
BIOINFORMATICS Vol. 00 no. 00 2013

Pages 1–6

SplitMEM: Graphical pan-genome analysis with suffix
skips
Shoshana Marcus1, Hayan Lee 1,2, and Michael C. Schatz 1,2⇤

1Simons Center for Quantitive Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,
11724, USA
2Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: With the rise of improved sequencing technologies,
genomics is expanding from a single reference per species paradigm
into a more comprehensive pan-genome approach with multiple
individuals represented and analyzed together. One of the most
sophisticated data structures for representing an entire population of
genomes is a compressed de Bruijn graph. The graph structure can
robustly represent simple SNPs to complex structural variations far
beyond what can be done from linear sequences alone. As such there
is a strong need to develop algorithms that can efficiently construct
and analyze these graphs.
Results: In this paper we explore the deep topological relationships
between the suffix tree and the compressed de Bruijn graph.
We introduce a novel O(n logn) time and space algorithm called
splitMEM, that directly constructs the compressed de Bruijn graph for
a pan-genome of total length n. To achieve this time complexity, we
augment the suffix tree with suffix skips, a new construct that allows
us to traverse several suffix links in constant time, and use them to
efficiently decompose maximal exact matches (MEMs) into the graph
nodes. We demonstrate the utility of splitMEM by analyzing the pan-
genomes of 9 strains of Bacillus anthracis and 9 strains of Escherichia

coli to reveal the properties of their core genomes.
Availability: The source code and documentation are available open-
source at http://splitmem.sourceforge.net
Contact: mschatz@cshl.edu

1 INTRODUCTION
1.1 Background
Genome sequencing has rapidly advanced in the past 20 years.
The first free living organism was sequenced in 1995, and
since then the number of genomes sequenced per year has been
growing at an exponential rate (Liolios et al., 2006). Today, there
are currently nearly twenty thousand genomes sequenced across
the tree of life, including reference genomes for hundreds of
eukaryotic and thousands of microbial species. Reference genomes
play an important role in genomics as an exemplar sequence
for a species, and have been extremely successful at enabling
genome resequencing projects, gene discovery, and numerous other

⇤to whom correspondence should be addressed

important applications. However, reference genomes also suffer in
that they represent a single individual or a mosaic of individuals
as a single linear sequence, making them an incomplete catalog of
all of the known genes, variants, and other variable elements in
a population. Especially in the case of structural and other large-
scale variations, this creates an analysis gap when modeling the
role of complex variations or gene flow in the population. For the
human genome, for example, multiple auxiliary databases including
dbSNP, dbVAR, DGV, and several others must be separately queried
through several different interfaces to access the population-wide
status of a variant (MacDonald et al., 2014).

The “reference-centric” approach in genomics has been
established largely because of technological and budgetary
concerns. Especially in the case of mammalian-sized genomes,
it remains prohibitively expensive and technically challenging to
assemble each sample into a complete genome de novo, making it
substantially cheaper and more accessible to analyze a new sample
relative to an established reference. However, for some species,
especially medically or otherwise biologically important microbial
genomes, multiple genomes of the same species are available. In the
current version of NCBI GenBank, 296 of the 1471 bacterial species
listed have at least two strains present, including 9 strains of Bacillus

anthracis (the etiologic agent of anthrax), 62 strains of Escherichia

coli (the most widely studied prokaryotic model organism) and 72
strains of Chlamydia trachomatis (a sexually transmitted human
pathogen). This was done because the different genomes may have
radically different properties or substantially different gene content
despite being of the same species: most strains of E. coli are
harmless, but some are highly pathogenic (Rasko et al., 2011b).

When multiple genomes of the same or closely related species are
available, the “pan-genome” of the population can be constructed,
and analyzed as a single comprehensive catalog of all of the
sequences and variants in the population. Several techniques and
data structures have been proposed for representing the pan-
genome, i.e. (Rasko et al., 2008). The most basic is a linear
concatenation of the reference genome plus any novel sequences
found in the population appended to the end or stored in a separate
database such as dbVAR. The result is a relatively simple linear
sequence, but also loses much of the value of population-wide
representation, necessitating auxiliary tables to record the status
of the concatenated sequences. More significantly, a composite
linear sequence may have ambiguity or loss in information of how

c� Oxford University Press 2013. 1

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 6, 2014. ; https://doi.org/10.1101/003954doi: bioRxiv preprint

https://doi.org/10.1101/003954
http://creativecommons.org/licenses/by-nc-nd/4.0/

Marcus et al

the population variants relate to each other, especially at positions
where the sequences of the individuals in the population diverge,
i.e. branch-points between sequences shared among all the strains
to any strain-specific sequences and back again.

A much more powerful representation of a pan-genome is to
represent the collection of genomes in a graph: sequences that are
shared or unique in the population can be represented as nodes,
and edges can represent branch points between shared and strain-
specific sequences (Figure 1). More specifically, the de Bruijn
graph is a robust and widely used data structure in genomics for
representing sequence relationships and for pan-genome analysis
(Iqbal et al., 2012). In the case of a pan-genome, we can color
the de Bruijn graph to record which of the input genome(s)
contributed each node. This way the complete pan-genome will
be represented in a compact graphical representation such that
the shared/strain-specific status of any substring is immediately
identifiable, along with the context of the flanking sequences.
This strategy also enables powerful topological analysis of the
pan-genome not possible from a linear representation.

As originally presented, the de Bruijn graph encodes each distinct
length k substring as a node and includes a directed edge between
substrings that overlap by k � 1 base pairs. However, many of the
nodes and edges of a de Bruijn graph can be “compressed” whenever
the path between two nodes is non-branching. Doing so often leads
to a substantial savings in graph complexity and a more interpretable
topology: in the case of a pan-genome graph, after compression
nodes will represent variable length strings up to divergence in
shared/strain-specific status or sequence divergence after a repeated
sequence. The compressed de Bruijn graph is therefore the preferred
data structure for pan-genome analysis, but it is not trivial to
construct such a graph without first building the uncompressed
graph, and then identifying and merging compressible edges, all
of which requires substantial overhead. Here we present a novel
space and time efficient algorithm called splitMEM for constructing
the compressed de Bruijn graph from a generalized suffix tree of
the input genomes. Our approach relies on the deep relationships
between the topology of the suffix tree and the topology of the
compressed de Bruijn graph, and leverages a novel construct we
developed called suffix skips that makes it possible to rapidly
navigate between overlapping suffixes in a suffix tree. We apply
these techniques to study the pan-genomes of all 9 available strains
of B. anthracis and a selection of 9 strains of E. coli to map and
compare the “core genomes” of these populations. All of the source
code and documentation for the analysis are available open-source
at http://splitmem.sourceforge.net .

1.2 Problem Definition
The de Bruijn graph representation of a sequence contains a node
for each distinct length k substring, called a k-mer. Two nodes are
connected by a directed edge u ! v for every instance where
the k-mer represented by v occurs immediately after the k-mer
represented by u at any position in the sequence. In other words,
there is an edge if u occurs at position i and v occurs at position i+1.
By construction, adjacent nodes will overlap by k � 1 characters,
and the graph can include multiple edges connecting the same pair
of nodes or self-loops representing overlapping tandem repeats. This
definition of a de Bruijn graph differs from the traditional definition
described in the mathematical literature that requires the graph to

!"
#"
$"
%"

Fig. 1. Overview of a graphical representation of a pan-genome. The four
input genomes (A-D) are decomposed into segments shared or specific to the
individuals in the population with edges maintaining the adjacencies of the
segments.

contain all length-k strings that can be formed from an alphabet
rather than just those present in the sequence. The formulation of
the de Bruijn graph used in this paper is commonly used in the
sequence assembly literature, and we follow the same convention
(Kingsford et al., 2010). Notably, the original genome sequence,
before decomposing it into k-mers for the graph, corresponds to
an Eulerian path through the de Bruijn graph visiting each edge
exactly once. In the case of the pan-genome, we first concatenate
the individual genomes together separated by a terminal character
and discard any nodes or edges spanning the terminal character. The
nodes are colored to indicate which genome(s) the node originated
from so that each individual genome can be represented by a walk
of nodes of consistent color.

A de Bruijn graph can be “compressed” by merging non-
branching chains of nodes into a single node with a longer sequence.
Suppose node u is the only predecessor of node v and v is the
only successor of u. They can thus be unambiguously compressed
without loss of sequence or topological information by merging
the sequence of u with the sequence of v into a single node
that has the predecessors of u and the successors of v. After
maximally compressing the graph, every node will terminate at a
“branch-point”, meaning every node has in-degree � 2 or its single
predecessor has out-degree � 2 and every node has out-degree � 2

or its single successor has in-degree � 2. The compressed de Bruijn
graph has the minimum number of nodes with which the path labels
in the compressed graph are the same as in the uncompressed graph
(Kingsford et al., 2010). In this way, the compressed de Bruijn graph
of a pan-genome will naturally branch at the boundaries between
sequences that diverge in their amount of sharing in the population.

The compressed de Bruijn graph is normally built from its
uncompressed counterpart, necessitating the initial construction and
storage of a much larger graph. In the limit, a basic construction

2

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 6, 2014. ; https://doi.org/10.1101/003954doi: bioRxiv preprint

https://doi.org/10.1101/003954
http://creativecommons.org/licenses/by-nc-nd/4.0/

SplitMEM

algorithm may need to construct and compress n nodes while ours
would directly output just a single node. In practice, the compressed
graph of real genomic data is often orders of magnitude smaller than
the uncompressed, although the exact savings is data dependent.

In this paper, we present an innovative algorithm that directly
constructs the compressed de Bruijn graph by exploiting the
relationships between the compressed de Bruijn graph and the suffix
tree of the sequences. Our algorithm achieves overall O(n log n)
time and space complexity for an input sequence of total length
n. Alternatively, we also present a slower algorithm in the
supplementary material that constructs the compressed de Bruijn
graph from the set of exact self-alignments of length � k in the
genome. The alignment-based algorithm considers each alignment
in turn and decomposes the graph nodes to represent smaller
substrings when alignments are found to overlap one another. At
worst, the number of pairwise alignments in a genome can be
quadratic. Both algorithms have the same underlying intuition and
the faster suffix-tree approach was inspired by the alignment-based
algorithm.

1.3 Suffix Tree, Suffix Array, and MEMs
The suffix tree is a data structure that facilitates linear time solutions
to many common problems in computational biology, such as
genome alignment, finding the longest common substring among
genomes, all-pairs suffix-prefix matching, and locating all maximal
repetitions (Gusfield, 1997). It is a compact trie that represents all
suffixes of the underlying text. The suffix tree for T = t1t2 · · · tn is
a rooted, directed tree with n leaves, one for each suffix. A special
character “$” is appended to the string before construction of the
suffix tree to guarantee that each suffix ends at a leaf in the tree.
Each internal node, except the root, has at least two children. Each
edge is labeled with a nonempty substring of T and no two edges
out of a node begin with the same character. The path from the root
to leaf i spells suffix T [i . . . n].

The suffix tree can be constructed in linear time and space with
respect to the string it represents (Ukkonen, 1995). Suffix links are
an implementation technique that enable linear time and space suffix
tree construction algorithms. Suffix links facilitate rapid navigation
to a distant but related part of the tree. A suffix link is a pointer
from an internal node representing a string xS to another internal
node representing string S, where x is a single character and S is a
possibly empty string.

A closely related data structure, called a suffix array, is an array of
the integers in the range 1 to n specifying the lexicographic order of
the n suffixes of string T . It can be obtained in linear time from the
suffix tree for T by performing a depth-first traversal that traverses
siblings in lexical order of their edge labels. (Gusfield, 1997) For
any node u in the suffix tree, the subtree rooted at u contains one
leaf for each suffix in a contiguous interval in the suffix array. That
interval is the set of suffixes beginning with the path label from the
root to node u (Kasai et al., 2001).

Maximal exact matches (MEMs) are exact matches within a
sequence that cannot be extended to the left or right without
introducing a mismatch. By construction, MEMs are internal nodes
in the suffix tree that have left-diverse descendants, i.e., leaves
that represent suffixes that have different characters preceding them
in the sequence. As such, the MEM nodes can be identified in
linear time by a bottom-up traversal of the tree, tracking the set of

character preceding the leaves of the subtree rooted at each node.
Since each MEM is an internal node in the suffix tree, there are at
most n maximal repeats in a string of length n (Gusfield, 1997). Our
algorithm computes the nodes in the compressed de Bruijn graph
by decomposing the MEMs and extracting overlapping components
that are of length � k.

2 METHODS
In this section we describe our algorithm for constructing the
compressed de Bruijn graph for a genome in O(n log n) time and
space. It is outlined in Algorithm 1. The basis of our algorithm
is deriving the set of compressed de Bruijn graph nodes from the
set of MEM�k nodes in the suffix tree, i.e., internal nodes that
represent maximal exact matches of length � k in the genome.
The underlying algorithm was inspired by the use of the suffix tree
to compute matching statistics as described by Gusfield (Gusfield,
1997).

Note that each node in the compressed de Bruijn graph is labeled
by a maximal genomic substring of length � k for which there
are no internal overlaps, with the same or with a different genomic
substring, of length � k. As in the uncompressed counterpart, edges
connect substrings that have a suffix-prefix match of length k � 1

in the genome. The nodes in the compressed de Bruijn graph fall
into two categories: uniqueNodes represent a unique subsequence
in the pan-genome and have a single start position; and repeatNodes

represent subsequences that occur at least twice in the pan-genome,
either as a repeat in a single genome or a segment shared by
multiple genomes in the pan-genome population. uniqueNodes can
be thought of as nodes that link between repeatNodes. As such,
our graph construction algorithm begins by identifying the set of
repeatNodes, from which it constructs the necessary edges and
uniqueNodes along the way.

The set of MEM�k and the repeatNodes represent the same
subsequences of the genome, although there is not a one-to-one
correspondence, especially in the case of overlapping or nested
MEMs (Figure 2). A MEM�k may need to be split into several
repeatNodes when it has subsequences of length � k in common
with itself or another MEM�k. Some repeatNodes are exactly
MEMs in the genome, while other repeatNodes are parts of a
MEM that lie between two embedded MEMs. Any subsequence of
length � k that is shared among MEMs is necessarily a MEM.
Consequently, our algorithm processes the set of MEM�k and
split them into repeatNodes by extracting common subsequences
of minimum length k among them. Whenever a MEM is split to
remove a shared repeatNode, the split results in at least one MEM
as a resulting segment and the other segment can be unique to this
MEM.

2.1 Algorithm
The splitMEM algorithm uses a suffix tree of the genome to
efficiently compute the set of repeatNodes. It builds a suffix tree
of the pan-genome in linear time following Ukkonen’s algorithm
(Ukkonen, 1995). It then marks internal nodes of the suffix tree that
represent MEMs (or maximal repeats) of length � k, in the suffix
tree using linear time techniques of MUMmer (Kurtz et al., 2004)
and preprocess the suffix tree for constant-time Lowest Marked
Ancestor (LMA) queries in linear time. Then it constructs the set of

3

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 6, 2014. ; https://doi.org/10.1101/003954doi: bioRxiv preprint

https://doi.org/10.1101/003954
http://creativecommons.org/licenses/by-nc-nd/4.0/

Marcus et al

!

!
"#$ %&'()#**+,-!./.0!

!
!

"1$  !./.!2%,3#+,'4!+,!5+44)'!%6!./.!
!
!
!
!
!
!
!
!
!
"#$!%&'()*!+),)&%!
!

Fig. 2. Different overlapping configurations of MEMs in a sequence. The
colored blocks represent MEMs in a genomic sequence. Different colors are
used for distinct MEMs.

repeatNodes by iterating through the set of MEM�k in the suffix
tree.

The challenge lies in identifying regions that are shared among
MEM�ks and decomposing MEM�ks into the correct set of
repeatNodes. If m1 and m2 are MEM�ks and m1 occurs within
m2, then m1 is a prefix of some suffix of m2. Thus, splitMEM
can use the suffix links to iterate through the suffixes of m2 along
with LMA queries to find the longest MEM�ks that occurs at the
beginning of each suffix. Each MEM is broken down to repeatNodes

once and any embedded MEMs are extracted without examination.
Thus, the subsequences that are shared among several MEMs are
only decomposed once. We describe an efficient technique for
constructing the set of repeatNodes in Section 2.2.

As an example, figure 3 shows the situation where a MEM�k

contains another MEM�k within it. Two new repeat nodes are
created for xyz↵�. One is the prefix ending after the first k � 1

characters of ↵ (shown as ’↵) and the other is the suffix beginning
with the last k � 1 characters of ↵ (shown as ↵’). The smaller
MEM�k ↵ is dealt with separately.

The positions at which the MEMs occur in the genome, and hence
the start positions of the repeatNodes, can be quickly computed by
considering the distance from the internal node to each leaf in its
subtree and the genomic intervals that they represent. To make this
computation efficient, we build a suffix array for the pan-genome
and store at each suffix tree node its corresponding interval in the
suffix array.

Once the algorithm has computed all the repeatNodes, it sorts
the set of genomic starting positions that occur in each node so
that it can construct the necessary set of edges between them in
a single pass over this list. It also creates uniqueNodes to bridge
any gaps between adjacent repeatNodes in the sorted list. It does
this by iterating through the sorted list of start positions, startPos

stored in each node. Suppose startPos[i] = s. It calculates the
successive start position, succi, from s and the length of the node
containing s. If succi is a start position of an existing node, it must
be at position i + 1 in the sorted list, and cannot occur within a

repeatNode. If startPos[i + 1] is a different value, the algorithm
creates a uniqueNode to bridge the gap between startPos[i] and
startPos[i + 1]. Then it creates an edge to join start position s to
its successor, whether it’s in a repeatNode or a uniqueNode. If a
uniqueNode was created, it also creates an edge to connect the new
uniqueNode to its successor at startPos[i+ 1].

The total length of all MEMs can be quadratic in the genome. Yet
the total time complexity of Algorithm 1 is dependent on the total
length of all repeat nodes, which is bounded by the genome size.
Algorithm 1 runs in O(n log n) time and O(n + |CDG|) space,
where |CDG| is the size of the compressed de Bruijn graph. We
describe a technique in the next subsection that enables Algorithm
1 to achieve this time complexity.

2.2 Computing repeatNodes quickly with suffix skips
In this section we describe an O(n log n) time algorithm for
deriving the set of repeatNodes from MEM�ks in the suffix
tree. It simulates the steps of iteratively traversing suffix links and
performing an LMA query at each node traversed. In its basic form,
as depicted in Figure 3, this process takes a total of O(n2

) time,
linear in the total length of all MEMs in the genome.

To accelerate it to O(n log n) time, we introduce suffix skips that
generalize suffix links to trim more than a single character from
the path to an internal node. Instead, suffix links trim c characters
from the beginning of the path from the root to an internal node
and navigate to the corresponding internal node in O(log c) time,
instead of the O(c) time that would be required to traverse c suffix
links (See Supplementary Figure 2). To compute the suffix skips,
the algorithm creates a table of suffix skip pointers at each node u,
with blog2(strdepth(u))c entries, where strdepth(u) is the length
of the path from the root to node u. Entry i corresponds to the
node that can be reached by traversing 2

i suffix links from the node,
i � 0. The table is initialized with the original suffix link in entry
0 and then iteratively updated so that entry i of node u is assigned
entry i � 1 of the node pointed to by node u’s i � 1th pointer:
u ! suffixSkip[i] = u ! suffixSkip[i�1] ! suffixSkip[i�1]. Suffix
skips are similar to the pointer jumping technique which speed up
many parallel algorithms (Jaja, 1992).

Supplementary Algorithm 3 describes the use of suffix skips in
an O(n log n) time procedure for deriving the repeatNodes from
MEMs in the suffix tree. The algorithm iterates through the set
of internal nodes that are marked as MEMs. For a MEM that is
not a child of the root, we extend the node to include the path
from the root to the internal node. The first LMA query identifies
a potential prefix MEM. Then, embedded MEMs are identified by
LMA queries and extracted by traversing suffix skips. A repeatNode

is created to bridge gaps between embedded MEMs. If at any point
a marked ancestor is found that extends to the end of the entire
MEM, the process is complete. Otherwise, the last step is to create
a repeatNode that spans the remaining suffix of the MEM.

We store auxiliary tables along with the suffix skips so that our
algorithm can take advantage of suffix skips without potentially
missing any nested MEMs. Along with each suffix skip stored
at a node, we maintain a pointer to the bypassed LMA that is
closest to the end of the destination node along with its base pair
proximity to the end of the node. The speedup of suffix skips

yields an algorithm with O(n log n) time complexity but requires
an additional O(n log n) working space. To conserve space we only

4

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 6, 2014. ; https://doi.org/10.1101/003954doi: bioRxiv preprint

https://doi.org/10.1101/003954
http://creativecommons.org/licenses/by-nc-nd/4.0/

SplitMEM

Fig. 3. Part of the suffix tree for a genome (left) with the corresponding part of the compressed de Bruijn graph (right). Two MEMs in the suffix tree and the
suffix links that are followed to decompose the larger MEM to at least three repeat nodes, the purple nodes in the graph on the right. x, y, and z are characters.
↵, � and � are strings. Suffix links are displayed in red.

store suffix skips and auxiliary tables for nodes that can be traversed
to decompose MEMs into repeatNodes, i.e., internal nodes that have
string depth less than or equal to that of the longest MEM�k and
can be on the path of suffix links from a MEM�k to the root.

2.3 Another speedup
We observe that a node is a MEM iff its ancestors are all MEMs.
This allows us to save additional time when we decompose MEMs
into repeatNodes. We use depth-first search to iterate over the suffix
tree nodes to find MEM�ks. Upon reaching a node u that has string
depth � k and is not a MEM, we bypass the subtree rooted at u.

3 RESULTS
We implemented Algorithm 1 along with Supplementary Algorithm
3 in C++ and made it available open-source as the splitMEM
software. The code has been optimized for pan-genome and multi-
k-mer analysis such that it can construct the graphs for several
values of k iteratively without rebuilding the suffix tree. Using
the software, we built compressed de Bruijn graphs for the pan-
genomes of main chromosomes of two species: the 9 strains of
Bacillus anthracis and a selection of 9 strains of Escherichia coli

using the k-mer lengths 25, 100, and 1000bp (accessions listed in
Supplementary Table 1). The three different k-mer lengths provide
different contexts for localizing the graphs: shorter values provide
higher resolution, while longer values will be more robust to repeats
and link variations in close proximity into a single event. The overall
characteristics of the pan-genome graphs are presented in Table 1
and renderings of the graphs are depicted in Supplementary Figures
3 - 8.

The pan-genome graphs of the two species show similar
topologies, although for a given value of k the E. coli graph has 2 to
4 times as many nodes and edges than B. anthracis. In both cases,
the node length distributions are exponentially distributed as shown

Table 1. E. coli and B. anthracis pan-genome graph characteristics.

Species K Nodes Edges Avg. Degree

B. anthracis 25 103926 138468 1.33
B. anthracis 100 41343 54954 1.32
B. anthracis 1000 6627 8659 1.30

E. coli 25 494783 662081 1.33
E. coli 100 230996 308256 1.33
E. coli 1000 11900 15695 1.31

in Supplementary Figure 9. For example, the mean node length for
B. anthracis with k-mers of length 100 is 382bp and extending to
as long as 451,679bp. The sharp peak at 199bp occurs from an
enrichment of mutations where subpopulations or individual strains
in the population differ by isolated single nucleotides more than
k + 1 bp apart. At these sites, a “bubble” will form in the graph
with a pair of nodes that are 2 ⇤ k� 1 bp long capturing all of the k-
mers that intersect the variant. Mutations of more than a single base
form bubbles with nodes that are 2 ⇤ k � 1 + v bp long, where v is
the length of the variant. Copy number and other structural variants
lead to more complex graph topologies but are all encoded in the
pan-genome graph.

Figure 4 shows the levels of population-wide genome sharing
among the nodes of the compressed de Bruijn graphs of the pan
genomes with varying k-mer lengths. The sharing in B. anthracis is
much higher than in E. coli across the levels of genome sharing.
This follows naturally from the high diversity of E. coli strains
(Rasko et al., 2008), while many of the available sequences of B.

anthracis were closely related and sequenced to track the origin of
the Amerithrax anthrax attacks (Rasko et al., 2011a).

A major strength of a graphical pan-genome representation is that
in addition to determining the shared or genome-specific sequences,
the graph also encodes the sequence context of the different
segments. We define the core genome to be the subsequences of the
pan-genome that occur in at least 70% of the underlying genomes.

5

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 6, 2014. ; https://doi.org/10.1101/003954doi: bioRxiv preprint

https://doi.org/10.1101/003954
http://creativecommons.org/licenses/by-nc-nd/4.0/

Marcus et al

Algorithm 1 Construct Compressed de Bruijn Graph from Suffix Tree
Input: genome sequence, k.
Output: compressed forward de Bruijn graph of genome.

Compute set of repeatNodes.
Build suffix tree of genome
Mark internal nodes in the suffix tree that represent MEMs of length � k
Preprocess suffix tree for lowest marked ancestor (LMA) queries

Split MEMs to repeatNodes.
for all marked nodes do

. find k-mers shared with other MEMs or this MEM
while node.strdepth � k do

if node has marked ancestor then
create repeatNode to represent substring of MEM skipped by suffix link traversal since last internal MEM was removed
follow suffix links to trim LMA from node
continue traversing suffix links for any marked ancestors encountered during suffix link traversal, if they extend further

else
follow suffix link

end if
end while
create repeatNode representing suffix of MEM that extends past last embedded MEM

end for

Sort list of start positions in repeatNodes, with pointers to corresponding nodes.

Compute outgoing edges for each node. Construct uniqueNodes along the way.
for all startPos[i]=s do

compute start position of successor j
if startPos[i+ 1] ⌘ j then

create edge from node with s to node with j
else

create uniqueNode representing the subsequence from j until startPos[i+ 1]

create edge from node with s to node with j
end if

end for

We computed the distance of each non-core node to the core genome
in python using NetworkX with a branch-and-bound search intuited
by Dijkstra’s algorithm for shortest path. Note a breadth-first search
is not sufficient since two nodes can be further apart in terms of
hops while they are actually closer neighbors with respect to base-
pair distance along the path separating them. It traverses all distinct
paths emanating from the source node until either a core node is
reached or the current node was found to already have been visited
by some shorter path. Once a path is found from the source node to
the core genome, it uses this distance to bound the maximum search
distances of the other candidate paths.

Using this approach, we performed both a forward search among
descendants and a backwards search among predecessors to identify
the distance to the closest core node and chose the minimum of
these two distances in the two pan-genome graphs. This search takes
O(m) time per source node, where m is the number of distinct
edges in the graph. Thus, this computation takes a total runtime
of O(m ⇤ `) over all ` nodes in the graph. To keep the search
tractable, we limited the search to a 1000-hop radius around each
node. Supplementary Figure 10 shows the distribution of distances

in the graphs. Overall, for B.anthracis most of the nodes were in
the core genome since the strains are so similar or there was a very
short path to the core genome. In contrast, the results for E. coli

show the distribution of distances to the core genome follows an
exponential distribution, suggesting a complex evolutionary history
of mutations.

4 DISCUSSION
Comparative genomics has been and continues to be one of our most
powerful tools for understanding the genome of a species. Now
that genomic data are becoming more abundant, we are beginning
to shift away from reference genomes and see the rise of pan-
genomics. Already hundreds of microbial species have multiple
complete genomes available, and through the rise of long read
sequencing technologies from PacBio and other companies, we
expect a rapid growth in the availability of complete genomes
for additional bacterial and eukaryotic genomes (Koren et al.,
2013; Roberts et al., 2013). Sequences that are highly conserved
or segregating across the population can reveal clues about their

6

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 6, 2014. ; https://doi.org/10.1101/003954doi: bioRxiv preprint

https://doi.org/10.1101/003954
http://creativecommons.org/licenses/by-nc-nd/4.0/

SplitMEM

Fig. 4. Levels of genome sharing in the nodes of the pan-genome graphs
of 9 strains of B. anthracis (top) and E. coli (bottom). The plots show the
fraction of nodes that have each level of sharing.

phenotypic roles, and a comprehensive pan-genomic approach
allows us to directly measure conservation in the context of
the flanking sequences. The graphical pan-genome approach also
consolidates all available information about complex structural
variations and gene flow into a unified framework.

Our new splitMEM algorithm efficiently computes a graphical
representation of the pan-genome by exploiting the deep
relationships between suffix trees and compressed de Bruijn
graphs. Maximal exact matches (MEMs) are readily identified in
a suffix tree, and through the splitMEM algorithm are efficiently
transformed into the nodes and edges of a compressed de Bruijn
graph. This algorithm effectively unifies the most widely used
sequence data structures in genomics into a single family containing
suffix trees, suffix arrays, FM-indexes, and now compressed de
Bruijn graphs. To accomplish this goal, we have proposed a new
construct, called suffix skips, that generalizes the well-established
concept of suffix links to interrelate more distantly related portions
of the suffix tree.

To demonstrate the utility of the algorithm, we have applied it to
analyze the pan-genomes of all 9 available B. anthracis genomes
and a selection of 9 E. coli genomes. Interestingly, the distributions
of the lengths of the nodes in the two pan-genome graphs are similar,
other properties are markedly different, such as the distributions
of the levels of sharing or the distance to the core genomes.
This suggests that we have only narrowly explored the genomic
variability of B. anthracis and future work remains to examine the
functional significance of the variable regions.

Future work remains to improve splitMEM and further unify the
family of sequence indices. Most desired are techniques that can
leverage the compact space requirements of the FM-index for pan-
genome analysis, along with techniques that can apply the suffix
skip concept to generalize properties of the other indices, such
as generalizing the Last-First property of the FM-index. We also
aim to research additional downstream analysis algorithms for the
pan-genome, especially developing a sequence aligner which can
align directly to the graph structure. Finally, we also aim to extend
the splitMEM algorithm to become more robust in the presence of
incomplete genomes, so that fragmented draft genomes can be more
readily analyzed.

ACKNOWLEDGEMENTS
The authors would like to acknowledge Steven Skiena, Art Delcher,
Adam Phillippy, Cole Trapnell, Mihai Pop, and Steven Salzberg for
helpful discussions leading to this work. The project was supported
in part by National Institutes of Health award R01-HG006677 and
National Science Foundation award DBI-126383 to MCS.

REFERENCES
Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences

- Computer Science and Computational Biology. Cambridge
University Press.

Iqbal, Z. et al. (2012). De novo assembly and genotyping of variants
using colored de Bruijn graphs. Nature Genetics, 44(2), 226–232.

Jaja, J. (1992). An Introduction to Parallel Algorithms. Addison-
Wesley.

Kasai, T. et al. (2001). Linear-time longest-common-prefix
computation in suffix arrays and its applications. In CPM, pages
181–192.

Kingsford, C. et al. (2010). Assembly complexity of prokaryotic
genomes using short reads. BMC Bioinformatics, 11, 21.

Koren, S. et al. (2013). Reducing assembly complexity of microbial
genomes with single-molecule sequencing. Genome Biol., 14,
R101.

Kurtz, S. et al. (2004). Versatile and open software for comparing
large genomes. Genome Biol., 5(2), R12.

Liolios, K. et al. (2006). The genomes on line database (gold) v.2: a
monitor of genome projects worldwide. Nucleic Acids Research,
34(suppl 1), D332–D334.

MacDonald, J. R. et al. (2014). The database of genomic variants:
a curated collection of structural variation in the human genome.
Nucleic Acids Research, 42(D1), D986–D992.

Rasko, D. A. et al. (2008). The pangenome structure of escherichia
coli: Comparative genomic analysis of e. coli commensal and
pathogenic isolates. J. Bacteriol., 190(20), 6881–6893.

Rasko, D. A. et al. (2011a). Bacillus anthracis comparative genome
analysis in support of the amerithrax investigation. PNAS.

Rasko, D. A. et al. (2011b). Origins of the e. coli strain causing
an outbreak of hemolyticuremic syndrome in germany. New

England Journal of Medicine, 365(8), 709–717.
Roberts, R., Carneiro, M., and Schatz, M. (2013). The advantages

of smrt sequencing. Genome Biology, 14(7), 405.
Ukkonen, E. (1995). On-line construction of suffix trees.

Algorithmica, 14(3), 249–260.

7

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 6, 2014. ; https://doi.org/10.1101/003954doi: bioRxiv preprint

https://doi.org/10.1101/003954
http://creativecommons.org/licenses/by-nc-nd/4.0/

