., 2008) — however, in order to restrain the proliferation of such parameters to a
manageable level, these approaches must unrealistically constrain sites to fall in a small number
of different substitution-model classes. Therefore, purely computational approaches have proven
insufficient for creating evolutionary models that accurately represent the highly idiosyncratic
site-specific selection that shapes sequence evolution.

However, this problem is beginning to be transformed by a new type of high-throughput ex-
periment: deep mutational scanning (Fowler et al., 2010; Araya and Fowler, 2011). In deep
mutational scanning, a gene is randomly mutagenized and subjected to functional selection in the
laboratory, and then deep sequencing is used to quantify the relative frequencies of mutations be-
fore and after selection. In cases where the laboratory selection is sufficiently representative of
the gene’s real biological function, these experiments provide information that can be used to ap-
proximate the site-specific natural selection on mutations. To date, deep mutational scanning has
been used to quantify the impact of most nucleotide or codon mutations to several proteins or pro-
tein domains (Fowler et al., 2010; Roscoe et al., 2013; Starita et al., 2013; Melamed et al., 2013;
Traxlmayr et al., 2012; McLaughlin Jr et al., 2012; Firnberg et al., 2014; Bloom, 2014). For a few
of these studies, the experimental coverage of possible mutations is sufficiently comprehensive to
define site-specific amino-acid preferences for all positions in a gene.

I have previously shown that such experimentally determined site-specific amino-acid prefer-
ences can be combined with measurements of mutation rates to create a parameter-free evolution-
ary model that describes the phylogeny of influenza nucleoprotein far better than existing models
that contain numerous free parameters (Bloom, 2014). Here I extend that work by showing that
it is also possible to create an experimentally informed evolutionary model for another protein.
I do this using deep mutational scanning data published by Firnberg et al. (2014) that quantifies
the effects of nearly all amino-acid mutations on TEM-1 beta-lactamase. In this case, no mea-
surements of mutation rates are available, so I construct an evolutionary model that is informed
by the experimentally measured site-specific amino-acid preferences but also contains a few free

parameters representing the mutation rates. I show that this evolutionary model greatly improves
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the phylogenetic fit to both TEM and SHV beta-lactamases, the latter of which are substantially
diverged (about 35% divergence at the protein level) from the TEM-1 parent that was the subject
of the deep mutational scanning by Firnberg et al. (2014). These results generalize previous work
on experimentally determined evolutionary models, and suggest that site-specific amino-acid pref-
erences are sufficiently conserved during evolution to be applicable to gene homologs that span a

substantial range of sequence divergence.


https://doi.org/10.1101/003848
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/003848; this version posted April 3, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Results

Evolutionary model with known amino-acid preferences and unknown mu-

tation rates
Summary of evolutionary model

I have previously described a codon-level phylogenetic evolutionary model for influenza nucleo-
protein for which both the site-specific amino-acid preferences and the nucleotide mutation rates
(assumed to be identical across sites) were determined experimentally (Bloom, 2014). The current
work examines a protein for which the site-specific amino-acid preferences have been measured
experimentally, but for which the nucleotide mutation rates are unknown. It is therefore necessary
to extend the evolutionary model to treat the nucleotide mutation rates as unknown free parame-
ters. Here I describe this extension.
In the model used here, the rate P, ., of substitution from codon x to some other codon y at
site 7 1
Py = Quy X Frgy, (Equation 1)

where (), denotes the rate of mutation from x to y, and F, ,, gives the probability that a mutation
from x to y fixes if it occurs. This equation assumes that mutation rates are uniform across sites,
and that the selection on mutations is site-specific but site-independent (i.e. the fixation probability

at one site is not influenced by mutations at other sites).

Fixation probabilities from amino-acid preferences

The fixation probability of a mutation from codon x to y is assumed to depend only on the encoded
amino acids A (x) and A (y), as synonymous mutations are assumed to be selectively neutral. The
fixation probabilities F. ,, are defined in terms of the experimentally measured amino-acid pref-
erences at site r, where 7, , denotes the preference for amino-acid a at site r, and the preferences

at each site sum to one (1 = > m,,). As in previous work (Bloom, 2014), I consider two differ-

a
ent mathematical relationships between the amino-acid preferences and the fixation probabilities.

The first relationship derives from considering the amino-acid preferences to be directly related to
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selection coefficients, and is given by Halpern and Bruno (1998) as

1 i 77, Ax) = Tr,A)
Fray = 1“(%18) ‘ (Equation 2)
TTAG) otherwise.
r, A(y)

The second relationship is based on considering the amino-acid preferences to reflect the fraction
of genetic backgrounds that tolerate a specific mutation (Bloom et al., 2007), and is equivalent to

the Metropolis et al. (1953) sampling criterion:

o 1 if 7 Ay) 2 T A) (Equation 3)
ney TrAW)  therwise.
TA(x)

Both of these relationships share the feature that mutations to higher-preference amino acids fix

more frequently than mutations to lower-preference amino acids.

Mutation rates

The rate of mutation (), from codon x to y is defined in terms of the underlying rates of nucleotide

mutation. Let R,,_,, denote the rate of mutation from nucleotide m to n. Then

0 if x and y differ by more than on nucleotide )
Qzy = (Equation 4)
R,,—, if z differs from y by a single-nucleotide change of m to n.

Assuming that the same mutation process operates on both the sequenced and complementary

strands of the nucleic acid gives the constraint
Rysn = Rioon.. (Equation 5)

where m, denotes the complement of nucleotide m, since for example a mutation from A to G
on one strand induces a mutation from 7" to C' on the other strand. There are therefore six unique
nucleotide mutation rates: Rs_.c = Rr—q, Raqg = Rr—c, Rast = Rr—a, Roa = RaoT,
Roe¢ = Rgo, and Ro,7 = Rg_,a. In principle, these mutation rates could be measured
experimentally for the system of interest. Such experimental measurements were performed in

my previous work on influenza nucleoprotein (Bloom, 2014), and the measured mutation rates


https://doi.org/10.1101/003848
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/003848; this version posted April 3, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

happened to be symmetric (R,,_., = R, ), which is sufficient to make the overall evolutionary
model in Equation 1 reversible.

The protein studied here evolves in bacteria for which the mutation rates have not been mea-
sured experimentally. Therefore, these mutation rates must be treated as unknown free parameters.
It turns out (see Methods) that the overall evolutionary model defined by Equation 1 is only re-

versible if the mutation rates are subject to the constraint

Rasg X Rosa

Ro_r = (Equation 6)

Rasc
This constraint lacks a clear biological motivation, and is assumed purely for the mathematical
convenience that it makes the model reversible.

In the absence of independent information to calibrate absolute values for the branch lengths
or mutation rates, one of the rates is confounded with the branch-length scaling and so can be
assigned an arbitrary value > 0 without affecting the tree or its likelihood. Here the choice is
made to assign

Ric=1 (Equation 7)

so that all other mutation rates are defined relative to this rate. With these constraints, there are

now four independent mutation rates that must be treated as unknown free parameters:

)
Rasa

. RA%T .
unknown mutation rate parameters = (Equation 8)

RC—>A

\ Reoa

In practice, these four mutation rate parameters will be estimated at their maximum likelihood

values given the sequences and tree topology.

Equilibrium frequencies

Calculation of a phylogenetic likelihood requires assigning evolutionary equilibrium frequencies
to the possible codons at the root node in addition to specifying the transition probabilities given by
Equation 1. In many conventional phylogenetic models, these equilibrium frequencies are treated

as free parameters that are estimated empirically from the sequence data. However, in reality the
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equilibrium frequencies are the result of mutation and selection, and so can be calculated as the
stationary state of the stochastic process defined by the evolutionary model. Specifically, it can
be shown (see Methods) that for the evolutionary model in Equation 1, the equilibrium frequency

Dro Of codon z at site r is
Tr, A(z) X Gz

= (Equation 9)
> TrAw) X Gy
Yy

Prx

where ¢, 1s given by

(RA—>C + RA—)G)NCQ(Q:) X (RC—>A + RC—>T>(3_NCQ(QC))
(Rasc + Rase + Roa + Rer)?

1
Qe = 3 X (Equation 10)
where Mg () is the number of C' and G nucleotides in codon x. The equilibrium frequencies p;.,
are therefore completely determined by knowledge of the experimentally determined amino-acid

preferences 7, , and the four unknown mutation rate parameters in Equation 8.

Experimentally determined amino-acid preferences for beta-lactamase

The site-specific amino-acid preferences for beta-lactamase were determined using data from a
previously published deep mutational scanning experiment performed by Firnberg et al. (2014).
Specifically, Firnberg et al. (2014) created nearly all possible amino-acid mutants of TEM-1 beta-
lactamase and then used antibiotic selection to enrich for functional variants at various antibiotic
concentrations. Next, they used high-throughput sequencing to examine how the frequencies of
mutations changed during this functional selection. They analyzed their data to estimate the im-
pact of individual mutations on TEM-1 function, and had sufficient data to estimate the impact of
96% of the 297 x 19 = 5,453 possible amino-acid mutations.

Firnberg et al. (2014) report the impact of mutations in terms of what they refer to as the
“fitness” effects. The analysis is not done in a true population-genetics framework, so the “fitness”
values of Firnberg et al. (2014) may not correspond to fitnesses in the classical sense of the term
— but these values certainly possess the basic feature of reflecting the effects of specific mutations
on TEM-1 function.

Here I use the “fitness” values provided by Firnberg et al. (2014) to estimate the preferences
for each of the 20 amino acids at each site in TEM-1. Specifically, let w, , be the “fitness” value

for mutation to amino-acid a at site 7 reported by Firnberg et al. (2014) in Data S2 of their paper.
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I calculate the preference m, , for a at site 7 as

Wy g
Tr.a

o= m (Equation 11)
Y

where the sum over a’ ranges over all 20 amino acids, the wild-type amino acid at site  is assigned

a “fitness” of w, , = 1 in accordance with the normalization scheme used by Firnberg et al. (2014),

and the w, , values for the 4% of mutations for which no value is estimated by Firnberg et al.

(2014) are set to the average w;, , of all non-wildtype amino acids at site r for which a w, , value

is provided.

The amino-acid preferences calculated in this manner are displayed graphically in Figure 1
along with information about residue secondary structure and solvent accessibility (see Supple-
mentary file 1 for numerical data). As is extensively discussed by Firnberg et al. (2014) in their
original description of the data, these preferences are qualitatively consistent with known informa-
tion about highly constrained positions in TEM-1, and show the expected qualitative patterns of
higher preferences for specific (particularly hydrophobic) amino acids at residues that are buried in
the protein’s folded structure. Here I focus on using these amino-acid preferences in a quantitative

phylogenetic evolutionary model as described in the next section.

Experimentally determined amino-acid preferences improve phylogenetic fit
TEM and SHV beta-lactamase phylogenetic trees

To test if evolutionary models informed by the experimentally determined amino-acid preferences
are superior to existing alternative models, I compared the fit of various models to beta-lactamase
sequence phylogenies. Firnberg et al. (2014) performed their deep mutational scanning on TEM-1
beta-lactamase. There are a large number of TEM beta-lactamases with high sequence identity
to TEM-1; the next closest group of lactamases is the SHV beta-lactamases (Bush et al., 1995),
which on average have 62% nucleotide and 65% protein identity to TEM beta-lactamases. [
assembled a collection of TEM and SHV beta-lactamases from the manually curated Lahey Clinic
database (http://www.lahey.org/Studies/). These sequences were aligned to TEM-1,
and highly similar sequences (sequences that differed by less than four nucleotides) were removed.
The resulting alignment contained 85 beta-lactamase sequences (Supplementary file 2), of which
49 were TEM and 36 were SHV.

Maximum-likelihood phylogenetic trees of the TEM and SHV beta-lactamases were con-
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structed using codonPhyML (Gil et al., 2013) with the codon substitution model of either Goldman
and Yang (1994) or Kosiol et al. (2007). The resulting trees are displayed in Figure 2. The two dif-
ferent substitution models give extremely similar tree topologies. In both cases, the trees partition

into two clades of closely related sequences, corresponding to the TEM and SHV beta-lactamases.

Experimentally informed models are superior for combined TEM and SHYV phylogeny

To compare the evolutionary models, HYPHY (Pond et al., 2005) was used to optimize the branch
lengths and free parameters of the evolutionary models to their maximum likelihood values on the
fixed tree topologies in Figure 2. This analysis showed that the evolutionary models informed by
the experimentally determined amino-acid preferences were clearly superior to commonly used
alternative codon-substitution models.

Specifically, Table 1 and Table 2 show that the experimentally informed evolutionary models
fit the combined TEM and SHV phylogeny with higher likelihoods than any of a variety of com-
monly used alternative models, regardless of whether the tree topology was estimated using the
model of Goldman and Yang (1994) or Kosiol et al. (2007). This superiority is despite the fact
that the alternative models (Goldman and Yang, 1994; Kosiol et al., 2007) contain many more free
parameters. For instance, the most heavily parameterized alternative model contains 60 empiri-
cally estimated equilibrium frequency parameters plus an optimized parameter corresponding to
the transition-transversion ratio, two optimized parameters corresponding to a gamma distribution
of nonsynonymous-synonymous ratios across sites (Yang et al., 2000), and an optimized param-
eter corresponding to a distribution of substitution rates across sites (Yang, 1994). In contrast,
the experimentally informed models only contain four free parameters (the mutation rates, Equa-
tion 8) — yet these experimentally informed models have substantially higher likelihoods. When
AIC (Posada and Buckley, 2004) is used to penalize parameters, the superiority of the experimen-
tally informed models is even more clear.

To confirm that the superiority of the experimentally informed models is due to the fact that
the deep mutational scanning of Firnberg et al. (2014) captures information about the site-specific
amino-acid preferences, I tested evolutionary models in which these preferences were randomized
among sites (Table 1, Table 2). As expected, these randomized models were far worse than any
of the alternatives, since the randomized preferences no longer correspond to the specific sites for

which they were experimentally measured.

10


https://doi.org/10.1101/003848
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/003848; this version posted April 3, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Experimentally informed models are superior for individual TEM and SHV phylogenies

The foregoing results show that experimentally informed models are superior for describing the
combined TEM and SHV beta-lactamase phylogeny. Given that the amino-acid preferences were
determined by experiments using a TEM-1 parent, it is worth asking whether these preferences
accurately describe the evolution of both the TEM and SHV sequences, or whether they more
accurately describe the TEM sequences (which are closely related to TEM-1, Figure 2) than the
SHYV sequences (which only have about 65% protein identity to TEM-1, Figure 2). This question
is relevant because the extent to which site-specific amino-acid preferences are conserved during
protein evolution remains unclear. For instance, while several experimental studies have sug-
gested that such preferences are largely conserved among moderately diverged homologs (Ashen-
berg et al., 2013; Serrano et al., 1993), a simulation-based study has argued that preferences shift
substantially during protein evolution (Pollock et al., 2012; Pollock and Goldstein, 2014). If the
site-specific amino-acid preferences are largely conserved during the divergence of the TEM and
SHYV sequences, then the experimentally informed models should work well for both these groups
— but if the preferences shift rapidly during evolution, then the experimentally informed models
should be effective only for the closely related TEM sequences.

To test these competing possibilities, I repeated the analysis in the foregoing section separately
for the TEM and SHV clades of the overall phylogenetic tree (the red versus blue clades in Fig-
ure 2). This analysis found that the experimentally informed evolutionary models were clearly
superior to all alternative models for the SHV as well as the TEM clade (Table 3, Table 4, Table
5, Table 6). In fact, the extent of superiority of the experimentally informed model (as quantified
by AIC) was greater for the SHV clade than the TEM clade, despite the fact that the former has
fewer sequences. These results suggest that the applicability of the experimentally determined
amino-acid preferences extends to beta-lactamase homologs that are substantially diverged from

the TEM-1 parent that was the specific subject of the experiments of Firnberg et al. (2014).

Comparison of different methods for computing fixation probabilities

In the foregoing analyses, two different mathematical relationships were used to mathematically
relate the experimentally determined amino-acid preferences to the substitution probabilities in
the evolutionary models. One relationship (Equation 2) is based on a true population-genetics
derivation by Halpern and Bruno (1998) under the assumption that the preferences are reflective

of selection coefficients for amino acids at specific sites (as well as several other assumptions
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that are unlikely to be strictly valid). The other relationship (Equation 3) is one that I suggested
in previous work (Bloom, 2014) on the grounds that the amino-acid preferences might be best
envisioned not as selection coefficients, but rather as measurements of the fraction of genetic
backgrounds that tolerate a specific mutation, as would be implied by the evolutionary dynamics
described in (Bloom et al., 2007). Although both relationships share the qualitative feature that
mutations to higher-preference amino acids are favored over mutations to lower-preference ones,
they differ in their quantitative details. In previous work on influenza nucleoprotein (Bloom,
2014), I reported that the relationship in Equation 3 outperformed the one in Equation 2 derived
by Halpern and Bruno (1998).

In contrast, for the beta-lactamase sequences studied here, the relationship of Halpern and
Bruno (1998) outperforms the one that I suggested in my previous work (Table 1, Table 2, Table
3, Table 4, Table 5, Table 6). The reason for and relevance of these discordant results remains
unclear. There are almost certainly differences in the evolutionary conditions (population size, etc)
for influenza nucleoprotein and beta-lactamase that influence the relationship between selection
coefficients and fixation probabilities. In addition, there are substantial differences between the
experiments of Firnberg et al. (2014) on beta-lactamase and my previous work on nucleoprotein
— in particular, Firnberg et al. (2014) examine the effects of single mutations to the parental gene,
whereas my previous work examined the average effects of individual mutations in variants that
often contained multiple mutations. Finally, the experimental measurements are imperfect — in my
previous work, the preferences determined by independent biological replicates of the experiments
only had a Pearson correlation coefficient of 0.79; Firnberg et al. (2014) do not provide data on
the consistency of their measurements across biological replicates, but it seems safe to assume
that their experiments are also imperfect. Therefore, further work is probably needed to determine
if any meaning can be ascribed to the differences in fit for Equation 2 versus Equation 3, as
well as to identify the optimal mathematical relationship for connecting experimentally measured
amino-acid preferences to substitution probabilities in evolutionary models. However, both the
past and current work strongly suggest that using any reasonable mathematical relationship to
inform evolutionary models with experimentally determined amino-acid preferences is sufficient

to lead to dramatic improvements in phylogenetic fit.
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Discussion

I have shown that an evolutionary model informed by experimentally determined site-specific
amino-acid preferences fits beta-lactamase phylogenies better than a variety of existing models
that do not utilize experimental information. When considered in combination with prior work
demonstrating that an experimentally determined evolutionary model dramatically improves phy-
logenetic fit for influenza nucleoprotein (Bloom, 2014), these results suggest that experimentally
informed models are generally superior for phylogenetic analyses of protein-coding genes. The
explanation for this superiority is obvious: proteins have strong preferences for certain amino
acids at specific sites (Ashenberg et al., 2013; Halpern and Bruno, 1998), but existing evolution-
ary models treat all sites identically (or at best partition them into a few crude categories). The
use of experimental data on site-specific amino-acid preferences improves evolutionary models
by informing them about the complex selection that shapes actual sequence evolution. Use of this
information also makes evolutionary models more interpretable by replacing heuristic free pa-
rameters with experimentally measurable quantities that can be directly related to the underlying
processes of mutation and selection — an important step if one hopes to connect such models to
population genetics in a meaningful way (Thorne et al., 2007; Halpern and Bruno, 1998).

The major drawback of experimentally informed models is their more limited scope. Most
existing codon-based evolutionary models can be applied to any gene (Goldman and Yang, 1994;
Muse and Gaut, 1994; Kosiol et al., 2007) — but experimentally informed models require experi-
mental data for the gene in question. However, this requirement may not be as crippling as it ini-
tially appears. The first experimentally determined evolutionary model for influenza nucleoprotein
required direct measurement of both the site-specific amino-acid preferences and the underlying
mutation rates (Bloom, 2014). However, the model presented here only requires measurement of
the amino-acid preferences, as the mutation rates are treated as free parameters. Rapid advances
in the experimental technique of deep mutational scanning are making such data available for
an increasing number of proteins (Fowler et al., 2010; Roscoe et al., 2013; Starita et al., 2013;
Melamed et al., 2013; Traxlmayr et al., 2012; McLaughlin Jr et al., 2012; Firnberg et al., 2014;
Bloom, 2014).

In this respect, it is encouraging that the site-specific amino-acid preferences determined ex-
perimentally for TEM-1 improve phylogenetic fit to substantially diverged (35% protein sequence
divergence) SHV beta-lactamases as well as highly similar TEM beta-lactamases. As discussed

in the Introduction, there are two major limitations to most existing evolutionary models: they
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treat sites identically, and they treat sites independently. Experimentally informed evolutionary
models of the type described here have the potential to completely remedy the first limitation, as
experiments define site-specific selection with increasing precision. However, such models still
treat sites independently — and this limitation will never be completely overcome by experiments,
since the unforgiving math of combinatorics means that no experiment can examine all arbitrary
combinations of mutations (for example, TEM-1 has only 5453 single amino-acid mutants, but
it has 14815801 double mutants, 26742520805 triple mutants, and over 10'® quadruple mutants).
The utility of experimentally informed evolutionary models therefore depends on the extent to
which site-specific amino-acid preferences measured for one protein can be extrapolated to other
homologs — in other words, are sites sufficiently independent that the preferences at a given po-
sition remain similar after mutations at other positions? This question remains a topic of active
debate, with experimental studies suggesting that site-specific preferences are largely conserved
among closely and moderately related homologs (Ashenberg et al., 2013; Serrano et al., 1993), but
some computational studies emphasizing substantial shifts in preferences during evolution (Pol-
lock et al., 2012; Pollock and Goldstein, 2014). The fact that the TEM-1 experimental data informs
a model that accurately describes the substantially diverged SHV homologs suggests reasonable
conservation of site-specific amino-acid preferences among beta-lactamase homologs.

This apparent conservation of site-specific amino-acid preferences suggests that the phyloge-
netic utility of experimentally informed evolutionary models may extend well beyond the imme-
diate proteins that were experimentally characterized. This type of experimental generalization
would have precedent: only a tiny fraction of proteins have been crystallized, but because struc-
ture is largely conserved during protein evolution, it is frequently possible to use a structure de-
termined for one protein to draw insights about a range of related homologs (Lesk and Chothia,
1980; Sander and Schneider, 1991). It seems plausible that the conservation of site-specific amino-
acid preferences could similarly enable deep mutational scanning (Fowler et al., 2010; Araya and
Fowler, 2011) to provide the experimental data to inform evolutionary models of sufficient scope
to improve the accuracy and interpretability of phylogenetic analyses for a substantial number of

proteins of interest.
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Methods

Availability of computer code and data

The phylogenetic analyses were performed using the software package phyloExpCM (phylogenetic
analyses with experimental codon models, https://github.com/jbloom/phyloExpCM),
which primarily serves as an interface to run HYPHY (Pond et al., 2005). Input data, computer
code, and a description sufficient to enable replication of all analyses reported in this paper are
available via http://Jjbloom.github.io/phyloExpCM/example_2014Analysis_

lactamase.html.

Equilibrium frequencies and reversibility

Here I show that the evolutionary model defined by Equation 1 is reversible (satisfies detailed
balance), and has p, , defined by Equation 9 as its stationary state.
First, note that the fixation probabilities I ., defined by both Equation 2 and Equation 3

satisfy reversibility with respect to the amino-acid preferences 7, 4(,) — namely that
TrA@) X Fray = Trag) X Frye, (Equation 12)

as can be verified by direct substitution.
Next, observe that with the constraints in Equation 5 and Equation 6, the mutation rates (),

are reversible with respect to the ¢, values defined by Equation 10 — namely that

Qz X me =qy X Qy:p- (Equation 13)

Here I show this for the specific case where x = AAT and y = C'AT'; other cases can be verified
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similarly. In this specific case,

1
o X Quy = < (Rooa+ Reor)’ X Rase

R X R

RC—>T
Rasa X (Rooya)

+ Rasag X Rosa
RC—)T

(Roa + Roosr)’ X

— ool ool Co

Raag X Rossa

= 3 (Roa + Roosr)’ X (

1

= 3 (Resa+ Resr)’ X (Rasse + Rasa) X Roosa

= @y X Qua, (Equation 14)

+ RA—>G) X Roa
RC%T

which verifies Equation 13.
Next, I show that p, , defined by Equation 9 defines the evolutionary equilibrium frequencies.
Define
Praw=—Y _ Pray (Equation 15)
y#T
With this definition, the matrix I 4+ P, is a stochastic matrix, where I is the identity matrix and
P, = [P, ,,]. For plausible values for the mutation rates and amino-acid preferences, I + P,. will
also be irreducible and acyclic. Therefore, according to the Perron-Frobenius theorems, it has a
unique (within a scaling constant) principal eigenvector p, = [p,.] with an eigenvalue of one
that represents the equilibrium frequencies. In other words, p, = p, (I + P,). It can be verified
that Equation 9 defines such an eigenvector by writing this eigenvector equation in element-wise

form. Immediately below, I verify this for the case where F; ., is defined by Equation 3 and
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Tr.A(y) > Tr,A(z)> Other cases can be verified similarly. For this specific case:
Prae = DPraz + Zpr,ypr,ya:
Y

= Prz + (Z pr,yPr,ya:) + pr,mpr,:pm

y#£T
= Prz + (Z p'r’,yP'r,ya:) — Pra Z Pr,zy
y#T y#T
= Prz + Z (pr,yPr,yx - p’r,xPT,a:y)
y#
= Prazx + Z (pr,ynyFr,yx - pr,an:yFr,my)
yF#
= Dra + Z (WT,A(y)QyQyanyx - 7T-7",A(:1:)(JZJ[/‘CQZ’g/F;ﬂ,acy)
y#zx
= Dra + Z (WT,A(y)QynyFr,yx - Wr,A(m)Q:chyFr,xy)
y#z
Tr, Az
= Dra + Z (WT,A(y)quyz @ - 7Tr,.A(:Jc)QJL‘C)acy)
y£z WT,A(?J)
= Pra + Ty, A(x) Z (Qyny - %:sz)
yF
= Dra (Equation 16)

where the last line follows from Equation 13. This verifies that p, , is the stationary state of the
Markov process defined by P, ,,,.

To verify that the substitution model is reversible, it is necessary to show that 0 = p, . P, —
DryPryz. This is shown below for the case where £ ., is defined by Equation 3 and 7, 4(,) >

T A(z)> Other cases can be verified similarly. For this specific case,

0 = pr,xpr,a;y - pr,yPr,yac
= 71-7",./4(1) Xz X sz X Fr,xy - 7Tr,.A(y) X Qy X an} X Fr,yac

= T A(x) Xz X Qxy X Fr,xy — T, Ay) X Gy X Qy:c X Fr,yaz

Tr, Az
= TrA@z) X dz X Qxy — Tr A(y) X @y X Qym X T AE ;
T’ y
= qchQa:y_QyXan:
=0 (Equation 17)
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where the last line follows from Equation 13.

The fact that P, ., defines a reversible Markov process with stationary state p,., means that it
is possible to define a symmetric matrix S, such that

S, diag (...,pra,...) =Py (Equation 18)

where diag (...,p,,...) is the diagonal matrix with p, , along its diagonal. Noting S, =
P, diag ( . .,pl ,...), we have

T, T

% =0 if  and y differ by more than one nucleotide mutation,
™Y
_ P»,nyx _ Qx Fr',x : b 1
Sray = it = (; T A(z) X qz) v if z and y differ by one nucleotide,
P7' Trxr .
- otherwise.

(Equation 19)

This matrix is symmetric since S, ;, = S, ,, as can be verified from the fact that % = 92 and
y T
FT@'H F’r,yz

= as is guaranteed by Equation 12 and Equation 13.

Tr, A(y) Tr, A(x)
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parameters (optimized

model AAIC | log likelihood + empirical)
experimentally informed (Equation 2) 0.0 -4044.8 4(4+0)
experimentally informed (Equation 3) | 39.2 -4064.5 4(4+0)
GY9%4, gamma w, gamma rates 346.0 -4208.8 13(4+9)

KOSI07, gamma w, gamma rates 364.3 -4167.0 64 (4 + 60)
GY94, gamma w, single rate 414.5 -4244.1 12(3+9)

KOSI07, gamma w, single rate 420.6 -4196.1 63 (3 + 60)
GY9%4, one w, gamma rates 482.5 -4278.1 12(3+9)

KOSIO7, one w, gamma rates 504.9 -4238.3 63 (3 +60)

KOSIO7, one w, one rate 586.4 -4280.1 62 (2 + 60)
GY94, one w, one rate 609.7 -4342.77 11(2+9)
randomized (Equation 3) 1218.4 -4654.1 4(4+0)
randomized (Equation 2) 1428.0 -4758.9 4(4+0)

Table 1: Experimentally informed evolutionary models fit the combined TEM and SHV beta-
lactamase sequence phylogeny (Figure 2A) much better than evolutionary models that do not uti-
lize experimental data. Show are the difference in AIC relative to the best-fitting model (smaller
AAIC indicates better fit), the log likelihood, and the number of free parameters. For each model,
the branch lengths and model parameters were optimized on a fixed tree topology (Figure 2A)
estimated with the model of Goldman and Yang (1994). The experimentally informed models
use amino-acid preferences derived from the data of Firnberg et al. (2014) plus the four mu-
tation rate parameters (Equation 8). For the randomized models, the experimentally measured
amino-acid preferences are randomized among sites — these models are far worse since the pref-
erence are no longer assigned to the correct positions. GY94 denotes the model of Goldman and
Yang (1994) with 9 equilibrium frequency parameters calculated using the CF3x4 method (Pond
et al., 2010). KOSIO7 denotes the model of Kosiol et al. (2007) with 60 equilibrium frequency
parameters calculated using the F methods. All variants of GY94 and KOSIO7 have a single
transition-transversion ratio (k) estimated by maximum likelihood. Different model variants ei-
ther have a single nonsynonymous-synonymous ratio (w) or values drawn from four discrete
gamma-distributed categories (Yang et al., 2000), and either a single rate or rates drawn from
four discrete gamma-distributed categories (Yang, 1994). The data and source code used to gen-
erate these data are provided viahttp://Jbloom.github.io/phyloExpCM/example_
2014Analysis_lactamase.html.
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parameters
(optimized +
model AAIC | log likelihood | empirical)
experimentally informed (Equation 2) 0.0 -4045.1 4(4+0)
experimentally informed (Equation 3) | 37.3 -4063.7 4(4+0)
GY9%4, gamma w, gamma rates 349.6 -4210.9 13(4+9)
KOSI07, gamma w, gamma rates 353.8 -4162.0 64 (4 + 60)
KOSIO7, gamma w, single rate 406.8 -4189.5 63 (3 +60)
GY9%4, gamma w, single rate 416.1 -4245.1 12(3+9)
GY9%4, one w, gamma rates 479.5 -4276.9 12(3+9)
KOSIO7, one w, gamma rates 481.5 -4226.9 63 (3 +60)
KOSIO07, one w, one rate 560.0 -4267.1 62 (2 + 60)
GY94, one w, one rate 603.6 -4339.9 11(2+9)
randomized (Equation 3) 1216.8 -4653.5 4(4+0)
randomized (Equation 2) 1425.7 -4758.0 4(4+0)

Table 2: Experimentally informed evolutionary models also provide a superior phylogenetic fit

when the tree topology is estimated using the model of Kosiol et al. (2007) rather than that of
Goldman and Yang (1994). This table differs from Table 1 in that the phylogenetic fit is to all
TEM and SHV sequences using the tree topology in Figure 2B rather than that in Figure 2A.
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parameters (optimized

model AAIC | log likelihood + empirical)
experimentally informed (Equation 2) 0.0 -2386.8 44 +0)
experimentally informed (Equation 3) | 60.5 -2417.1 44 +0)
GY94, gamma w, gamma rates 229.1 -2492.4 13(4+9)
GY9%4, one w, gamma rates 294 .4 -2526.1 12(3+9)
GY9%4, gamma w, single rate 295.3 -2526.5 12(3+9)

KOSI07, gamma w, gamma rates 303.8 -2478.7 64 (4 + 60)

KOSI07, gamma w, single rate 371.8 -2513.8 63 (3 + 60)

KOSIO7, one w, gamma rates 388.9 -2522.3 63 (3 + 60)
GY94, one w, one rate 460.2 -2609.9 112+9)

KOSIO7, one w, one rate 533.6 -2595.7 62 (2 +60)
randomized (Equation 3) 953.5 -2863.6 4(4+0)
randomized (Equation 2) 984.7 -2879.2 4(4+0)

Table 3: Experimentally informed evolutionary models also provide a superior phylogenetic fit
when the analysis is limited only to TEM beta-lactamase sequences. This table differs from Table
1 in that the phylogenetic fit is only to the TEM sequences (the portion of the tree shown in red in
Figure 2A.)
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parameters
(optimized +
model AAIC | log likelihood | empirical)
experimentally informed (Equation 2) | 0.0 -1782.7 4(4+0)
experimentally informed (Equation 3) | 10.3 -1787.8 44 +0)
KOSI07, gamma w, gamma rates 382.7 -1914.0 64 (4 + 60)
KOSIO7, one w, gamma rates 3934 -1920.4 63 (3 + 60)
GY9%4, gamma w, gamma rates 399.6 -1973.4 134 +9)
GY9%4, one w, gamma rates 407.8 -1978.5 12(3+9)
KOSI07, gamma w, single rate 449.5 -1948.4 63 (3 + 60)
KOSIO07, one w, one rate 467 .4 -1958.3 62 (2 +60)
GY9%4, gamma w, single rate 475.3 -2012.3 12(3+9)
GY94, one w, one rate 496 .4 -2023.8 112+9)
randomized (Equation 3) 940.8 -2253.1 4(4+0)
randomized (Equation 2) 965.0 -2265.2 4(4+0)

Table 4: Experimentally informed evolutionary models also provide a superior phylogenetic fit

when the analysis is limited only to SHV beta-lactamase sequences. This table differs from Table
1 in that the phylogenetic fit is only to the SHV sequences (the portion of the tree shown in blue
in Figure 2A.)
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parameters
(optimized +
model AAIC | log likelihood | empirical)
experimentally informed (Equation 2) | 0.0 -2392.2 4(4+0)
experimentally informed (Equation 3) | 58.2 -2421.4 4(4+0)
GY94, gamma w, gamma rates 232.2 -2499.3 13(4+9)
GY9%4, one w, gamma rates 292.2 -2530.4 12(3+9)
GY9%4, gamma w, single rate 298.7 -2533.6 12(3+9)
KOSIO7, gamma w, gamma rates 300.2 -2482.4 64 (4 + 60)
KOSI07, gamma w, single rate 368.0 -2517.3 63 (3 + 60)
KOSIO7, one w, gamma rates 377.0 -2521.7 63 (3 +60)
GY94, one w, one rate 462.5 -2616.5 112+9)
KOSIO7, one w, one rate 525.0 -2596.7 62 (2 + 60)
randomized (Equation 3) 955.3 -2869.9 4(4+0)
randomized (Equation 2) 989.2 -2886.8 44+0)

Table 5: Experimentally informed evolutionary models also provide a superior phylogenetic fit
to the TEM beta-lactamases when the tree topology is estimated using the model of Kosiol et al.
(2007) rather than that of Goldman and Yang (1994). This table differs from Table 3 in that the
phylogenetic fit is to the TEM sequences using the red portion of tree topology in Figure 2B rather
than the red portion of the tree topology in Figure 2A.
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parameters
(optimized +
model AAIC | log likelihood | empirical)
experimentally informed (Equation 2) | 0.0 -1778.5 4(4+0)
experimentally informed (Equation 3) | 10.2 -1783.7 4(4+0)
KOSI07, gamma w, gamma rates 382.2 -1909.6 64 (4 + 60)
KOSIO7, one w, gamma rates 387.3 -1913.2 63 (3 +60)
GY94, gamma w, gamma rates 3929 -1966.0 134 +9)
GY9%4, one w, gamma rates 397.1 -1969.1 12(3+9)
KOSIO7, gamma w, single rate 443.2 -1941.2 63 (3 +60)
KOSIO07, one w, one rate 458.2 -1949.6 62 (2 +60)
GY9%4, gamma w, single rate 463.6 -2002.4 12(3+9)
GY94, one w, one rate 481.9 -2012.5 112+9)
randomized (Equation 3) 936.6 -2246.8 4(4+0)
randomized (Equation 2) 959.5 -2258.3 44+0)

Table 6: Experimentally informed evolutionary models also provide a superior phylogenetic fit
to the SHV beta-lactamases when the tree topology is estimated using the model of Kosiol et al.
(2007) rather than that of Goldman and Yang (1994). This table differs from Table 4 in that the
phylogenetic fit is to the SHV sequences using the blue portion of tree topology in Figure 2B
rather than the blue portion of the tree topology in Figure 2A.
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amino-acid hydrophobicity relative solvent accessibility (RSA) secondary structure (SS)
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4 2 0 -2 -4 0 0.5 strand helix loop

Figure 1: The amino-acid preferences for TEM-1 beta-lactamase, calculated from the data of
Firnberg et al. (2014). The heights of letters are proportional to the preference for that amino
acid at that position in the protein. Residues are numbered using the scheme of Ambler et al.
(1991). Letters are colored according to the hydrophobicity of the amino acid. Bars above the
letters indicate the secondary structure and relative solvent accessibility as calculated from the
crystal structure in PDB entry 1XPB (Fonzé et al., 1995), with maximum solvent accessibilities
taken from Tien et al. (2013). The figure was generated using WebLogo (Crooks et al., 2004)
integrated into the mapmuts software package (Bloom, 2014). The data and source code used to
create this plot are provided via http://Jjbloom.github.io/phyloExpCM/example_
2014Analysis_lactamase.html.
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Figure 2: Phylogenetic trees of TEM (red) and SHV (blue) beta-lactamases inferred using codon-

PhyML (Gil et al., 2013) with the codon substitution model of (A) Goldman and Yang (1994) or
(B) Kosiol et al. (2007). The inferred trees are very similar for both models. The TEM and
SHYV sequences each cluster into closely related clades, with extensive divergence between these
two clades. The average pairwise divergence between the TEM and SHV clades is 38% at the
nucleotide level and 35% at the protein level. For both models, a single transition-transversion
ratio (k) and four discrete gamma-distributed nonsynonymous-synonymous ratios (w) were esti-
mated by maximum likelihood. The equilibrium codon frequencies were determined empirically
using the CF3x4 method (Pond et al., 2010) for the model of Goldman and Yang (1994), or the F
method for the model of Kosiol et al. (2007) The data and source code used to create these trees are
provided via http://jbloom.github.io/phyloExpCM/example_2014Analysis_
lactamase.html.

32


http://jbloom.github.io/phyloExpCM/example_2014Analysis_lactamase.html
http://jbloom.github.io/phyloExpCM/example_2014Analysis_lactamase.html
https://doi.org/10.1101/003848
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/003848; this version posted April 3, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Supplementary file 1: This text file contains the amino-acid preferences displayed graphically
in Figure 1. In this file, the amino acids are numbered sequentially starting at one with the N-
terminal methionine, rather than using numbering scheme of Ambler et al. (1991) that is employed
in Figure 1.

Supplementary file 2: This FASTA file contains the alignment of TEM and SHV beta-lactamase
sequences used to create the phylogenetic trees in Figure 2.
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