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Is visual cortex made up of general-purpose information processing machinery, or does it
consist of a collection of specialized modules? If prior knowledge, acquired from learning
a set of objects is only transferable to new objects that share properties with the old, then
the recognition system’s optimal organization must be one containing specialized mod-
ules for different object classes. Our analysis starts from a premise we call the invariance
hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-
transformations and discriminative signature for recognition. The key condition enabling
approximate transfer of invariance without sacrificing discriminability turns out to be that
the learned and novel objects transform similarly. This implies that the optimal recogni-
tion system must contain subsystems trained only with data from similarly-transforming
objects and suggests a novel interpretation of domain-specific regions like the fusiform
face area (FFA). Furthermore, we can define an index of transformation-compatibility, com-
putable from videos, that can be combined with information about the statistics of natural
vision to yield predictions for which object categories ought to have domain-specific re-
gions. The result is a unifying account linking the large literature on view-based recogni-
tion with the wealth of experimental evidence concerning domain-specific regions.

Introduction

How can past visual experience be leveraged to improve future recognition of novel objects? Is any past
experience useful for improving at-a-glance recognition of any new object? Or perhaps past experience only
transfers to similar objects? Could it even be possible that past experience with certain objects actually
impedes the recognition of others?' The answers to these questions have implications for the optimal orga-
nization of the ventral visual pathway. If prior experience is always transferable then generic circuitry would
suffice. But, if any kind of similarity is a precondition for leveraging past object experience then its optimal
organization would have to be a collection of specialized modules.

Consider an object recognition system trained using images of a certain set of objects A. At test time, it
must recognize novel objects from a disjoint set B. Suppose that A is the union of two disjoint subsets Agood
and Apaq. When training is restricted to Agoeq, test accuracy on B will be good. When restricted to Apag,
accuracy on the B-test will be bad. Now suppose that the test accuracy achieved by training on all of A is the

'If these questions sound strange it may be helpful to consider their analogs in other modalities: To decode Italian phrases, would
it be more helpful to have previous experience with Spanish or with Chinese? Do prior expectations from terrestrial life impede a new
astronaut’s initial mobility in zero gravity?
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the average of the two. Counterintuitively, this would be a case where a system trained with more examples
does worse than one trained with less. If the good and bad subsets could somehow be identified beforehand, it
would be advantageous to train separate subsystems for each, and at test time, only read out results from the
more successful subsystem. The remainder of this paper is concerned first with demonstrating that biological
recognition problems have properties similar to the ones assumed for this toy example. Second, it will be
shown there is a way that, before seeing any test data, the brain could identify which subsets of the training
data ought to be separated from one another. Finally, the last part of the paper examines predictions for
specific object classes. These results imply an explanation for why there are domain-specific regions like the
FFA [34, 82, 9, 13] in the ventral stream.

The invariance hypothesis holds that the computational goal of the ventral stream is to compute from an
image I a signature u(I) (a feature vector) that is unique to each object and invariant to identity-preserving
transformations like translations and rotations. It should also be invariant to non-rigid transformations that
may only occur for certain object classes like the smiling of a face or the melting of an ice cube. To make this
precise, let gy denote a transformation with parameter #. Two images I, I’ depict the same object whenever
36, such that I’ = ggI. Then

(g ) — p(I)| < e 1)

We say that a signature for which (1) is satisfied (for all 8) is e-invariant to the family of transformations {gs}.
An e-invariant signature that is unique to an object can be used to discriminate images of that object from im-
ages of other objects. Note that the invariance hypothesis implies that the ventral stream’s goal is to provide
such a signature for all objects, even those that it has not yet encountered?.

Results
Theory sketch

One approach to modeling the ventral stream, first taken by Fukushima’s Neocognitron [19], and followed
by many other models [51, 60, 53, 65, 56], is based on iterating a basic module inspired by Hubel and
Wiesel's proposal for the connectivity of V1 simple (AND-like) and complex (OR-like) cells. In the case of
HMAX [60], each “HW”-module consists of one C-unit (corresponding to a complex cell) and all its afferent
S-units (corresponding to simple cells); see fig. 1-B. The response of an S-unit to an image I is typically
modeled by a dot product with a stored template ¢, indicated here by (I,t). Since (I,t) is maximal when
I = t (assuming normalized I and t), we can think of an S-unit’'s response as a measure of I's similarity
to t. The module corresponding to Hubel and Wiesel’s original proposal had several S-units, each detecting
their stored template at a different position. Let gz be the translation operator, when applied to an image, it
returns its translation by Z. This lets us write the response of the specific S-unit which signals the presence of
template ¢ at position & as (I, gzt). Then, introducing a nonlinear pooling function, which for HMAX is usually
the max function, the response C(I) of the C-unit (equivalently: the output of the HW-module, one element of
the signature) is given by

C(I) = max; ((I, gz,1)) (2)

where the max is taken over all the S-units in the module. The region of space covered by a module’s S-units
is called its pooling domain and the C-unit is said to pool the responses of its afferent S-units. More recent
models based on this approach typically also pool over a range of scales [53, 65, 56]. In most cases, the
first layer pooling domains are small intervals of translation and scaling. In the highest layers the pooling
domains are usually global, i.e. over the entire range of translation and scaling. Notice also that the HW-
module formulation is more general than HMAX. It applies to a wide class of hierarchical models of cortical

2This formulation of the invariance hypothesis is of independent interest beyond the argument presented here. [58, 40] describe how
it can be used to derive receptive field properties including Gabor-like tuning in V1 and mirror symmetric orientation tuning curves in the
anterior lateral face patch [18]. Our specific formulation is a product of Anselmi et al.’s theory of invariant recognition architectures [1],
but it is also in line with other recent perspectives on the ventral stream and the recognition problem e.g., [72, 11].
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computation, e.g., [19, 38, 61, 56]. For instance, ¢ need not be directly interpretable as a template depicting
an image of a certain object. A convolutional neural network in the sense of [39, 36] is obtained by choosing
t to be the outcome of a gradient descent-based optimization procedure. In what follows we use the HW-
module language since it is convenient for stating the domain-specificity argument. It is a technical exercise
to translate it into the language associated with equivalent models like convolutional neural networks.

HW-modules can compute e-invariant representations for a broad class of transformations [1]. However,
and this is a key fact: the conditions that must be met are different for different transformations. Following
Anselmi et al. [1], we can distinguish two “regimes”. The first regime applies to the important special case
of transformations with a group structure, e.g., 2D affine transformations. The second regime applies more
broadly to any locally-affine transformation.

For a family of transformations {gy}, define the orbit of an image I to be the set Oy = {goI, 0 €
R}. Anselmi et al. [1] proved that HW-modules can pool over other transformations besides translation
and scaling. It is possible to pool over any transformation for which orbits of template objects are available.
A biologically-plausible way to learn the pooling connections within an HW-module could be to associate
temporally adjacent frames of the video of visual experience (as in e.g., [17, 89, 71, 70, 28, 88]). In both
regimes, the following condition is required for the invariance obtained from the orbits of a set of template
objects to generalize to new objects. For all g9 € Oj there is a corresponding gyt € O; such that

<gg[7 tk> = <Ia ge’tk> (3)

In the first regime, eq. (3) holds regardless of the level of similarity between the templates and test objects.
Almost any templates can be used to recognize any other images invariantly to group transformations (see Sl
section 1). Note also that this is consistent with reports in the literature of strong performance achieved using
random filters in convolutional neural networks [31, 41, 62]. Figure 1-A illustrates that the orbit with respect
to in-plane rotation is invariant. The experiment shown in figure 2 verifies that for a group transformation,
translation in this case, the templates need not resemble the test images. HW-modules were trained on
images of translating random dot patterns and tested on faces, and vice versa. The outcome was invariant in
both cases.

In the second regime, corresponding to non-group transformations, it is not possible to achieve a perfectly
invariant representation. These transformations often depend on information that is not available in a single
image. For example, rotation in depth depends on an object’s 3D structure and illumination changes depend
on its material properties (see Sl section 2). Despite this, e-invariance to smooth non-group transformations
can still be achieved using prior knowledge of how similar objects transform. Second-regime transformations
are class-specific, e.g., the transformation of object appearance caused by a rotation in depth is not the same
2D transformation for two objects with different 3D structures. However, by restricting to a class where all
the objects have similar 3D structure, all objects do rotate (approximately) the same way. Moreover, this
commonality can be exploited to transfer the invariance learned from experience with (orbits of) template
objects to novel objects seen only from a single example view.

Class-specific transformations are the primary obstacle to leveraging past visual experience for future
recognition of novel individuals. The simulation in figure 3 shows that HW-modules tuned to templates from
the same class as the (always novel) test objects provide a signature that tolerates substantial viewpoint
changes (plots on the diagonal), it also shows the deleterious effect of using templates from the wrong class
(plots off the diagonal—compare to figure 2). There are many other class-specific transformations besides
depth-rotation, see the supplementary information for additional simulations with illumination and body pose
transformations.

How can object experience—i.e., training data—be optimally assigned to subsystems in order to maximize
invariant recognition accuracy on a large and unknown set of tasks? The question is understood by consider-
ing its two extreme solutions. On the one hand, it could be that the specific objects do not matter, experience
with any objects can always be leveraged for new objects. On the other hand, if the optimal assignment cre-
ates a separate group for each individual object then experience with one object will never be transferable. It
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is sufficient to consider fine-grained (or subordinate-level) recognition tasks like recognizing individual faces
or particular breeds of dogs since the alternative, basic-level categorization, could be accomplished using
features that do not change much under transformations (e.g., non-accidental properties [5, 3]). Furthermore,
it is sufficient to consider tasks where there is only a single example image available of the test object since
they are the most difficult.

More concretely, we will consider the assignment of trained HW-modules to subsystems. The response
to a test image I of an HW-module trained on an orbit O,« is computed by pooling all the (I, gt*) for all
gt* € O,r. Each subsystem will consist of a number of HW-modules. For a test image I, the k-th element of
the signature vector is the output of the k-th HW-module in the subsystem y(1)x = maxgreo,, ((I,gt*)). To
test a subsystem on a recognition task, compute its signature vector for each image in the set comprising the
task. To get the accuracy score, compare the angle between signature vectors of images depicting same and
different objects (see S.I. 5.2) for details).

Given a set of objects sampled from a category, what determines when HW-modules encoding templates
for a few members of the class can be used to e-invariantly recognize unfamiliar members of the category from
a single example view? Recall that the transfer of e-invariance depends on the condition given by eq. (3). For
non-group transformations this turns out to require that the objects “transform the same way” (see Sl section
1 for the proof; the notion of a “nice class” is also related [85, 42]). Given a set of orbits of different objects
(only the image sequences are needed), we can then compute an index »—which we call the transformation
compatibility—see SI-8. 1) measures how similarly the objects in the class transform. If an object category
has too low 1, then there would be no gain from creating a subsystem for that category. Whenever a category
has high v, it is a candidate for having a dedicated subsystem.

For the special case of rotation in depth, we can use 3D modelling / rendering software [6] to obtain (dense
samples from) the orbits of any objects for which we can obtain 3D models. We computed the transformation
compatibility index v for several datasets from different sources (see methods). Faces had the highest 1 of
any naturalistic category we tested—unsurprising since recognizability likely influenced face evolution. A set
of chair objects (from [12]) had very low 1) implying no benefit would be obtained from a chair-specific region.
More interestingly, we tested a set of synthetic “wire” objects, very similar to those used in many classic ex-
periments on view-based recognition e.g. [7, 44, 45]. We found that the wire objects had the lowest v of any
category we tested; experience with familiar wire objects does not transfer to new wire objects. It is never
productive to group them into a subsystem.

Simulations

The analysis so far has been on the computational/algorithmic level [48]. It answers questions about which
categories could or could not have productive subsystems. To arrive at predictions for which domain-specific
regions will be found in the brain, we adopt the hypothesis that the neural circuitry implementing a subsystem
must be localized on cortex. There are several ways to justify this hypothesis (see the discussion section
below).

Any model that can predict which specific categories will have domain-specific regions must depend on
contingent facts about the world, in particular, the—difficult to approximate—distribution D of objects and
their transformations encountered during natural vision. Nevertheless, the present proposal does suggest
a family of models of ventral stream development yielding specific predictions (see also SlI-4). Consider
the following: HW-modules may be assigned to cluster near one another on cortex in order to maximize the
transformation compatibility ¢ of the set of objects represented in each local neighbourhood. Whenever a new
object is learned, its HW-module could be placed on cortex in the neighbourhood with which it transforms most
compatibly. We conjecture that if this iterative clustering process were simulated, at each iteration sampling
a new object from D, then, the resulting cortex model obtained after some time would have a small number
of very large clusters, probably corresponding to faces, bodies, and orthography in a literate brain’s native
language. The rest of the objects would be encoded by HW-modules at random locations. Since neuroimaging
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methods like fMRI have limited resolution, only the largest clusters would be visible to them. Cortical regions
with low v would appear in neuroimaging experiments as generic “object regions” like LOC [46].

Since we cannot sample from D, we cannot actually perform the simulation outlined in the previous para-
graph. However, by assuming particular distributions and sampling from a library of ~10,000 3D models
[12, 68], we can study the special case where the only transformation is rotation in depth. Figure 5 shows
example clusters obtained this way. A key result of our analysis is that the development of domain specific
regions depends not only on object frequencies but also on transformation compatibility. Thus one way of
arguing could be to show that in some cases, the predictions could be robust over a reasonably large range
of statistical assumptions. For example, we found across three experiments, each using a different object
distribution, that robust face and body clusters always appeared (SI-4). Due to the strong effect of 1, a face
cluster formed even when the distribution of objects was biased against faces as in figure 6.

While a view-invariant basic-level categorization task, cars vs. airplanes, can be performed to similar ac-
curacy using any of the clusters (figure 6-C), performance on the analogous view-invariant face verification
task was significantly higher when the face cluster was used (figure 6-B). This illustrates that 1)-based clus-
tering into subsystems is only beneficial for the subordinate level task.

Discussion

Why are there domain-specific regions in the anterior ventral stream but not the posterior ventral stream
[81, 37]? The templates used to implement invariance to group transformations need not be changed for
different object classes while the templates implementing non-group invariance are class-specific. Thus it is
efficient to put the generic circuitry of the first regime in the hierarchy’s early stages, postponing the need
to branch to different domain-specific regions tuned to specific object classes until later, i.e., more anterior,
stages. Recent studies of the macaque face-processing system [18, 30] show that category selectivity devel-
ops in a series of steps, with posterior face regions less face selective than anterior ones. Additionally, there
is a progression from a view-specific face representation in earlier regions to a view-tolerant representation
in the most anterior region [18]. Both findings could be accounted for in a face-specific hierarchical model
that increases in template size and pooling region size with each subsequent layer (e.g., [23, 84]). The use
of large face-specific templates may be an effective way to gate the entrance to the face-specific subsystem
so as to keep out spurious activations from non-faces. The algorithmic effect of large face-specific templates
is to confer tolerance to clutter [43]. These results are particularly interesting in light of models showing that
large face templates are sufficient to explain holistic effects observed in psychophysics experiments [90, 73].

Why should the circuitry comprising a subsystem be localized on cortex? In principle, any HW-module
could be anywhere, as long as the wiring all went to the right place. However, there are several reasons
to think that the actual constraints under which the brain operates and its available information processing
mechanisms favor a situation in which, at each level of the hierarchy, all the specialized circuitry for one
domain is in a localized region of cortex, separate from the circuitry for other domains. In particular, wiring
length considerations are likely to play a role here [59, 4, 52, 8]. Another possibility is that cortical localization
enables the use of neuromodulatory mechanisms that act on local neighborhoods of cortex to affect all the
circuitry for a particular domain at once [47]. Attention may operate through mechanisms of this sort—possibly
involving acetylcholine or norepinephrine [91].

There are other domain-specific regions in the ventral stream besides faces and bodies; we consider
several of them in light of our results here. It is possible that even more regions for less-common (or less
transformation-compatible) object classes would appear with higher resolution scans. One example may be
the fruit area, discovered in macaques with high-field fMRI [37].

1. Lateral Occipital Complex (LOC) [46]
These results imply that LOC is not really a dedicated region for general object processing. Rather, it is
a heterogeneous area of cortex containing many domain-specific regions too small to be detected with
the resolution of fMRI. It may also include clusters that are not dominated by one object category as we
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sometimes observed appearing in simulations (see S.I. section 4).

2. Parahippocampal Place Area (PPA) [15]

A ventral stream region that appears to be specialized for scene processing seems, at first, to be
problematic for our hypothesis. It is unclear whether or not there are any transformations with respect to
which the category of “scene” would be compatible. One possibility, which we considered in preliminary
work, is the hypothesis that “perspective”, i.e., depth-cues from 2D images could be a transformation
with this property [35]. Another possibility could be that the PPA is not really a ventral stream domain-
specific region in the same sense as the Fusiform Face Area (FFA) or the Extrastriate Body Area
(EBA). After all, it is arguable that it is not really properly considered part of the ventral stream. In
particular, Schacter, Bar, and others in the medial temporal lobe memory literature, have emphasized
parahippocampal cortex’s role in contextual associations and constructive simulation of future events
over place/scene processing [2, 63].

3. The Visual Word Form Area (VWFA) [9]

In addition to the generic transformations that apply to all objects, printed words undergo several non-
generic transformations that never occur with other objects. We can read despite the large image
changes occurring when a page is viewed from a different angle. Additionally, many properties of
printed letters change with typeface, but our ability to read—even in novel fonts—is preserved. Reading
hand-written text poses an even more severe version of the same computational problem. Thus, VWFA
is well-accounted for by the invariance hypothesis. Words are frequently-viewed stimuli which undergo
class-specific transformations.

What about the alternative hypothesis: that we have domain-specific regions for faces, bodies, etc, just
because these classes are important? The nativist version of this question is answered by the existence
of the VWFA [9]. The empiricist version is that we develop domain-specific regions for any objects we see
frequently enough, or need to perform certain tasks on. The expertise hypothesis is a sophisticated example
[20, 77, 10, 87]. The implications of our invariance hypothesis are at odds with some purely expertise-based
accounts of domain-specificity. The two primary points of contention are 1. we propose that transformation
compatibility is the critical factor driving the development of domain-specific regions, and 2. the invariance
hypothesis implies a separation of the circuitry for object classes that transform differently from one another.
Thus, unless the greeble objects of [20, 77] happen to transform similarly to faces (an unlikely event), our
model would predict that the circuitry underlying expert-level greeble recognition would have to be separate
from that underlying face recognition. It is worth noting that studies claiming to have demonstrated expertise-
related selectivity of FFA have also been criticized on empirical and methodological grounds, cf. [33]. In
any case, the debate could be resolved by an experiment along the lines of Freiwald and Tsao’s showing
the face-specific hierarchy computes a 3D rotation-tolerant representation [18]. The same methods could be
employed with animals trained for visual expertise in a non-face category. Importantly, the predictions of the
present proposal would depend on the transformation compatibility of the chosen category.

Is this proposal at odds with the literature emphasizing the view-dependence of human vision when tested
on subordinate level tasks with unfamiliar examples—e.g.[7, 80, 75]? We believe it is consistent with most of
this literature. We merely emphasize the substantial view-tolerance achieved for certain object classes, while
they emphasize the lack of complete invariance. Their emphasis was appropriate in the context of earlier
debates about view-invariance [49, 5, 83, 57], and before differences between the view-tolerance achieved on
basic-level and subordinate-level tasks were fully appreciated [74, 64, 76].

The view-dependence observed in experiments with novel faces [80, 24] is consistent with the predictions
of our theory. The 3D structure of faces does not vary wildly within the class, but there is still some significant
variation. It is this variability in 3D structure within the class that is the source of the imperfect performance
in our simulations. Many psychophysical experiments on viewpoint invariance were performed with synthetic
“wire” objects defined entirely by their 3D structure e.g., [7, 44, 45]. We found that they were by far, the least
transformation-compatible (lowest v) objects we tested (fig. 4). Thus our proposal predicts particularly weak
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performance on viewpoint-tolerance tasks with novel examples of these stimuli and that is precisely what is
observed [44].

Tarr and Gauthier (1998) found that learned viewpoint-dependent mechanisms could generalize across
members of a homogenous object class [76]. They tested both homogenous block-like objects, and several
other classes of more complex novel shapes. They concluded that this kind of generalization was restricted
to visually similar objects. These results seem to be consistent with our proposal. Additionally, our hypothesis
predicts better within-class generalization for object classes with higher 1. That is, transformation compatibil-
ity, not visual similarity per se, may be the factor influencing the extent of within-class generalization of learned
view-tolerance.

An alternative account holds that visual representations are distributed across the entire ventral visual
pathway [27, 22]. Such proposals are motivated by the fact that it is often possible to categorize stimuli on
the basic level using the pattern of BOLD response they elicit over all of occipito-temporal cortex, even when
category-selective regions are excluded from the analysis. However, analogous experiments with subordinate
level tasks have shown that BOLD responses of category-selective regions cannot distinguish between pairs
of non-preferred categories [69], and single unit activity patterns in the macaque anterior medial face-selective
patch can identify individuals [18]. Moreover, such distributed representations are implausible in light of neu-
ropsychological studies of acquired prosopagnosia patients [86] and the recent demonstration that stimulating
cells in FFA distorts perception of faces but not other objects [55].

How should these results be understood in light of recent reports of very strong performance of computer
vision systems employing apparently generic circuitry for object recognition tasks e.g., [36, 92]? We note that
these advances, while exciting, address basic-level categorization, a different problem from the one consid-
ered here. Class-specific transformation invariance is mainly only an issue when discriminating individuals
among very similar distractors. The interference arising from training across objects that do not transform
compatibly only arises in the multi-category fine-grained setting where a single system is met with multiple
different fine-grained (or subordinate level) tasks.

But, what about the old Al dream of a universal cortical algorithm that would work on all types of data?
Do these results mean we need to give up on those ideas? Must we believe the brain is just a bag of hacks
for different circumstances that we can never hope to understand by applying general principles? We do
not think such pessimism is the correct reaction. The proposed theory suggests that all domain-specific
regions perform the same basic computations, merely using different subsets of the training data®. It remains
possible that the entire class-specific hierarchy could develop through the operation of a single learning rule.
The problem of determining at each moment which subsystem should be in control is easily dealt with by a
highly biologically-plausible gating mechanism that simply ignores responses below a certain threshold. One
can view the project of giving a computational-level explanation for the organization of the anterior ventral
stream as a rescue operation, reconciling the hopes of those building general-purpose learning systems with
the fact of domain-specific regions in visual cortex.

3The theory predicts a "modularity of content" as opposed to "modularity of process” cf. [16].
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Figure 1: A. lllustration that the orbit with respect to in-plane rotation is invariant and unique. B. Three HW-modules are
shown. In this example, each HW-module pools over a 9 x 3 region of the image. Each S-unit stores a 3 x 3 template

and there are three S-units per HW-module.
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Figure 2: Translation invariance. Bottom panel (I1): Example images from the two classes. The faces were obtained from
the Max-Planck Institute dataset [80] and then contrast normalized and translated over a black background. Top panel
(I): The left column shows the results of a test of translation invariance for faces and the right column shows the same
test for random noise patterns. The view-based model (blue curve) was built using templates from class A in the top row
and class B in the bottom row. The abscissa of each plot shows the maximum invariance range (a distance in pixels)
over which target and distractor images were presented. The view-based model was never tested on any of the images
that were used as templates. Error bars (+/- one standard deviation) were computed over 5 cross validation runs using
different (always independent) template and testing images.

10


https://doi.org/10.1101/004473

bioRxiv preprint doi: https://doi.org/10.1101/004473; this version posted April 24, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

l train A-test A train A -test B train A-test C

—¥#— View-based model
—— Pixels

&
. i e —

train B - test A train B - test B train B-testC

AUC

& \- E
% 3 5= P

train C-test A train C-testB train C-test C

woowm W % s & 7 s 60

Invariance radius =

B

Figure 3: Class-specific transfer of depth-rotation invariance. Bottom panel (Il): Example images from the three classes.
Top panel (l1): The left column shows the results of a test of 3D rotation invariance on faces (class A), the middle column
shows results for class B and the right column shows the results for class C. The view-based model (blue curve) was built
using images from class A in the top row, class B in the middle row, and class C in the bottom row. The abscissa of each
plot shows the maximum invariance range (degrees of rotation away from the frontal face) over which target and distractor
images were presented. The view-based model was never tested on any of the images that were used as templates. Error
bars (+/- one standard deviation) were computed over 20 cross validation runs using different choices of template and
test images. Only the plots on the diagonal (train A - test A, train B - test B, train C- test C) show an improvement of the
view-based model over the pixel representation. That is, only when the test images transform similarly to the templates is
there any benefit from pooling.

11


https://doi.org/10.1101/004473

bioRxiv preprint doi: https://doi.org/10.1101/004473; this version posted April 24, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Object class Transformation P
Chairs Rotation in depth  0.00540
Fig. 3 faces Rotation in depth  0.57600
Fig. 3 class B Rotation in depth  0.95310
Fig. 3 class C Rotation in depth  0.83800
Fig. 3 all classes Rotation in depth  0.26520
COIL-100 [54] Rotation in depth  0.00630
Wire objects [44] Rotation in depth  -0.00007

Figure 4: Table of transformation compatibilities. COIL-100 is a library of images of 100 common household
items photographed from a range of orientations using a turntable [54]. The wire objects resemble those
used in psychophysics and physiology experiments: [7, 44, 45]. They were generated by following the same
protocol as used in those studies.
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Figure 5: Three example clusters that developed in a simulation with an object distribution biased against faces (the
same simulation as in figures S13-C, S14-C, and S15-C).
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Figure 6: Simulation of the development of domain-specific regions. In this case the distribution of objects was biased
against faces (faces were only 16 of the 156 objects in this simulation). Depth-rotation is the only transformation used
here. The main assumption is that the distance along cortex between two HW-modules for two different templates is
proportional to how similarly the two templates transform. See Sl-4 for results of the analogous simulations using different
object distributions A. Multidimensional scaling plot based on pairwise transformation compatibility 1. B. Results on a
test of view-invariant face verification (same-different matching). Each bar corresponds to a different cluster produced by
an iterative clustering algorithm based on v which models visual development—see supplementary methods. The labels
on the abscissa correspond to the dominant category in the cluster. C. Basic-level categorization results: Cars versus
airplanes. Error bars were obtained by repeating the experiment 5 times, presenting the objects in a different random
order during development and randomly choosing different objects for the test set.
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1 A theory of architectures for invariant object recognition

Computational
task

Constraints

Environment
ONn neurons

Properties of the
ventral stream

Figure 7: It is hypothesized that properties of the ventral stream are determined by these three factors. We are not
the only ones to identify them in this way. For example, Simoncelli and Olshausen distinguished the same three factors
[67]. The crucial difference between their efficient coding hypothesis and our invariance hypothesis is the particular
computational task that we consider. In their case, the task is to provide an efficient representation of the visual world. In
our case, the task is to provide an invariant signature supporting object recognition.

The new theory of architectures for object recognition [1]—applied here to the ventral stream—is quite general.
It encompasses many non-biological hierarchical networks in the computer vision literature in addition to
ventral stream models like HMAX. It also implies the existence of a wider class of hierarchical recognition
algorithms that has not yet been fully explored. The conjecture with which this paper is concerned is that
the algorithm implemented by the ventral stream’s feedforward processing is in this class. The theory can be
developed from four postulates: 1. Computing a representation that is unique to each object and invariant to
identity-preserving transformations is the main computational problem to be solved by an object recognition
system—i.e., by the ventral stream. 2. The ventral stream’s feedforward, hierarchical operating mode is
sufficient for recognition [78, 26, 29]. 3. Neurons can compute high-dimensional dot products between their
inputs and a stored vector of synaptic weights [50]. 4. Each layer of the hierarchy implements the same basic
“HW-"module, performing filtering and pooling operations via the scheme proposed by Hubel and Wiesel for
the wiring of V1 simple cells to complex cells [25].

We argue that as long as these postulates are approximately correct, then the algorithm implemented by
the (feedforward) ventral stream is in the class described by the theory, and this is sufficient to explain its
domain-specific organization.

1.1 The first regime: generic invariance

First, consider the (compact) group of 2D in-plane rotations G. With some abuse of notation, we use g to
indicate both an element of G and its unitary representation acting on images. The orbit of an image I under
the action of the group is O = {gI|g € G'}. The orbit is invariant and unique to the object depicted in I. That
is, Or = Oy ifand only if I’ = gI for some g € G. For an example, let I be an image. Its orbit Oy is the set of
all images obtained by rotating I in plane. Now consider, ggg- I, its rotation by 90°. The two orbits are clearly
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the same O; = O, . ;7—the set of images obtained by rotating I is the same as the set of images obtained
by rotating gggoI.

The fact that orbits are invariant and unique (for compact groups) suggests a recognition strategy. Simply
store the orbit for each object. Then when new objects appear, check what orbit they are in. While that
strategy would certainly work, it would be impossible to implement in practice. If we were restricted to cases
where we had already stored the entire orbit then we would only ever be able to recognize objects that we had
previously encountered under all their possible appearances. The key property that enables this approach to
object recognition is the following condition. For a stored template t

(gI,t) = (I,¢'t)y Jg' € G Vg € G. (4)

It is true whenever g is unitary since in this case ¢’ = g~ . It implies that it is not necessary to have the orbit
of I before the test. Instead, the orbit of ¢ is sufficient. Eq. (4) enables the invariance learned from observing
a set of templates to transfer to new images. Consider the case where the full orbit of several templates
t1, ..., t% were stored, but I is a completely novel image. Then an invariant signature x(-) can be defined as

Py (<I,gt1>)
n(I) = : (5)
Py ((1,9t))
Just as in the HMAX case, P, must be unchanged by permuting the order of its arguments, e.g., P,(-) =
max, () or 3, (-).

So far, this analysis has only applied to compact groups. Essentially the only interesting one is in-plane
rotation. We need an additional idea in order to consider more general groups—it will also be needed later
when we consider non-group transformations in the theory’s second regime. The idea is as follows. Most
transformations are generally only observed through a range of transformation parameters. For example, in
principle, one could translate arbitrary distances. But in practice, all translations are contained within some
finite window. That is, rather than considering the full orbit under the action of GG, we consider partial orbits
under the action of a subset Gy C G (note: G is not a subgroup). We can now define the basic module that
will repeat through the hierarchy. An HW-module consists of three elements: (¢, Gy, ). The “response” of an
HW-module is p(I) = Pyea, ({1, gt)). Note that if G is a set of translations and P, (-) = max,(-), then one
such HW-module is exactly equivalent to an HMAX C-unit (defined in the main text). The subset G can be
thought of as the pooling domain, for the case of translation, it has the same interpretation as a spatial region
as in HMAX.

Consider, for simplicity, the case of 1D images (centered in zero) transforming under the 1D locally com-
pact group of translations. What are the conditions under which an HW-module will be invariant over the

range Go = [—b,b]? Let Py(-) := >_, <5 n(-), where 7 is a positive, bijective function. The signature vector
components will be given by
W= Y (L))
z€[—b,b]

where T, is the operator acting on a function f as T, f(z') = f(z’ — x). Suppose we transform the image
I (or equivalently, the template) by a translation of z > 0, implemented by T;. Under what conditions does
pF(I) = pk(T31)? Note first that (I, T,t*) = (I * t*)(x), where  indicates convolution. By the properties of
the convolution operator, we have [(T;1) * t*](x) = T (I * t*)(x) which implies

supp[(T:1) = t*] = Tzsupp(1 x t*).

This observation allows us to write a condition for the invariance of the signature vector components with
respect to the translation 7% (see also Fig. 8). For a positive nonlinearity , (no cancelations in the sum) and
bijective (the support of the dot product is unchanged by applying 1) the condition for invariance is:

Tysupp({I, T,t*)) C [-b, ] (6)
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Figure 8: Localization condition of the S-unit response for invariance under the transformation 7’

Eq. 6 is a localization condition on the S-unit response. It is necessary and sufficient for invariance. In
this case, eq. (4) is trivial since we are considering group transformations.

Remark: The exposition of the theory given here is only sufficient for understanding a particular special
case. In the general case [1], we allow each “element” of the signature (as defined here) to be a vector
representing a distribution of one-dimensional projections of the orbit.

1.2 The second regime: class-specific invariance

So far, we have explained how the localization properties of the S-response allow invariance in the case of
partially observed group transformations. Next, we show how localization still enables approximate invariance
(e-invariance) even in the case of non-group (smooth) transformations. However, as will be shown below, in
order for eq. (4) to be (approximately) satisfied, the class of templates needs to be much more constrained
than in the group case.
Consider a smooth transformation parametrized by r € R, 7T;.; the Taylor expansion of 7.1 w.r.t. r around,
e.g., zero is:
T.(I) = To(I) + J(D)r + O(r?) = I + J'(I)r + O(r?) = LI(I) + O(r?). @)

where J! is the Jacobian of the transformation 7', and L!(-) = e(-) + JI(-)r. The operator L! corresponds
to the best linearization around the point » = 0 of the transformation T;.. Let R be the range of the parameter
r such that 7,.(I) ~ LL(I). If the localization condition holds for a subset of the transformation parameters
contained in R, i.e.

(T, 1,t%) ~ (LI1,t*) =0, r ¢ R (8)

and as long as the pooling range P, in the r parameter is chosen so that P C R, then we are back in the
group case, and the same reasoning used above for translation still holds.
However this is not the case for eq. (4). The tangent space of the image orbit is given by the Jacobian, and it
clearly depends on the image itself. Since the tangent space of the image and of the template will generally
be different (see fig. 9), this prevents eq. (4) from being satisfied. More formally, for » € R:

(LI(D), %) = (I, [L])Y%%) & LI =LY,

That is, eq. (4) is only satisfied when the image and template “transform the same way” (see Fig. 9).
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T.(I)
1:(®)

J:(»)

T,.(t)

Figure 9: The Jacobians of the orbits of the image around the point p and the template must be approximately equal for
€qg. (4) to hold in the case of smooth transformations.

To summarize, the following three conditions are needed to have invariance for non-group transformations:
1. The transformation must be differentiable (the Jacobian must exist).
2. Alocalization condition of the form in eq. (8) must hold to allow a linearization of the transformation.

3. The image and templates must transform "in the same way", i.e. the tangent space of their orbits (in the
localization range) must be equal. This is equivalent to J! = Jt".
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2 lllumination invariance
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Figure 10: Class-specific transfer of illumination invariance. Bottom panel (Il): Example images from the three classes.
Top panel (1): The left column shows the results of a test of illumination invariance on statues of heads made from different
materials (class A), the middle column shows results for class B and the right column shows the results for class C.
The view-based model (blue curve) was built using images from class A in the top row, class B in the middle row, and
class C in the bottom row. The abscissa of each plot shows the maximum invariance range (arbitrary units of the light
source’s vertical distance from its central position) over which target and distractor images were generated. The view-
based model was never tested on any of the images that were used as templates. Error bars (+/- one standard deviation)
were computed over 20 cross validation runs using different choices of template and test images.
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lllumination is also a class-specific transformation. The appearance of an object after a change in lighting
direction depends both on the object’s 3D structure and on its material properties (e.g. reflectance, opacity,
specularities). Figure 10 displays the results from a test of illumination-invariant recognition on three different
object classes which can be thought of as statues of heads made from different materials—A: wood, B: silver,
and C: glass. The results of this illumination-invariance test follow the same pattern as the 3D rotation-
invariance test. In both cases the view-based model improves the pixel-based models’ performance when
the template and test images are from the same class (fig. 10—plots on the diagonal). Using templates of
a different class than the test class actually lowered performance below the pixel-based model in some of
the tests e.g. train A—test B and train B—test C (fig. 10—off diagonal plots). This simulation suggests that
these object classes have high v respect to illumination transformations. However, the weak performance of
the view-based model on the silver objects indicates that it is not as high as the others (see the table below).
This is because the small differences in 3D structure that define individual heads give rise to more extreme
changes in specular highlights under the the transformation.

Object class ~ Transformation )
Glass statues illumination 0.56320
Sliver statues illumination 0.35530
Wood statues illumination 0.53990

26


https://doi.org/10.1101/004473

bioRxiv preprint doi: https://doi.org/10.1101/004473; this version posted April 24, 2014. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

3 Pose-invariant body recognition
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Figure 11: A. Example images for the pose-invariant body-recognition task. The images appearing in the training phase
were used as templates. The test measures the model’s performance on a same-different task in which a reference image
is compared to a query image. ‘Same’ responses are marked correct when the reference and query image depict the
same body (invariantly to pose-variation).

B. Model performance: area under the ROC curve (AUC) for the same-different task with 10 testing images. The X-axis
indicates the number of bodies used to train the model. Performance was averaged over 10 cross-validation splits. The
error bars indicate one standard deviation over splits.

Let B = {b1,b2,...,b,} be a set of bodies and P = {p1,p2, ..., p } be a set of poses. Let d be the dimension-
ality of the images. We define the rendering function ¢, : B — R?. In words, we say t,[b] renders an image of
body b in pose p. In that case the argument b is the template and the subscript p indicates the transformation
to be applied.

We obtain the signature vector i : X — R™ by pooling the inner products of the input image with different
renderings of the same template.

2 . n
p(r) = : (9)

max((I,t1(7m)), (L, ta(Tim))s - -+ s (L tn (7))
As in some HMAX implementations (e.g., Serre et al. (2007) [66]), we used a Gaussian radial basis
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function for the S-unit response. It has similar properties to the normalized dot product.

(L ti(my) = exp{o* Y (I —ti(3)))} (10)

Where ¢ is the Gaussian’s variance parameter.

The class-specific layer takes in any vector representation of an image as input. We investigated two
hierarchical architectures built off of different layers of the HMAX model (C1 and C2-global) [66]—referred to
in fig. 11 as the V1-like and IT-like models respectively.

For the pose-invariant body recognition task, the template images were drawn from a subset of the 44
bodies—rendered in all poses. In each of 10 cross-validation splits, the testing set contained images of 10
bodies that never appeared in the model-building phase—again, rendered in all poses (fig. 11).

The HMAX models perform almost at chance. The addition of the class-specific mechanism significantly
improves performance on this difficult task. That is, models without class-specific features were unable to
perform the task while class-specific features enabled good performance on this difficult invariant recognition
task (fig. 11).

Downing and Peelen (2011) argued that the extrastriate body area (EBA) and fusiform body area (FBA)
“jointly create a detailed but cognitively unelaborated visual representation of the appearance of the human
body”. These are perceptual regions—they represent body shape and posture but do not explicitly repre-
sent high-level information about “identities, actions, or emotional states” (as had been claimed by others in
the literature [14]). The model of body-specific processing suggested by the simulations presented here is
broadly in agreement with this view of EBA and FBA'’s function. It computes, from an image, a body-specific
representation that could underlie many further computations e.g. action recognition, emotion recognition,
etc.

4 Development of domain-specific regions

The goal of this section is to illustrate in detail the logic through which the invariance hypothesis could be
used to make predictions for the specific object classes that will “get their own private piece of real estate in
the brain” [32]. As such, we begin by enumerating the extra assumptions we use in this section, beyond the
standard ones of the theory (see section 1).

1. For simplicity, we consider only out-of-plane rotations here. Quite similar simulations could be done for
other class-specific transformations.

2. Over the course of development (or evolution), the orbits of objects are stored in cortex (as HW-
modules). The distribution of objects/transformations encountered under natural visual experience
determines which HW-modules are stored, but it has no influence on the specific cortical location of
their storage.

3. The arrangement of HW-modules on cortex is related to an intrinsic property of the orbits they encode.
Here we assume a relationship between (A, B) and cortical proximity (see main text discussion for
justification).

Assumptions 1-3 suffice to predict clusters of HW-modules for different templates. We need one more
additional assumption to come to a prediction about which regions should appear in fMRI experiments.

4. The number of HW-modules in a cluster and the proportion belonging to different categories determine
the predicted BOLD response for contrasts between the categories. For example, a cluster with 90%
face HW-modules, 10% car HW-modules, and no other HW-modules would respond strongly in the
faces - cars contrast, but not as strongly as it would in a faces - airplanes contrast. We assume that
clusters containing very few HW-modules are too small to be imaged with the resolution of fMRI—though
they may be visible with other methods that have higher resolution.
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Figure 12: Two factors are conjectured to influence the development of domain-specific regions.

For now, we are mostly interested in the influence of transformation compatibility, in part because it is
the novel part of our proposal, also because we don’t have good estimates of the distribution of objects (and
their transformations) encountered under natural vision. Though a serious study of those statistics is now
motivated, such a project is beyond the scope of the present paper.

We consider three different arbitrary choices for the distributions of objects from five different categories:
faces, bodies, vehicles, chairs, and animals (see table 1). Importantly, one set of simulations used statistics
which were strongly biased against the appearance of faces as opposed to other objects.

Name of simulation | Faces Bodies Animals Chairs Vehicles
A. “Realistic” 76 32 16 16 16
B. Uniform 30 30 30 30 30
C. Biased against faces 16 32 36 36 36

Table 1: Numbers of objects used for each simulation. In the “realistic” simulation, there were proportionally more faces.

By assumption #3, for any two learned objects A and B, the distance d(A, B) along cortex between their
respective HW-modules is proportional to their pairwise transformation compatibility, i.e.

d(A, B) x ¢ (A, B) (11)
A B C
%41 f :face 04 05
Cevene D il
: chair b tb f
:animal b
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w b bb bb
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' p oD " b b &b
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Figure 13: Multidimensional Scaling (MDS) [79] visualizations of the object sets under the (A, B)-dissimilarity metric
for the three object distributions: A. “realistic”, B. uniform, and C. biased against faces (see table 1).
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The clustering algorithm, detailed in section 5.4, can be summarized as follows: Consider an object
recognition system with a number of bins corresponding to sets of HW-modules. When an object is learned,
add its newly-created HW-module to the bin with which its transformations are most compatible. If the new
object’s average compatibility with all the existing bins is below a certain threshold, then create a new bin to
hold the HW-module of the newly learned object. To model visual development, this procedure is repeated
many times with new objects—sampled according to the distribution of objects encountered in natural vision
(or whatever approximation is available). At the end of the development process, we can identify each bin

with a domain-specific region.
A B C
T ]
09 // J[ ¥

Figure 14: The percentage of objects in the first N clusters containing the dominant category object (clusters sorted by

number of objects in dominant category). A, B and C are respectively, the “realistic” distribution, uniform distribution, and
the biased against faces distribution (see table 1)). 100% of the faces go to the first face cluster—only a single face cluster
developed in each experiment. Bodies were more “concentrated” in a small number of clusters, while the other objects
were all scattered in many clusters—thus their curves rise slowly. These results were averaged over 5 repetitions of each

clustering simulation using different randomly chosen objects.
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Figure 15: The classification performance on face recognition, a subordinate-level task (top row) and car vs. airplane, a
basic-level categorization task (bottom row) using templates from each cluster. 5-fold cross-validation, for each fold, the
result from the best-performing cluster of each category is reported. A, B and C indicate “realistic”, uniform, and biased
distributions respectively (see table 1). Note that performance on the face recognition task is strongest when using the
face cluster while the performance on the basic-level car vs. airplane task is not stronger with the vehicle cluster (mostly
cars and airplanes) than the others.
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5 Methods

5.1 Stimuli

Faces and novel object classes

All objects were rendered with perspective projection. For translation experiments: there were 100 faces
and 100 random noise patterns randomly partitioned into sets of 30 for templates and 30 for testing. For
rotation in depth experiments: there were 40 untextured faces, 20 class B, and 20 class C objects, randomly
picked 10 template objects and 10 test objects for each run of the experiment, repeated 20 times with dif-
ferent randomly chosen objects. Each face/object was rendered (using Blender [6]) at each orientation in 5°
increments from —95° to 95°. The untextured face models were generated using Facegen [68].

lllumination

lllumination: Within each class the texture and material properties were exactly the same for all objects.
We used Blender to render images of each object with the scene’s sole light source placed in different loca-
tions. The 0 position was set to be in front of the object’s midpoint; the light was translated vertically. The most
extreme translations brought the light source slightly above or below the object. We obtained the material data
files from the Blender Open Material Repository (http://matrep.parastudios.de/). We rendered images of 40
heads with each material type and and randomly picked 20 to be templates and 20 for testing in each of 20
cross validation runs.

Bodies / pose

DAZ 3D Studio was used to render each of 44 different human bodies under 32 different poses, i.e., 44*32
=1408 images in total.

Objects for the development (iterative clustering) experiments

Blender was used to render images of 3D models from the Digimation archive (platinum edition) from a
range of viewpoints: —90° to 90° in increments of 5 degrees. A set of textured face models generated with
FaceGen were added to the Digimation set.

5.2 The test of transformation-tolerance from a single example view

We simulated tests of initial invariance for unfamiliar faces. The specific task we modeled is a same-different
task. In human behavior, it would correspond to a task where the subject is first shown a reference image and
then asked to compare it to a query image. The query may be an image of the same face as the reference
(the target), or it may depict a distractor face. In either case, the query image may be transformed. For
example, in one trial, the task could be to recognize “Tommy’s face”—oriented 0° in the reference image—
versus distractor images of other people’s faces. Both target and distractor query images might be rotated
away from the reference view.

This task is modeled using a nearest-neighbors classifier. The reference image’s signature is chosen to be
the center. The classifier then ranks all the query images’ signatures by their distance from the reference. We
vary the threshold for which the classifier will respond ‘same’ to compute a bias-free measure of performance
(AUC)—analogous to d’ for the corresponding behavioral experiment [41, 21]. Figures 2 and 3 shows the
AUC computed for a range of task difficulties (the abscissa). These figures show how discriminability declines
as the range of transformations applied to the query images is widened. A task at a larger invariance range
subsumes all the tasks at smaller invariance ranges; thus the discriminability curves can never increase
as the invariance range is widened. A flat AUC curve indicates that discriminability is unaffected by the
transformation. That is, it indicates that the model is invariant to that transformation.

For the body-pose invariance experiments, the task remained the same, but the way of reporting results
changed since the transformation was not parameterized.
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5.3 Measuring transformation compatibility ()

Let A; be the i;;, frame of the video of object A transforming and B; be the i, frame of the video of object B
transforming. We define a compatibility function ¢( A, B) to quantify how similarly objects A and B transform.
First, approximate the Jacobian of a transformation sequence by the “video” of difference images: J (i) =
A; — A (V9).
Then we can define the transformation compatibility as:

P(A, B) = Mean;(similarity(J(2), J5(7))) (12)

Similarity was measured using a normalized dot product.

Transformation compatibility can be visualized by Multidimensional Scaling (MDS) [79]. The input to the
MDS algorithm is the pairwise "similarity matrix" containing the transformation compatibilities between all pairs
of objects.

5.4 Clustering by transformation compatibility

The pseudocode for our iterative clustering algorithm is given below (algorithm 1). We define the transforma-
tion compatibility ¢ of a cluster to be the average of the pairwise compatibilities ¢ (A, B) of all objects in the
cluster

¥ := mean(y(A, B)) for all pairs of objects (A4, B) from a cluster. (13)
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Algorithm 1 lterative clustering to model ventral stream development
Input: All Objects: O, i;;, Object: O; where ¢ = 1...N, Threshold: T')
Output: ClusterLabels
Code:
ClusterLabels(l) =1
1) = computeCompatibility(ClusterLabels)
fori =2to N do
1) = computeCompatibilityWithEveryCluster(i, O, ClusterLabels)
[MaxValue MaxIndex| = max(%))
if MaxValue > T then
ClusterLabels(i) = MaxIndex //Assign to the cluster with the highest compatibility.

else
ClusterLabels(i) = max(ClusterLabels) + 1 //Create a new cluster
end if
1 = updateCompatibility(¢, CurrentClusterCompatibility, ClusterLabels(i))
end for

Function computeCompatibilityWithEveryCluster(IDX,A110bjects,ClusterLabels)
/lInitialize ¢ as an empty array of length #Clusters.
for i = 1 to #Clusters do
Objects = GetObjectsFromCluster(i,A110bjects,ClusterLabels)
for j = 1 to #0bjects do
tmpArray(j) = compatibilityFunction(A110bjects(IDX),0bjects(j))
end for
(i) = mean(tmpArray);
end for
Return v
EndFunction

5.5 Evaluating the clustered models on subordinate-level and basic-level tasks

We evaluated the performance of the models trained with templates from each cluster on a subordinate face
verification task (same-different matching) and a basic-level car vs. airplane verification task. In the face
verification task, we ran 5-fold validation, each fold contains 48 training and 12 testing faces. For the basic
level categorization task , we ran 5-fold validation with 96 (48+48) training and 24 (12+12) testing objects
in each fold. For both tasks, 4000 training and 4000 (independent) testing pairs were used for training and
testing the classifier.
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