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Abstract20

Making meaningful inferences from phylogenetic comparative data requires a
meaningful model of trait evolution. It is thus important to determine whether
the model is appropriate for the data and the question being addressed. One way
to assess this is to ask whether the model provides a good statistical explanation
for the variation in the data. To date, researchers have focused primarily on the25

explanatory power of a model relative to alternative models. Methods have been
developed to assess the adequacy, or absolute explanatory power, of phylogenetic
trait models but these have been restricted to specific models or questions. Here
we present a general statistical framework for assessing the adequacy of phyloge-
netic trait models. We use our approach to evaluate the statistical performance of30

commonly used trait models on 337 comparative datasets covering three key An-
giosperm functional traits. In general, the models we tested often provided poor
statistical explanations for the evolution of these traits. This was true for many dif-
ferent groups and at many different scales. Whether such statistical inadequacy
will qualitatively alter inferences draw from comparative datasets will depend on35

the context. Regardless, assessing model adequacy can provide interesting biolog-
ical insights — how and why a model fails to describe variation in a dataset gives
us clues about what evolutionary processes may have driven trait evolution across
time.

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


Introduction40

A statistical model may provide the best explanation for a dataset compared to a
few other models but still be a very poor explanation in terms of capturing the
patterns of variation present in the data. For simple linear regression models, ab-
solute model fit, or adequacy, is commonly assessed by simply plotting the data
alongside the best regression line. While not quantitative, visualizing the bivariate45

distribution can provide important insights regarding the fit of the model that are
not captured by summaries such as the R2 or p–value, such as whether the relation-
ship is indeed linear (for a classic case study, see Anscombe, 1973). For these types
of models, there are also a wide variety of statistical tests of model adequacy (e.g.,
the relationship between the residuals and the independent variable, χ2 goodness-50

of-fit test, etc.) that compliment our visual intuition about model adequacy. Such
formal tests used alongside informal visualizations can help researchers assess
whether the inferences drawn from the fitted model are meaningful and, more
interestingly, suggest how a model can be improved (Gelman and Shalizi, 2013).

Modern phylogenetic comparative methods for investigating trait evolution are55

almost exclusively model–based (recently reviewed in O’Meara, 2012; Pennell and
Harmon, 2013), meaning that inferences are contingent on both the phylogenetic
tree and the model for the traits. Selecting a good model is therefore essential
for making robust inferences. Researchers typically use likelihood ratio tests or
Information Theoretic measures (i.e., AIC, BIC) to select amongst models (Mooers60

et al., 1999; Harmon et al., 2010; Hunt, 2012) but these only provide a measure
of relative fit. Unlike in linear regression models, for most phylogenetic models
of trait evolution, it usually very challenging to visually assess the adequacy of a
model. This problem is compounded for relatively complex models such as multi–
rate Brownian motion (O’Meara et al., 2006; Eastman et al., 2011) or multi–optima65

Ornstein–Uhlenbeck models (Hansen, 1997; Butler and King, 2004; Beaulieu et al.,
2012; Uyeda and Harmon, 2014). One can plot the trait values at the tips of the
phylogeny but determining “by eye” whether this distribution is consistent with
the traits having evolved under the proposed model is difficult at small scales and
impossible for large phylogenies.70

A number of statistical procedures have been proposed to quantitatively assess
the absolute fit of a model of trait evolution (e.g., Garland et al., 1992, 1993; Purvis
and Rambaut, 1995; Díaz-Uriarte and Garland, 1996; Freckleton and Harvey, 2006;
Boettiger et al., 2012; Slater and Pennell, 2014; Beaulieu et al., 2013; Blackmon and
Demuth, 2014). These can be generally classified into two types of approaches.75

The first are tests for specific deviations from a particular model. In the early days
of phylogenetic comparative biology, the focus was primarily on inferring charac-
ter correlations in order to test hypotheses regarding adaptation (e.g., Felsenstein,
1985; Grafen, 1989; Harvey and Pagel, 1991; Lynch, 1991). Accordingly, a number
of tests were developed to assess the reliability of assuming a Brownian motion80

(BM) model, which formed the basis for all phylogenetic tests of continuous char-
acter evolution at the time. Garland et al. (1992) proposed plotting the standard-
ized independent contrasts (sensu Felsenstein, 1985) against the standard deviation
of each contrast. If the contrasts and their standard deviations are correlated, this
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would suggest that the model (or the phylogeny) is not adequate. Purvis and85

Rambaut (1995) suggested using the relationship between the contrasts and the
height above the root at which they were generated (see also Freckleton and Har-
vey, 2006, for a slight modification of this test). Similarly, Beaulieu et al. (2013) and
Blackmon and Demuth (2014) used summary statistics to evaluate whether a set
of discrete character data was consistent with some variant of a Mk model (Pagel,90

1994). These are all very useful ideas, and we have adopted many of these in the
method we present below, but each approach is only informative with respect to
a single type of misspecification for a single type of model.

The second class of approaches is to use Monte Carlo simulations to compare
an observed dataset to those expected under a model. Garland et al. (1993) and95

Díaz-Uriarte and Garland (1996) developed such an approach two decades ago.
However, as this work preceded the development of analytical tools for fitting
alternative (i.e., non–BM) models, the simulation parameters were not estimated
directly from the data and therefore “reasonable” parameter estimates had to be
chosen a priori. More recently, two approaches have been suggested for assessing100

model adequacy using parameters estimated directly from the data. Boettiger et al.
(2012) proposed simulating data under two candidate models using the maximum
likelihood parameter estimates from each model and then fitting both models
to each simulated dataset. Under each of the two simulation conditions, they
calculated the likelihood ratio; after many simulations, a distribution of likelihood105

ratios could be obtained for each ease and these distributions compared to assess
whether there was sufficient information in the data to favor one model over the
other. Slater and Pennell (2014) used posterior predictive simulation (explained
below) to assess the absolute fit of an “early burst” model of trait evolution, in
which rates of trait evolution declined through time, compared to that of a BM110

model. Both Boettiger et al. (2012) and Slater and Pennell (2014) focused on the
ability to distinguish between two models using absolute fit. Our aim here is
more general: we want to compare the fit of the model to the universe of possible
models.

In this paper, we propose a statistical framework for assessing the adequacy115

of phylogenetic models of quantitative trait evolution that generalizes previous
approaches to a wide variety of alternative models. Our central thesis is that as-
sessing model adequacy in a general way can provide valuable insights into evo-
lutionary processes and patterns that are not evident from comparing a limited set
of models. For example, one common application of phylogenetic trait models is120

to make inferences regarding the rate (tempo) of evolution using model selection
(e.g., Mooers et al., 1999; Harmon et al., 2010; Hunt, 2012; Slater, 2013). Statements
about rates are only informative in the context of a specific model (Hunt, 2012).
It is therefore imperative to know if a model is really capturing the variation of
the data in absolute terms. In an oft–cited example of this model comparison125

approach, Harmon et al. (2010) compared three simple models of trait evolution
across 49 clades and tallied the frequency with which the models were prefered in
order to draw inferences about general patterns. We perform the same analysis but
on a much larger scale. We analyze 337 datasets on three important Angiosperm
(flowering plants) functional traits using a recently published time–calibrated phy-130

logeny (Zanne et al., 2014). We then assess the adequacy of the best–fitting model
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across all the datasets to determine how often one of these simple models would
be adequate to make reliable inferences about rate of trait evolution.

A general framework for assessing the adequacy of phyloge-
netic models135

We focus here on models that describe the evolution of a single, continuously
valued trait. More specifically, our approach works for models that predict that
trait values at the tips come from a multivariate normal distribution. This applies
to most models of quantitative trait evolution that have been developed to date
(see below for details on the scope of the method).140

If we have a phylogenetic tree consisting of n lineages and data on the trait
values observed at each tip X (X = x1, x2, . . . , xn), we can fit a model M with pa-
rameters θ to describe the pattern of trait evolution along the phylogeny. There
are two primary ways of fitting models to comparative data. The first is use to ob-
tain a point estimate of θ (θ̂), via maximum likelihood (ML), restricted maximum145

likelihood (REML), least–squares, etc. The second is to estimate the posterior prob-
ability distribution Pr(θ∣X,M) using Bayesian approaches. For the models used in
comparative biology, estimating Pr(θ∣X,M) requires using Markov chain Monte
Carlo (MCMC) machinery to sample values of θ.

Most analyses using comparative data aim to answer one of the following ques-150

tions: what values of θ best explain X given M?; or, does M1 explain the data
better than M0? Our approach is conceptually distinct in that we want to ask,
how likely is it that modelM with parameters θ would produce a dataset similar
to X if we re–ran evolution?

While optimizing and Bayesian approaches to model–fitting are philosophi-155

cally different from one another, our approach to assessing model adequacy is the
same for both: (1) fit the model of trait evolution; (2) rescale the branch lengths
of the phylogeny to place the data on a standard scale; (3) calculate a set of test
statitics, TX, which provide statistical summmaries of the observed data; (4) sim-
ulate many new datasets Y1, Y2, . . . , Ym under the model using the estimated pa-160

rameters; (5) calculate test statistics on the simulated data TY,1,TY,2, . . . ,TY,m; (6)
compare TX to the distribution of TY. If TX deviates significantly from the distri-
bution of TY, we can consider the model as an inadequate descriptor (see figure
1).

If we have a point estimate of the model parameters, we simulate Y1, Y2, . . . , Ym165

on the phylogeny according to θ̂ and M. We then compare a single set of test
statistics TX calculated from our observed data to the distribution of values for
TY computed across all m simulated datasets. In statistical terminology, this pro-
cedure is known as parametric bootstrapping. Parametric bootstrapping is likely
familiar to phylogenetic biologists in the form of the Goldman–Cox test (Goldman,170

1993) for assessing the adequacy of sequence evolution models and more recently,
the phylogenetic Monte Carlo approach of Boettiger et al. (2012).

If we have a posterior probability distribution Pr(θ∣X,M), we can assess model
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adequacy using posterior predictive simulation (Rubin, 1984; Gelman et al., 1996).
We obtain new datasets by sampling from a second distribution, the posterior175

predictive distribution

Pr(Y∣X,M) = ∫ Pr(Y∣θ,M)Pr(θ∣X,M)dθ (1)

where Pr(Y∣X,M) is the probability of a new dataset Y given X andM, averaged
over the posterior distribution of the parameters. (Sampling from Pr(Y∣X,M) is
equivalent to simulating datasets using paramaters drawn from the posterior dis-
tribution.) Therefore, the datasets Y1, Y2, . . . , Ym are each generated from different180

values of θ. Posterior predictive simulation approaches have been previously de-
veloped for models in molecular phylogenetics (Bollback, 2002; Reid et al., 2014;
Lewis et al., 2014; Brown, 2014), and recently for PCMs (Slater and Pennell, 2014),
but have not been widely adopted in either field.

Test statistics185

No simulated dataset will ever be exactly the same as our observed dataset. We
therefore need to choose informative test statistics in order to evaluate whether
the model predicts datasets that are similar to our observed dataset in meaningful
ways. As the states at the tips of the phylogeny are not independent — this is
why we are using PCMs in the first place! — calculating test statistics on the data190

directly is not generally informative for models in comparative biology. We ac-
count for the non–independence of the observed data by calculating test statistics
on the set of contrasts (i.e., “phylogenetically independent contrasts”; Felsenstein,
1985) computed at each node. (We refer readers to Felsenstein, 1985; Rohlf, 2001;
Blomberg et al., 2012, for details on how contrasts are calculated.) Under Brow-195

nian motion (BM) the contrasts will be independent and identically distributed
(i.i.d.) according to a normal distribution with mean 0 and standard deviation
σ (i.e., contrasts are ∼ N(0, σ)), where σ2 is the BM rate parameter (Felsenstein,
1985). This i.i.d. condition allows us to perform standard statistical tests on the
contrasts.200

The choice of what test statistics to use for assessing model adequacy is ul-
timately one of balancing statistical intuition and computational effort. We have
chosen the following set of six test statistics to compute on the contrasts because
they capture a range of possible model violations and have well–understood sta-
tistical properties. All of these essentially evaluate whether the contrasts come205

from the distribution expected under BM.

MSIG The mean of the squared contrasts. This is equivalent to the REML estimator
of the Brownian motion rate parameter σ2 (Garland et al., 1992; Rohlf, 2001).
MSIG is a metric of overall rate. Violations detected by MSIG indicate whether
the overall rate of trait evolution is over– or underestimated.210

CVAR The coefficient of variation (standard deviation/mean) of the absolute value
of the contrasts. If CVAR calculated from the observed contrasts is greater
than that calculated from the simulated contrasts, it suggests that we are
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not properly accounting for rate heterogeneity across the phylogeny. If CVAR
from the observed is smaller, it suggests that contrasts are more even than the215

model assumes. We use the coefficient of variation rather than the variance
because the mean and variance of contrasts can be highly correlated.

SVAR The slope of a linear model fit to the absolute value of the contrasts against
their expected variances (following Garland et al., 1992). Each (standardized)
contrast has an expected variance proportional to the sum of the branch220

lengths connecting the node at which it is computed to its daughter lineages
(Felsenstein, 1985). Under a model of BM, we expect no relationship between
the contrasts and their variances. We use SVAR to test if contrasts are larger or
smaller than we expect based on their branch lengths. If, for example, more
evolution occurred per unit time on short branches than long branches, we225

would observe a negative slope. If SVAR calculated from the observed data
deviates substantially from the expectations, a likely explanation is branch
length error in the phylogenetic tree.

SASR The slope of a linear model fit to the absolute value of the contrasts against
the ancestral state inferred at the corresponding node. We estimated the an-230

cestral state using the least–squares method suggested by Felsenstein (1985)
for the calculation of contrasts. (We note that this is not technically an ances-
tral state reconstruction [see Felsenstein, 1985]; it is more properly thought
of as a weighted average value for each node.) We used this statistic to evalu-
ate whether there is variation in rates relative to the trait value. For example,235

do larger organisms evolve proportionally faster than smaller ones?

SHGT The slope of a linear model fit to the absolute value of the contrasts against
node depth (after Purvis and Rambaut, 1995). This is used to capture varia-
tion relative to time. It is alternatively known as the “node–height test” and
has been used to detect early bursts of trait evolution during adaptive radia-240

tions (see Freckleton and Harvey, 2006; Slater and Pennell, 2014, for uses and
modifications of this test).

DCDF The D–statistic obtained from Kolmolgorov–Smirnov test from comparing
the distribution of contrasts to that of a normal distribution with mean 0 and
standard deviation equal to the root of the mean of squared contrasts (the245

expected distribution of the contrasts under BM; see Felsenstein, 1985; Rohlf,
2001). We chose this to capture deviations from normality. For example, if
traits evolved via a “jump–diffusion” type process (Landis et al., 2013), in
which there were occasional bursts of rapid phenotypic evolution (Pennell
et al., 2013), the tip data would no longer be multivariate normal owing to250

a few contrasts throughout the tree being much larger than the rest (i.e., the
distribution of contrasts would have heavy tails).

Alternative test statisics are certainly possible. One could, for instance, calcu-
late the median of the squared contrasts, the skew of the distribution of contrasts,
etc. If the generating model was known, we could use established procedures for255

selecting a set of sufficient (or, approximately sufficient; Joyce and Majoram, 2008)
test statistics for that model, as is typically done when computing likelihood ratio
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tests. However, the aim of our approach is assess the fit of a proposed model
without reference to a true model. Our test statistics will detect many types of
model misspecification but this does not mean that they will necessarily detect260

every type of model misspecification. We encourage researchers interested in spe-
cific questions to explore alternative test statistics that capture deviations relevant
to the problem at hand.

An additional challenge is determining how to deal with the statistical prob-
lems (i.e., inflated Type–1 error rates) that may be introduced when using many265

test statistics. In our analyses, we chose not to correct our p–values for multi-
ple comparisons (using Bonferroni, false discovery rates, etc.). We did this for a
number of reasons. First, our tests are not truly independent and the degree of
correlation between test statistics will necessarily depend on the “true” model of
trait evolution. Second, as argued by Gelman (2006), we might be interested in the270

specific aspects of the data that different from the expectations under the model;
rather than focus on whether a model should be accepted or rejected, we “want to
understand the limits of its applicability in realistic replications” (p. 175).

Beyond Brownian motion

All of our test statistics are designed to evaluate the adequacy of a BM model275

of trait evolution. However, if we propose a different model for the evolution of
the trait, such as an Ornstein–Uhlenbeck (OU; Hansen, 1997) process, then the ex-
pected distribution of the contrasts is different. For example, under an OU model,
contrasts will not be i.i.d. (Hansen, 1997). The expected distribution of contrasts
under most models of trait evolution, aside from BM, is not formally characterized280

and even if it was, this would necessitate a specific set of test statistics for every
model proposed.

Our solution to this problem is to create what we term a “unit tree”, which
is a phylogenetic tree transformation that captures the dynamics of trait change
under a particular evolutionary model. For a particular evolutionary model M285

(with parameter values θ), we define a unit tree as a phylogenetic tree that has the
following property: the length of branch b, νb, is equal to the amount of variance
expected to accumulate over i underM, θ. The variance is standardized, such that
the expected distribution of the trait data on the unit tree is equal to that of a
Brownian Motion (BM) model with a rate σ2 equal to 1.290

If the fitted model is adequate, the trait data at the tips of the unit tree will
have the same distribution as data generated under a BM process with a rate of 1

and the contrasts will be distributed according to a standard normal distribution
(hence the name, unit tree). Creating the unit tree from the estimated model
parameters prior to computing the contrasts generalizes the test statistics to most295

models of quantitative trait evolution (but see Landis et al., 2013; Schraiber and
Landis, 2014, for exceptions).

We also emphasize that because the contrasts are calculated on the unit tree,
the test statistics all must depend on both the data and the model; for this reason,
the Bayesian version of our approach produces a distribution of observed test300

statistics. Once we have created the unit tree from the estimated parameters, new
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datasets can be simulated under the model simply using a BM process with σ2
= 1,

which has the added benefit of being computationally efficient. The distribution
of test statistics calculated on these simulated data sets can then be compared to
the test statistics from the observed data.305

Details of unit tree construction and the scope of this approach

Here we formalize our definition of the unit tree and delimit the scope of our ap-
proach. Readers can skip this section without missing the main point. A unit tree
can be constructed from any evolutionary model where the trait has expected
variance–covariance matrix V that satisfies the (generalized) 3–point condition310

proposed by Ho and Ané (2014) and the data follows a multivariate normal distri-
bution. A matrix V has a strict 3–point structure if the following condition holds:
for any lineages i, j, k, the two smallest of Vij, Vik, Vjk are equal. Under a simple BM
model it is straightforward to show that this condition holds. If C is the matrix
representation of the phylogeny (such that Cij is the shared path length between315

lineages i and j), then by the nature of the tree structure, the 3–point condition will
hold for C. Since under BM V = σ2C, then V will also be 3–point structured. The
same holds true for any evolutionary model that is a branch length transformation
of a BM model including the λ, δ, κ models (Pagel, 1997, 1999) and models where
rates change through time (the “Early Burst” or EB model, also referred to as the320

Accelerating/Decelerating Change, ACDC, model; Blomberg et al., 2003; Harmon
et al., 2010) or across the tree (O’Meara et al., 2006; Thomas et al., 2006; Eastman
et al., 2011; Revell et al., 2012; Thomas and Freckleton, 2012). Standard error can be
incorporated into any of these models by simply adding a species–specific scalar
to each element of the diagonal. For all of the models where the 3–point condition325

applies, we can construct a unit tree by setting

νb = Vij −Vik (2)

where Vij and Vjk are, by the requirements of the 3–point structured condition,
equal to one another. Once all branches have been transformed, the contrasts
computed on the unit tree will be i.i.d. ∼ N(0, 1) under the model in question.

The OU model of trait evolution also generates 3–point structured matrices330

when the tree is ultrametric; this is true of both single optimum and multi–optima
models (Ho and Ané, 2014). However, while the variance structure can easily be
transformed to a BM–like tree, the contrasts on this tree will not necessarily be dis-
tributed according to a standard normal. For example, while it is often assumed
when fitting a single regime OU model that the ancestor is at the optimum trait335

value (see, for example Harmon et al., 2010), this need not be the case. Further-
more, if there are multiple optima on the phylogeny (Hansen, 1997; Butler and
King, 2004; Ingram and Mahler, 2013; Uyeda and Harmon, 2014), lineages will
necessarily be tracking optima that are different from the root state. Therefore, a
transformation must also be made to the data in addition to the branch lengths340

of the phylogeny to produce contrasts that have are i.i.d. according to a standard
normal.

To accomplish this, we again turn to the recent work of Ho and Ané (2014). In
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addition to 3–point structured matrices, Ho and Ané defined a broader condition:
a matrix of the form345

V = D1ṼD2

is considered to have a generalized 3–point structure if Ṽ is 3–point structured and
D1 and D2 are diagonal matrices. Ho and Ané (2014) prove that many phyloge-
netic models are indeed of this class, including multi–optimum OU models (Butler
and King, 2004; Ingram and Mahler, 2013; Uyeda and Harmon, 2014), those with
varying rates and models across the tree (e.g., Beaulieu et al., 2012) as well as to350

OU models fit to non–ultrametric trees. For any model that satisfies the general-
ized 3–point condition and where the data is assumed to come from a multivariate
normal distribution, there exists some transformation to the tree (appling Equa-
tion 2 to Ṽ) and data (using D1 and D2) that will produce a unit tree with standard
normal contrasts. We note that Slater (2014) recently pointed out that for OU mod-355

els fit to non–ultrametric trees, there is no valid transformation that can make V
BM–like. While this is indeed correct, it is however, possible to get a BM–like tree
by adding a species–specific scalar to the data matrix (Ho and Ané, 2014). There-
fore, once the proper tree and data transformations have been made, all the test
statistics described above can apply.360

The above also applies to phylogenetic regression models (Grafen, 1989; Lynch,
1991; Martins and Hansen, 1997) of the form

Y = β0 + β1X + ε.

In these models, the error variance is structured by phylogeny assuming some
model of trait evolution such that ε ∼ N(0, V). In these regression models V
represents the variance–covariance matrix of the residuals rather than the traits365

(Rohlf, 2001). Therefore if V is either 3–point or generalized 3–point structured,
the tree (and possibly data) can be transformed such that the contrasts on the
residuals will be i.i.d. standard normal. This fact allows researchers to use our
approach to assess the adequacy of a trait model for understanding correlations
between traits. We note however that as V only affects the error structure for these370

models, alternative approaches (see for example Gelman et al., 2003, ch. 6) will be
required to assess the adequacy of the mean structure Y = β0 + β1X of the model.

Simulations

As a verification of our method, we conducted a brief simulation study. We fo-
cused here on assessing Type–1 error rates. As above, we emphasize that these375

are not necessarily the most important quantities when thinking about model ad-
equacy, but they do provide a useful metric for demonstrating that our code is
functioning correctly. The philosophy behind approaches such as ours is that the
“true” model is outside of the candidate set. We want to ask whether a given
model can adequately describe the variaton in the data. If it does, we can consider380

it statistically adequate even if it is not the true model or even the best model in
our set (see Discussion for comments on the relationship between model adequacy
and model selection). Furthermore, while it is certainly interesting to examine
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what types of deviations in model space produce what types of deviations in the
various test statistics, the number of possible simulation conditions is infinitely385

broad.

We simulated data under BM, single–optimum OU, and EB (the same models
we used in the analysis; see below). For each set of simulating conditions, we
simulated trees of 50, 100, and 200 taxa under a pure–birth process, then rescaled
the tree to be unit height. For BM, we set σ2

= 1. For OU, we used σ2
= 1 but390

varied the “selection” parameter α (α = {1, 2, 4}). For EB, we again set σ2 to be 1

and varied a, the exponential rate of decline (see Harmon et al., 2010; Slater and
Pennell, 2014, for details), was set to be a = {log(0.01), log(0.02), log(0.04)}. For
each parameter combination, we ran 500 simulations under two sets of conditions:
(1) assuming no measurement error; and (2) assuming known error rates of 5%395

of the expected variance in trait values across the phylogeny. We then fit the
corresponding model using maximum likelihood and evaluated the Type–1 error
under each set of conditions. All simulations were conducted using diversitree

(FitzJohn, 2012).

The adequacy of models for the evolution of plant functional400

traits

Data

We used a phylogeny of Angiosperms, containing 30,535 species, from a recent
study by Zanne et al. (2014). We conducted all analyses on the MLE of the phy-
logeny (available on DRYAD, doi:10.5061/dryad.63q27/3). We used existing large405

datasets on three functionally important plant traits: specific leaf area (SLA, de-
fined as fresh area/dry mass), seed mass, and leaf nitrogen content (% mass).
Seed mass is a crucial part of species’ life–history strategy (Leishman et al., 2000;
Westoby et al., 2002) and SLA and leaf nitrogen content are important and widely
measured components of species’ carbon capture strategies (Wright et al., 2004).410

Understanding the macroevolutionary patterns of these three traits can provide
key insights into the evolutionary processes that have shaped much of plant di-
versity (Cornwell et al., 2014). The SLA and leaf nitrogen data comes from Wright
et al. (2004) with additional SLA data from the LEDA project (Kleyer et al., 2008).
Seed mass data comes the Kew database (Royal Botanical Gardens, Kew, 2014).415

We used an approximate grepping approach to find and correct spelling mistakes
and synonymy tools from The Plant List (2014) to match the trait databases to
the Zanne et al. phylogeny. The full data set includes 3293 species for SLA,
of which 2200 match species in the Zanne et al. (2014) tree. For seed mass, the
dataset included 22,817 species with 11,107 matched the phylogeny. For leaf ni-420

trogen content, we have data for 1574 species with 936 included in the tree. See
https://github/richfitz/modeladequacy for specific locations and scripts to ac-
cess and process the original data.

We log–transformed all data prior to analysis. We did this for biological rea-
sons rather than to conform the data to the assumptions of the model (Houle et al.,425
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2011). It is more meaningful to model trait evolution as a multiplicative process
rather than an arithmetic one. An increase of two grams is much more significant
for the seed of an orchid than the seed of a palm tree. However, we should recog-
nize that both of these rationales are essentially statements about model adequacy
and thus the validity of the log transformation can be quantitatively assessed. We430

ran our analysis on both the raw and log transformed data.

Because the vast majority of the species are only represented by a single record,
it was not possible to use a species–specific estimate of trait standard error (SE) to
account for either measurement error or intraspecific variation. As an alternative,
we estimated a single SE for each trait by calculating the mean standard deviation435

for all species for which we had multiple measurements. The assumption of a
constant SE across all species is unlikely to be correct, but even an inaccurate
estimate of error is better than assuming none at all (Hansen and Bartoszek, 2012).

Analysis

We first matched our trait data to the whole phylogeny and then extracted sub-440

clades from this dataset in a three ways: (1) by family; (2) by order; and (3) by
cutting the tree at 50 My intervals and extracting the most inclusive clades (named
or unnamed) for which the most recent common ancestor of a group was younger
than the time–slice. (The crown age of Angiosperms is estimated to be ∼243 my in
the MLE tree and the tree was cut at 50, 100, 150, and 200my.) We kept only sub-445

clades for which there was at least 20 species present in both the phylogeny and
trait data so that we had a reasonable ability to estimate parameters and distin-
guish between models (Boettiger et al., 2012; Slater and Pennell, 2014). For SLA,
this left us with 72 clades, seed mass, 226 clades, and leaf nitrogen content, 39

clades (337 in total). We note that these datasets are not independent as many of450

the same taxa were included in family, order and multiple time–slice subtrees.

Following Harmon et al. (2010), we considered three simple models of trait
evolution: (1) BM, which can be associated with genetic drift (Lande, 1976; Felsen-
stein, 1988; Lynch and Hill, 1986; Lynch, 1990; Hansen and Martins, 1996), randomly–
varying selection (Felsenstein, 1973), or the summation of many independent pro-455

cesses over macroevolutionary time (Hansen and Martins, 1996; Uyeda et al., 2011;
Pennell et al., 2013); (2) single optimum OU, which is often assumed to represent
stabilizing selection (following Lande, 1976), though we think a more meaningful
interpretation is that it represents an “adaptive zone” (Hansen, 2012; Pennell and
Harmon, 2013); and (3) EB, which was developed as a phenomenological repre-460

sentation of a niche–filling process during an adaptive radiation (Blomberg et al.,
2003; Harmon et al., 2010). We fit each of these models to all 337 subclades in our
dataset. We then used the approach we developed to assess the adequacy of each
fitted model.

All of the analyses conducted in this paper were conducted using both likeli-465

hood and Bayesian inference. We did so to demonstrate the scope of our approach
and because both ML and Bayesian inference are commonly used in compara-
tive biology. We emphasize that our approach is not tied to any single statistical
paradigm.
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For the likelihood analyses, we fit the three models (BM, OU, and EB) using470

ML with the diversitree package (FitzJohn, 2012). We calculated the AIC score
for each model. We then constructed a unit tree for each subtree, trait and model
combination using the maximum likelihood estimates of the parameters. We cal-
culated the six test statistics described above (MSIG, CVAR, SVAR, SASR, SHGT, DCDF)
on the contrasts of the data. We simulated 1000 datasets on each unit tree using475

a BM model with σ2
= 1 and calculated the test statistics on the contrasts of each

simulated data set.

For the Bayesian analysis, we fit the same models as above using a MCMC
approach, sampling parameter values using slice sampling (Neal, 2003), as im-
plemented in diversitree (FitzJohn, 2012). For the BM model we set a broad480

uniform prior on σ2
∼ U[0, 2], the upper bound being substantially larger than

the ML estimate of σ2 for any clade. For the OU model, we used the same
prior for σ2 and drew α values, the strength of attraction to the optimum, from a
Lognormal(µ = log(0.5), σ = log(1.5)) distribution. A complication involved in fit-
ting OU models is deciding what assumptions to make about the state at the root485

z0. Here, we follow other authors (Butler and King, 2004; Harmon et al., 2010) and
assume that z0 is at the optimum. For the EB model, we again used the same prior
for σ2 and a uniform prior on a, the exponential rate of decrease in σ2, such that
a ∼ U[−1, 0] (the minimum value is much more negative than we would typically
expect; Slater and Pennell, 2014).490

Again, for each model/trait/subtree combination, we ran a Markov chain for
10,000 generations. Preliminary investigations demonstrated that this was more
than sufficient to obtain convergence and proper mixing for these simple mod-
els. After removing a burn–in of 1000 generations, we calculated the Deviance
Information Criterion (DIC, a Bayesian analog of AIC; Spiegelhalter et al., 2002)495

for each model. We drew 1000 samples from the joint posterior distribution. For
each of the sampled parameter sets, we used the parameter values to construct a
unit tree and calculated our six test statistics on the contrasts. We then simulated
a dataset on the same unit tree and calculated the test statistics on the contrasts of
the simulated data.500

In the likelihood analyses, for each dataset, we had one set TX of observed test
statistics and a 1000 sets TY,1,TY,2, . . . ,TY,1000 of test statistics calculated on data
simulated on the same unit tree. In the Bayesian version, we had 1000 sets of ob-
served test statistics TX,1,TX,2, . . . ,TX,1000 using a different unit tree for each set and
1000 sets of simulated test statistics TY,1,TY,2, . . . ,TY,1000, each TY,i corresponding505

to the unit tree used to compute TX,i.

For both types of analyses, we report two–tailed p–values (i.e., the probability
that the observed that a simulated test statistic was more extreme than the ob-
served). As a multivariate measure of model adequacy, we calculated the Maha-
lanobis distance, a scale–invariant metric, between the observed test statistics and510

the mean of our simulated test statistics, taking into account the covariance struc-
ture between the simulated test statistics. We took the log of the KS D–statistic,
DCDF, as the Mahanalobis measure assumes data is multivariate normal and the
D–statistic is bounded between 0 and 1. For the Bayesian analyses, we report the
mean of the distribution of Mahalanobis distances. All analyses were conducted in515
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R v3.0.2 (R Development Core Team, 2013). Scripts to fully reproduce all analyses
are available at https://github.com/richfitz/modeladequacy.

A case study: seed mass evolution in the Meliaceae and Fagaceae

As an illustration of our approach, we present a case study examining seed mass
evolution in two tree families, the Meliaceae, the “mahogany family”, and Fa-520

gaceae, which contains oaks, chestnuts and beech trees. The trait data and phy-
logeny for both groups are subsets of the larger dataset used in the analysis. Su-
perficially, these datasets are quite similar. Both are of similar size (Meliaceae: 44

species in the dataset, 550 in the clade; Fagaceae: 70 species in the dataset and
600 in the clade), age (crown age of Meliaceae: ∼53my; Fagaceae: ∼40my) and are525

ecologically comparable in terms of dispersal strategy and climatic niche.

As described above, we fit three simple models of trait evolution (BM, OU, EB)
to both datasets using ML and computed AIC weights (AICw; Akaike, 1974; Burn-
ham and Anderson, 2004) for the three models. For both datasets, an OU model
was overwhelmingly supported (AICw > 0.97 for both groups). Therefore, look-530

ing only at relative model support, we might conclude that similar evolutionary
processes are important in these two clades of trees.

Examining model adequacy provides a different perspective. We took the MLE
of the parameters from the OU models for each dataset and constructed a unit tree
based on those parameters. We calculated our six test statistics on the contrasts535

of the data, then simulated 1000 datasets on the unit tree and calculated the test
statistics on the contrasts of each simulated dataset (figure 2). For seed mass
evolution in Meliaceae, the OU model was an adequate model; all six observed
test statistics were in the middle of the distribution of simulated test statistics
(MSIG ∶ p = 0.921, CVAR ∶ p = 0.605, SVAR ∶ p = 0.979, SASR ∶ p = 0.485, SHGT ∶540

p = 0.170, DCDF ∶ p = 0.657). In contrast, for Fagaceae we found that the test
statistics calculated with an OU model lay outside the expected values for SVAR
(p ≈ 0) and SHGT (p = 0.014) suggesting that the process of evolution that gave
rise to this data was more complex that that captured by a simple OU process.
Specifically, we would infer that rates of evolution depend on the length of the545

branches (SVAR), which may indicate phylogenetic error, and that the model is
failing to fully capture variation through time (SHGT. The rest of the observed
test statistics did not differ significantly from the simulated test statistics (MSIG ∶

p = 0.298, CVAR ∶ p = 0.837, SASR ∶ p = 0.074, DCDF ∶ p = 0.551). This example
illustrates the distinction between the conventional approach to model selection in550

PCMs and model adequacy. Selecting amongst a limited pool of models does not
give a complete picture of the amount of variation that a chosen model is actually
capturing.
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Results

Simulations555

In our simulations, we found that when we assessed the adequacy of the gener-
ating model, all of the test statistics showed Type–1 errors that were consistently
around or less than 0.05. This was true across models, parameters, tree sizes and
did not depend on whether we included a known SE or not (figures S7, S8, and S9).
These results demonstrate that our unit tree construction is working properly; if560

the MLE is equal to the generating value, then the constrasts will be i.i.d. N(0, 1)
and standard normal statistical properties will apply. Some of the test statistics
are very conservative (have very low Type–1 error rates) under some models. We
are not aware of any general statistical theory that will allow us to predict the
conditions under which a test statistic will have low power to detect deviations565

from the expected distributions. However, there is an intiutive explanation for this
pattern. Consider for example, our test statistic MSIG. As mentioned above, this
is equivalent to the REML estimate of σ2. When we fit BM (or, a more general
model, of which BM is a special case), and then rescale the tree with σ̂2, the ob-
served contrasts on the unit tree will effectively be minimized with respect to this570

quantity and all of the contrasts on the simulated dataset will tend to be larger
than our observed contrasts. So if the quantity captured by the test statistic is
tightly correlated with one of the parameters being optimized in the model, this
test statistic will tend to have low power to detect deviations from this model.

We also found that by using multiple test statistics and reporting a Type–1575

error if any of the test statistics deviated significantly from expectations, the error
rate increased substantially (up to around 20% under some conditions). However,
as we discuss above, we do not think that this is necessarily a defect of the analysis
and are not overly concerned with this error rate. Looking at what test statistics
were violated and how they were violated is much more meaningful than simply580

rejecting or accepting a model based on the overall p–value. Furthermore, the
degree to which the Type–1 error rate will rise with multiple comparisons will be
a complex function of the generating model and the size of the dataset and there
is no suitable general correction that we know of.

Models for the evolution of Angiosperm functional traits585

Our results for likelihood and Bayesian inference were broadly similar; for con-
ciseness, we present only the results from the likelihood analyses here. Results
from the Bayesian analysis are presented in the Supplemental Material. Full re-
sults from all analyses can be reproduced using code and workflows available at
https://github.com/richfitz/modeladequacy.590

Across the 337 subclades, we found widespread support for OU models. For
236 of clades, OU had the highest AICw. OU had ∼100% of the AICw in 27 clades
and >75% of the weight in 189 clades (figure 3). Consistent with Harmon et al.
(2010) we found very little support for EB models (only 6 clades supported EB with
>75% AICw), suggesting that “early bursts” of trait evolution are indeed be rare595
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in comparative data (but see Slater and Pennell, 2014). Larger clades commonly
had very high support for a single model (of the 101 clades consisting of more
than 100 taxa, 44 had >90% of the AIC weight on a single model), and that was
overwhelmingly likely to be an OU model (42/44 clades).

We limit our analyses of model adequacy to only the most highly supported600

model in the candidate set, as supported by AIC. We did this to present a best–case
scenario; if a model had very little relative support, it would be unremarkable if it
also had poor adequacy (but see Ripplinger and Sullivan, 2010). Even considering
only the best of the set, in general, the datasets often deviated from the expecta-
tions of the model in at least some ways (figure 4). Of the 72 comparative datasets605

of SLA, we detected deviations from the expectations in 32 datasets (using a cut–
off of p = 0.05), 33 by at least two, and 17 by three or more. Results were similar
in the seed mass data (of the 226 seed mass datasets, we detected deviations in
153 datasets with at least one test statistic, 128 by at least two and 74 by three or
more) and leaf nitrogen content (of the 39 datasets, we detected deviations in 19610

by at least one, 24 by at least two, and 11 by three or more test statistic).

Some test statistics were much more likely to detect model violations than oth-
ers. In 163 cases CVAR revealed the data deviated significantly from the expections
of the best model. In 118 cases, SVAR did. The rate of deviation was much some-
what lower for the other test statistics (MSIG: 39, SASR: 84, SHGT: 54, DCDF: 67).615

Across all 337 datasets, 133 are adequately modeled by either BM, OU or EB.
As stated above, the numbers of models that showed deviations with at least one
test statistic may be somewhat overinflated. However, the proportion of clades in
which p–values were less than 0.05 is much, much greater than the error rates we
found in our simulations. And the proportions for each individual test statistic is620

much higher than would be expected by chance.

As the subclades are not independent (overlapping sets of taxa are present in
family, order and time–slice phylogenies), conventional statistics, such as linear re-
gression, are not straightforward to apply across datasets. Nonetheless, the trend
is clear: the larger the phylogeny, the more likely OU is to be highly supported625

and the more likely the model is to be inadequate. There is a strong relationship
between the size of a subclade and the overall distance between observed and sim-
ulated test statistics, as measured by the Mahanalobis distance (figure 5). This is
not simply an artifact of conducting the analyses using a larger number of con-
trasts for the test statistics — if the model was adequate at all scales, there would630

be no relationship between the Mahalanobis distance and the size of the phy-
logeny. Because larger clades also tended to support a single model, the datasets
for which the best model had a very poor absolute fit also had the most substantial
difference between the relative fits of the three models (figure S1). There was a
much weaker relationship between clade age and model adequacy (figure S2).635
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Discussion

Why does model adequacy matter?

Whatever inferences we want to make from comparative data — e.g., characteriz-
ing broad–scale patterns of evolution through time, investigating correlations be-
tween characters or testing hypotheses about the processes that have driven trait640

evolution over macroevolutionary time — it is important that our chosen statistical
model captures variation in the data relevant to the question being addressed. If, for
example, the goal is to assess variation in macroevolutionary rates over time, it is
essential that the model does a good job of explaning temporally heterogeneity.
If we want to know about the slope of an evolutionary allometric relationship,645

we need a model that provides a meaningful estimate of this parameter (Hansen
and Bartoszek, 2012). Comparing the fit of a model to a set of alternatives (using
likelihood ratio tests, Information Theoretic metrics, Bayes Factors, etc.) can only
allow for a relative assessment of the suitability of the model for the task. Such a
model comparison approach does not provide any information about whether a650

model will allow us to actually get at the question we are interested in.

The flipside of this is that tests of model adequacy, such as ours, are designed
to measure the absolute fit but not the absolute appropriateness of the model. We
know that all of the models used in comparative biology are wrong. Whether
they are useful or not will depend on the question being addressed. We are far655

from the first to suggest that model adequacy is important to consider when using
comparative methods (see, for example Felsenstein, 1985, 1988; Harvey and Pagel,
1991; Garland et al., 1992; Díaz-Uriarte and Garland, 1996; Hansen and Martins,
1996; Price, 1997; Garland et al., 1999; Garland and Ives, 2000; Hansen and Orzack,
2005; Hansen and Bartoszek, 2012; Felsenstein, 2012; Boettiger et al., 2012; Slater660

and Pennell, 2014; Beaulieu et al., 2013; Blackmon and Demuth, 2014). The con-
tribution of our paper is to generalize many of these previous approaches into a
single, flexible statistical framework.

Again, we emphasize that simply because a dataset deviates from the expecta-
tions of the model does not imply that the model should necessarily be rejected.665

In our analyses of model adequacy across the 337 Angiosperm clades, we were fo-
cused on whether the model was suitable for measuring rates of evolution, which
is dependent on the model being a good one (Hunt, 2012). For other questions, the
fact that a model fails to capture some aspects of the variation in the data may not
be that important. For example, if our question was that of Harmon et al. (2010)670

— are early bursts of evolution common in macroevolution? — we could conclude
with good certainty that they are not. Our datasets may not be well described by
an OU model, but they are certainly nothing like what we would expect under
an early burst scenario. Likewise, if we are interested primarily in whether there
is a pattern of correlation between two traits, the fact that the model we used is675

not adequately describing much of the variation will in many cases, not greatly
impact the qualitative conclusions.

However, we view the most interesting cases to be where the best model does
not adequately describe the variation of interest. The way in which a model fails
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can provide a richer understanding of our data and the processes that have driven680

the patterns we observe (Gelman and Shalizi, 2013). First, model inadequacy can
point to problems in the data. We suspect that this is likely a common cause of
poor model fit. For the empirical analyses, we used a very large phylogeny of An-
giosperms that was constructed to test specific global–scale biodiversity questions
(Zanne et al., 2014). We recognize that the tree is poorly resolved in many places685

(particularly, near the tips) and is likely ill–suited for addressing more detailed,
clade–specific questions (see the recent critique by Donoghue and Edwards, 2014).
Specifically, the inaccurate placement of species will, on average, cause evolution-
ary rates to be inflated, which is precisely what we find (see below). However,
we emphasize that phylogenetic error is likely ubiquitous and this problem is cer-690

tainly not limited to the tree we used. Likewise, the dataset we assembled is rather
heterogeneous in terms of quality; the data was originally collected for a diverse
set of reasons and some groups have been measured much more carefully than
others. And while we have done our best to clean the data, errors undoubtedly
remain.695

Second, and most excitingly, the failure of a model to adequately describe
relevant aspects of the data can provide insight into the processes we have failed to
consider in our model (Gelman and Shalizi, 2013). For example, if a model fails to
capture variation relative to time (evaluated by the test statistic SHGT), this suggests
that temporal heterogeneity has been greater than we allowed for. The causes700

of such heterogeneity have long been a topic of interest in macroevolutionary
studies (e.g., Simpson, 1944; Foote, 1997) and there has been a great deal of recent
development towards more complex rate–varying models (e.g., O’Meara et al.,
2006; Thomas et al., 2006; Eastman et al., 2011; Weir and Mursleen, 2013; Rabosky
et al., 2014). Likewise, failure to adequately describe variation across the clade may705

indicate that the existence of multiple macroevolutionary optima (sensu Hansen,
2012) are driving the dynamics of traits over time (see Hansen, 1997; Butler and
King, 2004; Beaulieu et al., 2012; Ingram and Mahler, 2013; Uyeda and Harmon,
2014, for models that have been used to capture these dynamics).

Model inadequacy may also suggest types of models that have not previously710

been considered. For example, if recently diverged species tend to more dissimilar
than can be accounted for under a simple diffusion model such as BM or OU, this
may be the result of character displacement. However, almost no phylogenetic
models have been put forth that explicitly model interactions between lineages
(but see Nusimer and Harmon, 2014). Or if traits have lower variance than ex-715

pected under an OU process, this may be the result of hard bounds. Boucher et al.
(2014) recently argued that this is the case for climatic niches and that alternative
models need to be developed for this case. Of course, a researcher may discover
that her dataset is poorly described by all of the currently available models. Aside
from deriving new models specific to her question and dataset, she should at least720

carefully examine the extent to which model misspecification is likely to affect the
major conclusions and proceed forward with due caution.
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Implications for empirical studies

In our analysis of Angiosperm functional traits, we found common macroevolu-
tionary models to often be poor descriptors for the patterns of variation and likely725

inadequate for estimating evolutionary rates. While there are certainly a num-
ber of important caveats to our analysis (discussed above), the overall trends are
clear. This should certainly give researchers some pause about the models rou-
tinely used in our field — especially as they are often used in a model comparison
framework to evaluate the “tempo and mode” of macroevolution. We argue that730

our results strongly suggest that we may often be missing a large part of the story.

The 337 comparative datasets we analyzed varied in terms of traits, size, age
and placement in the Angiosperm phylogeny. Nonetheless, several general pat-
terns emerge. An OU model, was by and large, the most supported of the three
we examined. In an analysis of 67 comparative datasets consisting of size and735

shape data from a variety of animal taxa, Harmon et al. (Harmon et al., 2010) also
found substantial support for OU models, though for their datasets, BM was more
commonly chosen by AIC. (We note, however, that many of their datasets were
quite small; see Slater and Pennell, 2014). Since their paper, a substantial number
of studies conducted in a diverse array of groups have also found OU models to be740

preferred over BM models (e.g., Burbrink et al., 2012; Quintero and Wiens, 2013;
López-Fernández et al., 2013; Thomas et al., 2014).

The tendency of OU to explain data better than BM has inspired diverse process–
based explanations, including stabilizing selection, evolutionary constraints and
the presence of “adaptive zones” (Hansen and Martins, 1996; Butler and King,745

2004; Hansen, 2012; Pennell and Harmon, 2013). If the widespread support for OU
models was indeed caused by the biological processes that have been proposed, we
would expect that an OU model would also be widely adequate. However, this is
not what we found. The datasets deviated significantly from the distributions ex-
pected under OU models, most often detected with CVAR and SVAR but frequently750

with others as well. OU models often failed to capture other important types of
heterogeneity — variation with respect to rate variation (MSIG), trait values (SASR)
and time (SHGT). Additionally, a substantial number of datasets were not well–
modeled by a multivariate normal distribution (DCDF). These results suggest a
statistical explanation for the high support for OU models. OU predicts higher755

variance near the tips of the phylogeny than do BM or EB models (see figure 1 in
Harmon et al., 2010). Heterogeneous evolutionary processes, phylogenetic mises-
timation and measurement error could also produce such a pattern. In light of our
results from model adequacy, it seems likely that OU is often supported because
it is able to accommodate more “slop” (phylogenetic and trait error in addition760

to model misspecification) than the other models. This is not to say that the pro-
cesses captured by OU models are unimportant in macroevolution, but rather that
OU models may be favored for reasons that are more statistical than biological.
Future, and hopefully more widely adequate, models of trait evolution could be
developed that both include aspects of the OU model, especially the bounds on765

trait values, while incorporating additional biological realism (for a recent exam-
ple of such a model, see Nusimer and Harmon, 2014).
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The way in which the observed test statistics deviate from the simulated values
also supports the claim that the widespread support for OU is largely a statistical
artifact. Model violations were most frequently detected by the variance estimate,770

CVAR. If the evolutionary process (or, alternatively, phylogenetic/measurement
error) is heterogeneous across the tree, the lineages in some parts of the clade will
be much more divergent than in others. The only way for the model to account for
the highly divergent groups is to estimate a large σ2 (and/or a small α parameter
for the OU model). The unit tree formed by these parameter estimates will have775

long branches across the entire tree. In the less divergent parts of the tree, the
contrasts calculated on this unit tree will be small, relative to what we expect
under BM. So perhaps counter–intuitively, when heterogeneity in processes across
taxa cause the estimated global rates of divergence to be inflated, resulting in a
higher value for CVAR.780

The second major take–home from the empirical analyses is that error, both in
trait values and phylogenies, can have serious consequences for model adequacy.
We frequently detected deviations from model expectations with SVAR, the slope
between the contrasts and their expected variances. This is indicative the rate of
evolution appears to be varying with regards to branch length over which it is785

measured. This seems unlikely to be attributable to any biological process; it is
far more probable that this reflects phylogenetic error (particularly, branch length
error). Above, we outlined some of the deficiencies of the datasets we used in
this paper but argue that these are likely to be widespread in comparative data.
The test statistics outlined above can serve as useful diagnostics to aid researchers790

in identifying outliers that may be driving the pattern. We recommend that re-
searchers faced with an inadequate model plot the magnitude of the contrasts on
to the unit tree; this will usually be much more informative with regards to the
model fit than plotting the magnitude of the contrasts on the original phylogeny.
Exceptionally large or small contrasts on the unit tree can provide clues as to795

where the data may be erroneous. If phylogenetic error were causing poor model
fits, we would predict that many of the anomalous contrasts would occur in parts
of the tree that are poorly supported.

Extensions of our approach

There are a number of additional ways our approach could be extended. First,800

we have only considered a limited set of test statistics. We chose them because
each of these has a clear statistical expectation and observed deviations from them
have intuitive biological explanations. However, they are certainly a subset of
all possible test statistics that could be applied. For example, because contrasts
are i.i.d., there should be no autocorrelation between neighboring contrasts; the805

test statistics could be expanded to detect non–zero autocorrelation. Second, as
stated above, our approach can be applied equally well to phylogenetic regres-
sion models, such as phylogenetic generalized least squares (Grafen, 1989; Martins
and Hansen, 1997) or phylogenetic mixed models (Lynch, 1991; Housworth et al.,
2004; Hadfield and Nakagawa, 2010), where concerns regarding model adequacy810

are just as pertinent (Hansen and Bartoszek, 2012). While our approach can be
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used to assess the adequacy of the phylogenetic component of regression models
“out of the box”, additional steps are required to assess the adequacy of the linear
component. Third, our method was designed for quantitative trait models that
assume data can be modeled with a multivariate normal distribution. We need815

general model adequacy approaches for other types of traits, such as: discrete
traits (i.e., binary, multistate, ordinal; see Beaulieu et al., 2013; Blackmon and De-
muth, 2014; Maddison and FitzJohn, 2014, for recent discussions of this); traits that
influence speciation rates (e.g., Maddison et al., 2007; FitzJohn, 2010) and quanti-
tative trait models that do not predict a multivariate normal distribution of traits820

(Landis et al., 2013; Schraiber and Landis, 2014).

It may also be possible to extend our approach with an eye towards model se-
lection. Slater and Pennell (2014) developed their posterior predictive simulation
approach (which is related to our method) to distinguish between a BM model
and one where rates of evolution decreased through time. They chose test statis-825

tics specifically to address this question. Slater and Pennell found using posterior
predictive fit as a model selection criterion to be much more powerful than com-
paring models using AIC or likelihood ratio tests, particularly when “outlier taxa”
(lineages where the pattern of evolution deviates from the overall model) were in-
cluded in the analysis. The logic of Slater and Pennell could be extended to other830

scenarios; to test some evolutionary hypotheses, we may care a lot about whether
a model explains varation along some axes but be less concerned about others.
This is a question–specific approach to model selection and has been developed
in the context of molecular phylogenetics (Bollback, 2002; Lewis et al., 2014). This
is also the essence of the Decision–Theoretic approach to model selection (Robert,835

2007), which has also been well–used in phylogenetics (Minin et al., 2003), but has
not previously been considered in PCMs.

Arbutus

We have implemented our approach in a new R package arbutus. It is available
on github https://github.com/mwpennell/arbutus. For this project, we have also840

adopted code from the ape (Paradis et al., 2004), geiger (Pennell et al., 2014) and
diversitree (FitzJohn, 2012) libraries. We have written functions to parse the
output of a number of different programs for fitting trait evolution models (see
the arbutus website for an up–to–date list of supported models and packages).
As this approach was developed to be general, we have written the code in such a845

way that users can include their own test statistics and trait models in the analyses.

Concluding remarks

Attempts to assess the adequacy of phylogenetic models are almost as old as
modern comparative phylogenetic biology. In the 1980s and 1990s much discus-
sion surrounded the appropriateness of various methods and models (Felsenstein,850

1985, 1988; Harvey and Pagel, 1991; Garland et al., 1992; Díaz-Uriarte and Garland,
1996; Price, 1997; Garland et al., 1999; Garland and Ives, 2000). We argue that this
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discussion is key to progressing in our field. This is not simply because we are
concerned that many inferences may not be robust to model violations. Rather, we
believe that considering model adequacy can help suggest new ways of thinking855

about how to combine data and models to test macroevolutionary hypotheses.
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Results from Bayesian analyses

As with the likelihood results (described in main text), OU models were highly
supported across many datasets; 177/337 clades had the highest DIC weight1145

(DICw) on an OU model; 156 of them with greater than 75% of the total DICw
(see figure S3). While a generally similar pattern of model support holds for both
likelihood and Bayesian inference, the likelihood analyses are much cleaner (com-
pare figure 3 and figure S3). This differnce can be explained by the fact that there
is a tight statistical relationship between the AIC values for these three models. If1150

two models have identical likelihoods, the AIC scores, defined as −2L+ 2k (where
L is the log-likelihood of the model and k is the number of parameters) will differ
by 2. As BM is a special case of both OU and EB, in opposite directions in model
space, the highest AICw possible for BM is ∼0.731. The rare clades where both
OU and EB have higher support than BM likely reflect problems in optimization.1155

Calculating DIC values from posterior samples is inherently more stochastic; if
there is little information in data, the best DIC model will depend on the values
sampled by the chain.

For the model adequacy results, the results were also very similar to that of the
likelihood analyses (compare to Results section in the main text). The adequacy1160

of these simple models was poor across the majority of the datasets (figure S4).
Again, we limit our analyses of model adequacy to only the most highly supported
model in the candidate set.

Of the 72 comparative datasets of SLA, we detected deviations from the expec-
tations of the best supported model using at least one test statistic in 35 cases, 261165

by at least two, and 19 by three or more. For the seed mass data, we detected de-
viations with at least one test statistic in 173 cases (by two or more in 109 datasets
and by at least three in 72 cases). 24/39 leaf nitrogen datasets were found to be
inadequately described by the best supported model with at least one test statistic
(13 by at least two and 10 by at least three).1170

Also, similar to the likelihood analyses, the frequency at which deviations were
found differed between the test statistics. In 171 cases, we detected model misspec-
ification with CVAR and with SVAR, 141 (MSIG: 24, SASR: 101, SHGT: 78, DCDF: 67).
Again, only 105 datasets were adequately modeled by one of the three models in
our candidate set. There was a strong relationship between model (in)adequacy1175

and clade size (figure S5), but less so for clade age (figure S6).

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


2

Fit model of trait 
evolution 

Construct unit tree from
model pars 

Calculate test statistics
on contrasts 

Calculate test statistics
on contrasts 

Simulate many BM
datasets 

Compare sim to obs
test statistics

34

5

6 1

Θ

1

TX

TY

TY TX

Figure 1: Schematic diagram representing our approach for assessing model ade-
quacy. (1) Fit a model of trait evolution to the data; (2) use the estimated model
parameters to build a unit tree; (3) compute the contrasts from the data on the unit
tree and calculate a set of test statistics TX; (4) simulate a large number of datasets
on the unit tree, using a BM model with σ2

= 1; (5) calculate the test statistics on
the contrasts of each simulated dataset TY; and (6) compare the observed and sim-
ulated test statistics. If the observed test statistic lies in the tails of the distribution
of simulated test statistics the model can be rejected as inadequate. The rotational
circle in the center of the diagram indicates that assessing model adequacy is an
iterative process. If a model is rejected as inadequate, the next step is to propose
a new model and repeat the procedure.

32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


0.6 1.0 1.4 1.8 0.5 0.7 0.9 −1.5 −0.5 0.5 1.5 −0.5 0.0 0.5 −1.5 −0.5 0.5 1.5 0.05 0.15 0.25

0.6 1.0 1.4 1.8

MSIG

0.6 0.8 1.0

CVAR

−1 0 1 2

SVAR

−0.6 −0.2 0.2 0.6

SASR

−2 −1 0 1 2

SHGT

0.05 0.15 0.25

DCDF

Figure 2: Illustration of our approach to model adequacy. We fit three models
(BM, OU, and EB) to seed mass data from two different tree families, the Meliaceae
(top panel, red) and the Fagaceae (bottom panel, yellow). In both cases, an OU
model (analyzed here) was strongly supported when fit with ML. The plotted
distributions are the test statistics (MSIG, CVAR, SVAR, SASR, SHGT, DCDF) calculated
from the contrasts of the simulated data; the bars underneath the plots represent
95% of the density. The dashed vertical lines are the values of the test statistics
calculated on the contrasts of the observed data. Using our test statistics, an OU
model appears to be an adequate model for the evolution of seed mass in the
Meliaceae; for all of the test statistics, the observed test statistic lies in the middle
of the distribution of simulated test statistics. For the Fagaceae, the slopes of the
contrasts against their expected variances SVAR and node height SHGT are much
lower than the expectations under the model.
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Figure 3: The relative support, as measured by AIC weight, for the three models
used in our study (BM, OU, and EB) across all 337 datasets. An OU model is
highly supported for a majority of the datasets.
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Figure 4: The distribution of p–values for our six test statistics over all 337 datasets
in our study after fitting the models using ML. The p–values are from applying our
model adequacy approach to the best supported of the three models (as evaluated
with AIC). Many of the datasets deviate from the expectations under the best
model along a variety of axes of variation. Deviations are particularly common
for the coefficient of variation CVAR and the slope of the contrasts against their
expected variances SVAR.
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Figure 5: The relationship between clade size and a multivariate measure of model
adequacy. The Mahalanobis distance is a scale–invariant metric that measures the
distance between the observed and simulated test statistics, taking into account
the covariance between test statistics. The greater the Mahalanobis distance, the
worse the model captures variation in the data. Considering only the best sup-
ported model for each clade (as chosen by AIC), there is a striking relationship
between the two — the larger the dataset, the worse the models performed (note
the logarithmic scale). If the models were equally likely to be adequate at all
scales, we would expect no relationship.

36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


10

1000

1 100
AIC(BM) − AIC(OU/EB)

M
ah

al
an

ob
is

 d
is

ta
nc

e

Trait

SLA

SeedMass

LeafN

Rank

Family

Order

Timeslice

Figure S1: The relationship between relative and absolute fit. For every clade
for which a more complex model (OU, EB) was favored over BM using AIC, the
Mahalanobis distance between the observed test and simulated test statistics is
plotted against the improvement in AIC for the more complex model compared
to BM. (Note that as all AIC values were negative, larger differences mean greater
relative support). The greater the relative fit of a more complex model, the more
likely the model was to be inadequate. This result in primarily driven by clade
size but serves to emphasize the distinction between relative and absolute fit.

37

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/


10

1000

10 100
Age of crown group (my)

M
ah

al
an

ob
is

 d
is

ta
nc

e

Trait

SLA

SeedMass

LeafN

Rank

Family

Order

Timeslice

Figure S2: The relationship between clade age and a multivariate measure of
model adequacy. Considering only the best supported of the three models (as
selected by AIC, after fitting the models using ML), there is no apparent relation-
ship between the age of clade and the distance of the observed and simulated test
statistics, as measured by the Mahalanobis distance. Contrast this figure with fig-
ure 5, which demonstrates a very tight relationship between clade size and model
inadequacy.
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Figure S3: The relative support, as measured by DIC weight, for the three models
used in our study (BM, OU, and EB) across all 337 datasets. All models were fit
with MCMC. Like the model comparisons done with AIC, an OU model is highly
supported for a majority of the datasets.
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Figure S4: The distribution of p–values for our six test statistics over all 337

datasets in our study after fitting the models using MCMC. The p–values are from
applying our model adequacy approach to the best supported of the three models
(as evaluated with DIC). Many of the datasets deviate from the expectations un-
der the best model along a variety of axes of variation. Deviations are particularly
common for the coefficient of variation CVAR and the slope of the contrasts against
their expected variances SVAR.
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Figure S5: The relationship between clade size and a multivariate measure of
model adequacy from the Bayesian analysis. The Mahalanobis distance is a scale–
invariant metric that measures the distance between the observed and simulated
test statistics, taking into account the covariance between test statistics. The greater
the Mahalanobis distance, the worse the model captures variation in the data.
Considering only the best supported model for each clade (as chosen by DIC),
there is a striking relationship between the two — the larger the dataset, the worse
the models performed (note the logarithmic scale). If the models were equally
likely to be adequate at all scales, we would expect no relationship.
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Figure S6: The relationship between clade age and a multivariate measure of
model adequacy. Considering only the best supported of the three models (as
selected by AIC, after fitting the models using MCMC), there is no apparent rela-
tionship between the age of clade and the distance of the observed and simulated
test statistics, as measured by the Mahalanobis distance. Contrast this figure with
figure S5, which demonstrates a very tight relationship between clade size and
model inadequacy.
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Figure S7: Type–1 error rates for data simulated under a Brownian motion
(BM) model. We simulated 500 datasets under for 3 different tree sizes (N =

{50, 100, 200}, represented by the different colors) and two known values of stan-
dard error (0 and 0.05, left and right panel, respectively). The Type–1 error rates
for each test statistic are consistently around or lower than 0.05 threshold. How-
ever, the frequency at which at least one of the test statistics deviated significantly
from the expectations (the variable “min” on the left side of each plot) was sub-
stantially greater, rising to above 0.2% in some cases. See text for why we decided
against correcting for the effect of multiple comparisons in the analysis.
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Figure S8: Type–1 error rates for data simulated under an Ornstein–Uhlenbeck
(OU) model. We simulated 500 datasets under for 3 different tree sizes (N =

{50, 100, 200}, represented by the different colors) and two known values of stan-
dard error (0 and 0.05, left and right panel, respectively). We also simulated under
three values for the α parameter (α = {1, 2, 4}, top, middle and bottom panel), rep-
resenting phylogenetic half-lives of 69%, 35%, 17% of total tree depth, respectively.
The Type–1 error rates for each test statistic are consistently around or lower than
0.05 threshold. However, the frequency at which at least one of the test statistics
deviated significantly from the expectations (the variable “min” on the left side of
each plot) was substantially greater, approaching 0.2% in some cases. See text for
why we decided against correcting for the effect of multiple comparisons in the
analysis.
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Figure S9: Type–1 error rates for data simulated under an Ornstein–Uhlenbeck
(OU) model. We simulated 500 datasets under for 3 different tree sizes
(N = {50, 100, 200}, represented by the different colors) and two known val-
ues of standard error (0 and 0.05, left and right panel, respectively). We also
simulated under three values for the exponential rate of slowdown, a (a =

{log(0.01), log(0.02), log(0.04)}, top, middle and bottom panel), which translate
to the rate of trait evolution halfing every 0.15, 0.17, and 0.21 time units, respec-
tively (note that the tree was scaled so the total depth was equal to unity). The
Type–1 error rates for each test statistic are consistently around or lower than 0.05
threshold. However, the frequency at which at least one of the test statistics de-
viated significantly from the expectations (the variable “min” on the left side of
each plot) was substantially greater, approaching 0.15% in some cases. See text for
why we decided against correcting for the effect of multiple comparisons in the
analysis.

45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2014. ; https://doi.org/10.1101/004002doi: bioRxiv preprint 

https://doi.org/10.1101/004002
http://creativecommons.org/licenses/by/4.0/

