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Missing kinaesthesia challenges precise naturalistic cortical prosthetic control 
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 Abstract 

A major assumption of brain-machine interface (BMI) research is that patients with disconnected 

neural pathways can still volitionally recall precise motor commands that could be decoded for 

naturalistic prosthetic control. However, the disconnected condition of these patients also blocks 

kinaesthetic feedback from the periphery, which has been shown to regulate centrally generated 

output responsible for accurate motor control. Here we tested how well motor commands are 

generated in the absence of kinaesthetic feedback by decoding hand movements from human 

scalp electroencephalography (EEG) in three conditions: unimpaired movement, imagined 

movement, and movement attempted during temporary disconnection of peripheral afferent and 

efferent nerves by ischemic nerve block. Our results suggest that the recall of cortical motor 

commands is impoverished in absence of kinaesthetic feedback, challenging the possibility of 

precise naturalistic cortical prosthetic control. 
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Brain-machine interface (BMI) technology offered early promise of restoring independence to 

those with spinal cord injury. Grounded in seminal work from awake behaving monkey
1,2

, BMI 

research aims to decode movement parameters from neural ensemble activity, enabling natural 

control of assistive devices. However, the speed and accuracy of current BMIs
3,4

 are poor 

compared to natural movements and highly dependent on visual feedback, showing some 

similarities with motor deficits in patients with sensory neuropathies. This observation led us to 

speculate that absent
3,4

 and arbitrary
5
 sensory feedback produced by controlling an artificial 

actuator (e.g. robotic arm) interferes with the recruitment of the neural population previously 

engaged in controlling a natural effector with intact feedback. Rather than viewing the 

spatiotemporal sequence of activity which produces movement as internally generated by cortical 

circuits in a feedforward manner
6,7

, such a view would extend the ‘dynamical machine’
7
 

responsible for movement to include afferent feedback from the periphery. This is supported by 

evidence for the rapid integration of sensory feedback into motor output, whilst taking account of 

high-level movement goals
8,9

. In such a framework, loss of feedback would have an impact 

comparable to the lesion of a cortical area. Movement might still be possible, but only after 

reconfiguration of the network, and is likely to be impoverished compared with the natural state. 

It is known that primary sensory and motor areas undergo plastic changes
10-13

 associated with 

abnormal function
14

 when afferent inputs are removed. Moreover, studies with amputees suggest 

that access to the motor representation of the missing limb is conditional upon the re-

establishment of peripheral connections and restoration of the sensorimotor loop
15

, an 

observation also supported by experiments in patients with hand allografts
16

 and targeted muscle 

re-innervation for prosthetic control
17

.   
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We hypothesized that cortical motor commands cannot be effectively generated in the absence of 

kinesthetic feedback. Here we tested this hypothesis, using temporary ischemic nerve block to 

model disconnection of cortical circuits from the periphery. In the same subjects, we compared 

EEG decoding of unimpaired movements (Move/MoveAfter) with the same movements attempted 

during peripheral disconnection (Block; see Fig. 1a). We further evaluated decoding of imagined 

movements (Imag), which also lack movement re-afference and have been utilized to calibrate 

decoders for people with tetraplegia
4,18

 (Fig. 1a, b). We found that effective decoding was only 

possible when displacement-triggered re-afference was present, suggesting that cortical motor 

commands deteriorate when they cannot be updated by their sensory consequences. This 

challenges the possibility of precise naturalistic cortical prosthetic control in patient groups with 

peripheral disconnection.  

 

Results 

Source analysis revealed significant differences between conditions in the dynamics of the 

cortical sources generating movement related EEG scalp potentials (Fig. 2a, b).  We defined 

regions of interest (ROIs) to encompass pre- and post-central cortex based on standard Atlas 

coordinates (Tzourio-Mazoyer), and measured mean source absolute activation over these regions 

(Fig. 2c). We also defined different time windows within a trial, and measured mean source 

absolute activation over these windows (Fig. 2a, d). Activity in the pre-central ROI was 

significantly increased (p<0.01) in Move condition compared with Imag and Block during 

movement preparation (window 6), and significantly increased (p<0.01) in Move and MoveAfter 

compared with Imag and Block during maximum displacement (window 10); for a post-central 

ROI, significant differences were also seen in Move and MoveAfter compared with Imag and 
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Block during maximum displacement (window 10). Neither pre-central nor post-central ROI 

activity differed significantly between conditions during any other analyzed window (see Fig. 2d-

e).  

The activity of the pre-central sources responsible for generating motor output was diminished in 

the absence of kinaesthetic feedback; however, this does not necessarily mean that the underlying 

motor commands which this reflected were impaired. To probe this in more detail, we carried out 

a decoding analysis which attempted to predict the movement direction based on the EEG. We 

reasoned that if the smaller signals seem in Imag and Block conditions were still capable of good 

movement decoding, this would indicate some motor command nevertheless remained intact. In 

Move and MoveAfter conditions decoding performed significantly better (69.4% ± 3.1% and 

66.3% ± 2.9% respectively, p<0.01) than by chance, but this was not the case for Block and Imag 

(51.6% ± 0.6% and 54.2% ± 1.3% respectively, significantly lower than Move and MoveAfter, 

p<0.01). Importantly, the plots of time-resolved decoding accuracy (Fig. 3a) revealed that peak 

accuracy in the Move or MoveAfter conditions was temporally confined around task performance 

(see tick marks on and below color maps in Fig. 3a), as expected for a genuine neural signal. By 

contrast, peak decoding in Imag or Block conditions was distributed randomly over the analyzed 

timeframe, suggesting chance decoding of noise fluctuations unrelated to underlying neural 

processes. 

Further evidence of a key difference in the nature of the signals decoded came from source 

analysis at the time sample of maximum decoding accuracy (Fig. 4a). As expected, in the Move 

condition the contralateral primary sensorimotor areas were the major contributors of EEG 

surface activity. Activity in the pre-central and post-central ROI was significantly reduced 

(p<0.01) in Imag and Block conditions compared with Move (Fig. 4b). Activity in MoveAfter 
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seemed to restore partially, although not completely, back to that seen in Move (see Figs. 2e, 3b, 

4b). 

One possible confound with EEG decoding is that scalp potentials could be subtly influenced by 

eye movement artifacts. To check for this, we carried out a similar decoding analysis as above, 

but using EOG signals (Fig. 3c). No significant decoding occurred in any condition, indicating 

that eye movements were uncorrelated with the instructed wrist movements and that EOG 

contamination of the EEG could not explain our results. 

 

Discussion 

This study shows that movement-related information contained in EEG is impoverished in the 

absence of kinaesthetic feedback.  

Previous work has correlated various movement parameters with motor cortical activity 
1,2,19-29

, 

establishing the scientific basis for developing BMIs
30-35

 that could confer intuitive 

neuroprosthetic control to patients suffering from paralysis
3,4

. However, experiments with 

patients suffering large fiber sensory neuropathies
36-39

 have shown that without visual feedback 

the motor output of these patients fluctuates randomly. Kinaesthetic feedback plays an important 

role in motor control by allowing for error-correction and by contributing in the formation of 

accurate internal models of limb dynamics
40,41

. These observations pose a relevant question to 

BMI research that, to our knowledge, has been unaddressed: to what extend does missing 

kinaesthesia prevent the generation of the normal sequence of motor commands required for 

voluntary movements?   

Here, we addressed this question by decoding from EEG activity attempted movements impaired 

by nerve block and imagined movements that lack movement re-afference. Both conditions are 
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relevant to our goal, but have their limitations. Ischemic nerve block provides a well-established 

reversible model of short-term amputation-induced cortical reorganization in humans
10,15

 and 

provides a valid model for the loss of feedback from large diameter sensory fibers. However, the 

rapid onset of feedback loss, including the tonic level of drive seen in the steady state, could 

produce acute changes in cortical function not directly related to loss of movement-related 

feedback. On the other hand, imagined movements lack movement re-afference, but preserve 

tonic feedback about the (unchanging) limb state. In imagined movements, central mechanisms 

presumably are also acting to prevent overt motor outflow
42

. Importantly, imagined movements  

have been utilized to calibrate decoders for people with tetraplegia
4,18

. By using both of these 

non-invasive techniques in healthy subjects we were able to compare, for the first time, decoding 

of unimpaired, impaired and imagined movements. This overcomes some of the limitations 

presented by experiments with paralyzed patients and non-human primates: paralyzed patients are 

unable to perform goal-directed movements (an essential condition to which all others should 

ideally be compared); by contrast, it is virtually impossible to control for non-task related 

movements and to assess the quality of motor imagery in non-human primates. 

Our study revealed that the lack of re-afferent feedback in imagined and impaired movements 

had an impact on the dynamics of the cortical sources generating movement related EEG scalp 

potentials. This appeared as reduced pre-central cortical activity during preparation, and reduced 

pre-central and post-central cortical activity during execution of movements. Three further 

observations support the notion that cortical activity became grossly abnormal in the absence of 

sensory feedback. First, decoding accuracy dropped to chance levels. Second, the time of 

maximal decoding accuracy was no longer temporally locked around the time of attempted 

movement. Third, pre- and post-central cortical activity at the time of maximum decoding was 
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substantially reduced.  Our findings extend to deafferentation those by other studies reporting 

reduced activity 
43,44

 and reduced decoding or tuning
44,45

 when comparing imagined with 

unimpaired movements, highlighting the critical role of kinaesthetic feedback for the successful 

recruitment of the neural population responsible for precise movement control.  

Our study used EEG to access the neural signals underlying motor commands, and showed that 

decoding efficiency was reduced in the absence of a normal sensorimotor loop. We cannot 

exclude the possibility that motor processing continued relatively intact in these tasks, but that 

only the overt manifestation as discriminable scalp potentials was degraded. If so, this would 

imply that only EEG-based naturalistic cortical prosthetic control will be challenged in paralyzed 

patients lacking feedback, whereas BMIs relying on invasively recorded single unit activity may 

still operate effectively. However, several pieces of evidence argue that our findings may also 

have applicability to invasive BMI. Pandarinath and colleagues
45

 have reported weakened 

movement-related multiunit modulation in human primary motor cortex (M1) during imagined 

movements, demonstrating that such degradation is also present at the neural scale. Other studies 

have demonstrated the influence of kinesthetic feedback in ongoing M1 activity
8,46-48

 suggesting 

the importance of trans-cortical feedback pathways for predicting optimal states
49

 and for 

modulating sensory feedback accordingly
50

.  

Non-biomimetic approaches, which require the subject to learn to modulate arbitrary but readily 

discriminable signatures of neural activity
51,52

, represent a different approach to BMI which has 

been explored in paralyzed patients
53

. However, it is an open question whether the rate with 

which subjects can learn to use such systems, or the eventual performance obtained, is also 

affected by the lack of a functional sensorimotor feedback loop. 
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Cole
54

 provides a poignant description of the devastating consequences for one patient which 

sudden loss of large-diameter afferents had for motor control. Although voluntary movement was 

regained after much retraining, this required great concentration, and strongly depended on visual 

feedback. Current cortical prosthetic control resembles Cole’s description. Future research is 

needed to explore alternatives to compensate for such kinaesthetic loss
5
, which would allow 

intuitive control of prosthetic devices while maintaining an intact sensorimotor feedback loop. 

 

Methods 

Experimental Setup 

Nine healthy adults (7 men, 2 women) took part in the study. All the experimental procedures 

were approved by the Research Ethics Committee of the Medical Faculty, Newcastle University; 

subjects provided written informed consent to participate. Each subject performed four 

experimental conditions in the following order: unimpaired movement (Move), imagined 

movement (Imag), attempted movement after ischemic nerve block (Block) and unimpaired 

movement after circulation had been restored to the arm (MoveAfter) (see Fig. 1a). Subjects sat 

comfortably in a chair fixating on a static visual target placed approximately 150 cm ahead. The 

right elbow and pronated forearm were gently placed at waist height onto an arm rest, which 

restricted movement to radial and ulnar deviation at the wrist joint (lateral hand movements). The 

hand was placed flat with extended fingers on the rest, which was padded with memory foam. 

The same foam imprints were used across sessions to minimize postural changes. The rest was 

custom made to fit each subject’s arm well, minimizing hand movements and movement around 

other joints. Wrist angular displacement was sensed by a potentiometer, fixed with its axis 

coaxial to the wrist joint. A displacement of 0° indicated the neutral position with the hand in the 
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same plane as the forearm; positive angles denoted radial deviation. The left arm rested 

unrestrained in a comfortable position throughout the task. Each trial commenced with an 

auditory start cue (2000 Hz; 100ms), followed 1s later by an informative cue (100 ms) indicating 

the required direction on that trial: radial (1500 Hz) or ulnar (500 Hz) deviation. After a 1s delay 

period a ‘Go’ cue (1000 Hz; 100ms) indicated when to initiate the movement. In Move and 

MoveAfter conditions subjects were instructed to perform fast, stereotyped radial/ulnar deviations 

of the wrist. In the Imag condition subjects were requested to imagine radial/ulnar deviations as 

performed during the immediately-preceding Move trials but without overt movement. In Block 

condition subjects were instructed to try to perform the movements as in Move, despite the 

impairment produced by nerve block.  Each condition consisted of a randomized sequence of 150 

trials (75 in each direction) and lasted 13 minutes. 

Data Acquisition 

Scalp EEG was recorded by a 61–sensor cap according to the International 10–20 system 

referenced to Cz. Electro-oculograms (EOG) were recorded via bipolar electrodes; horizontal 

EOG was recorded by placing an electrode to the outer canthus of each eye, and vertical EOG by 

an electrode pair above and below the subjects’ left eye. Both EEG and EOG signals were 

sampled at 1 kHz (Neuroscan SynAmps 2RT, Compumedics USA, Charlotte, NC) and grounded 

with an electrode placed over the left clavicle. Impedance for all electrodes was <5 kΩ. To record 

stimulus-evoked responses (see below), bipolar surface electromyogram (EMG) was recorded 

from the right abductor pollicis brevis (AbPB), amplified and high-pass filtered at 30Hz (D360, 

Digitimer, Welwyn, UK), and sampled at 5 kHz (CED Micro1401, Cambridge, UK). A ground 

electrode was placed on the dorsum of the wrist. 
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Ischemic Nerve Block Procedure 

Ischemic nerve block was achieved by applying a commercial blood pressure cuff to the right 

arm at the level of the biceps. The arm was first raised for ~30s to drain blood from the large 

veins; the cuff was then rapidly inflated to a pressure of 180 mm Hg. The arm was then gently 

lowered and placed into the apparatus. Cuff pressure was maintained constant through this 

experimental condition. Subjects were told not to contract muscles distal to the cuff, from the 

moment that the arm was raised, until the experimental recording began. Because we emphasized 

the importance of this instruction, subjects were able to remain relaxed throughout, and thereby 

avoided muscle pain associated with lactate buildup. 

Somatosensory evoked potentials (SEPs) following electrical stimulation of the median nerve at 

the wrist (stimulus rate 9 Hz, pulse width 1 ms, intensity just below motor threshold, 1000 

stimuli) and compound muscle action potentials (CMAPs) of the AbPB muscle following 

magnetic nerve stimulation (Magstim 200, Dyfed, UK; single pulse; intensity supra-maximal) at 

the supra-clavicular fossa (Erb’s point) were monitored to assess sensory and motor block. 

Baseline SEPs and CMAPs were measured before applying the cuff. Beginning 18 minutes after 

cuff inflation, SEPs were measured at intervals of two minutes until the contralateral N20 was 

absent, indicating complete block of large fiber sensory afferents (see Fig. 1b).  At this stage the 

subjects no longer perceived the nerve stimulus.  Two minutes after this point, CMAPs were 

measured at intervals of 30 s until their amplitude was significantly reduced, indicating almost 

complete motor block (see Fig. 1c). Subjects were then requested to attempt to perform the task 

(Block condition). Immediately after task completion (75 trials in each direction) the cuff was 

removed, limiting the maximum total ischemic time to 50 minutes. The MoveAfter condition 
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started 5–10 minutes after cuff removal, when subjects no longer reported reperfusion 

paraesthesias. 

Data Analysis 

Signal processing. EEG and EOG single trial epochs were extracted from 500 ms before to 

2500 ms after the informative cue. In Move and MoveAfter conditions, trials with no movement, 

movement in the wrong direction, or movement with a reaction time five times the median 

absolute deviation above the mean were excluded. EEG data were filtered (1–40 Hz) and re-

referenced (common average reference, CAR). Poor quality EEG channels were excluded before 

computing CAR. Time-resolved amplitudes of oscillations in the 1–40 Hz frequency range were 

computed using complex Morlet wavelets (2 s time resolution at 1 Hz central frequency). EOG 

data were low-pass filtered with a cut-off at 30 Hz (2nd order Butterworth, zero phase shifts). 

Cortical sources of EEG surface activity. Cortical sources of single-trial EEG surface activity 

were estimated by computing Tikhonov-regularized minimum-norm estimates
55

 on a symmetric 

BEM head model
56

 using constrained dipoles (15000 vertices normal to cortical surface) and 

standard Tikhonov regularization (  . ). The cortical current maps were analyzed using 

regions of interest (ROIs) defined by Tzourio-Mazoyer atlas onto Colin 27 volume coordinates
57

. 

ROI activity was computed as the averaged absolute activity of all the vertices included in the 

ROI. Temporal dynamics of ROI activity was examined by measuring mean source activation 

over time samples included within 10 different time windows: -500 to -250 ms before 

informative cue onset (window 1), 15 to 60 ms (window 2), 60 to120 ms (window 3), 120 to 240 

ms (window 4), 240 to 600 ms (window 5), 750 to 900 ms (window 6), 1115 to1165 ms (window 

7), 1165 to 1220 ms (window 8), 1220 to1300 ms (window 9) and 1330 to1700 ms after 

informative cue onset (window 10; see Fig. 2a, c). 
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Spatial goodness of fit of the estimated sources at the time bin of maximum DA was estimated 

with the averaged coefficient of determination (R
2
) across trials and subjects for each condition. 

Decoding wrist deviation from electrophysiological signals. Wrist deviations were decoded by 

using a Bayes linear classifier (see classifier description below). Decoding accuracy in Fig. 3a 

was estimated for each condition by leave-one-out cross-validation across 40 frequency 

components and 3000 time bins (corresponding to 1–40 Hz range and 3 s epochs sampled at 

1 kHz) using the estimated amplitudes from 20 EEG channels covering bilateral sensorimotor 

areas (FC3, FC1, FCz, FC2, FC4, C4, C2, Cz, C1, C3, CP3, CP1, CPz, CP2, CP4, P4, P2, Pz, P1, 

P3). Decoding accuracy in Fig. 3b was estimated for each condition by leave-one-out cross-

validation combining through the arithmetic mean
58

 nine classifiers using the most informative 

time-frequency bin from each subject (bins indicated as white ticks in Fig. 3a). To assess whether 

wrist movement direction could be inferred from correlated eye movements, decoding accuracy 

was estimated for each condition by leave-one-out cross-validation across 3000 time bins (3 s 

epochs sampled at 1 kHz) using vertical and horizontal filtered EOG .  

Linear classifier. A Bayes linear classifier
59

 was used to decode wrist deviation 

  { , }d J radial ulnar  from a signal vector of N = 20 EEG or N = 2 EOG. The likelihood 

functions were modeled as multivariate Gaussian distributions according to 

11
( ) ( )

2
1

( | ) ,
(2 ) | |

  




T
d ds µ C s µ

N
p s d e

C
  (1) 

where s depicts either the 20 dimensional signal vector comprising the amplitudes of a single 

frequency component recorded from 20 EEG channels at a certain time bin, or the 2 dimensional 

signal vector comprising both filtered vertical and horizontal EOG at a certain time bin. C is the 
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common, i.e. deviation independent, covariance matrix and 
d

  the deviation specific mean 

signal vectors. 

 For classification, the posterior probabilities were computed using Bayes’ rule 

( ) ( | )
( | ) ,

( ) ( | )




j J

p d p s d
p d s

p j p s j
   (2) 

where a uniform prior with  ( ) .p d was used. Vector s was finally assigned to the deviation 

with the highest posterior probability. 

Statistical analysis. Results for each condition are reported within the text as mean ± standard 

error of the mean (SEM). Within figures, the central line in box-plots is the median, the box is 

defined by 25th and 75th percentiles, the whiskers extend to the most extreme data points not 

considered outliers, and outliers are plotted individually (~ ±2.7σ). Differences between the four 

experimental conditions were examined using Friedman’s test. Significance levels were corrected 

for multiple comparisons with a family-wise error rate 0.05  . Significance of the decoding 

accuracy was examined with the cumulative binomial distribution
23

 using the lowest total number 

of trials across subjects ( n ) to obtain a statistically conservative significance. 

All analysis was carried out offline in the MATLAB environment (The MathsWorks, Natick, 

MA, USA). EEG filtering, EEG re-referencing, EEG time-frequency decomposition and EEG 

source estimation were performed with Brainstorm
60

, which is documented and freely available 

for download online under the GNU general public license 

(http://neuroimage.usc.edu/brainstorm). 
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Figures & Legends  

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 6, 2014. ; https://doi.org/10.1101/004861doi: bioRxiv preprint 

https://doi.org/10.1101/004861
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

 

Figure 1: Experimental Setup  

(a) Behavioral task. Diagrams depict the temporal structure within trials and between conditions. 

Auditory cues indicate trial start, instructed deviation, and ‘go’. Schematic views of the arm, 

from above, describe subjects’ position and experimental setup during task performance. The top 

subject schematic, corresponding to Move and Imag, displays the electrophysiological signals and 

displacement measured during all experimental conditions. The middle subject schematic 

illustrates the position of the blood pressure cuff during Block condition. The bottom subject 

schematic corresponds to MoveAfter. Only conditions Move and MoveAfter involve movements.  

(b) Afferent block. Example of averaged SEP recorded at CP3 following median nerve 

stimulation before (black) and after (red) deafferentation by the ischemia. After deafferentation 

N20 is absent. (c) Efferent block. Example of CMAP recorded at muscle abductor pollicis brevis 

following supramaximal Erb’s point single pulse magnetic stimulation before (black) and after 

(red) motor block. 
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Figure 2: Temporal dynamics of EEG source activity  

(a) Top, EEG grand averages across subjects. In red, traces corresponding to channels included in 

decoding analysis. Bottom, averaged (    ) absolute displacement across subjects. Color codes 

condition as in Fig. 1a. Displacement traces for Imag and Block conditions have been shifted 

downwards slightly for clarity. Vertical dashed lines represent ‘informative’ and ‘go’ cue onsets. 

Grey numbered boxes define the 10 windows utilized for analysing the dynamics of EEG source 

activity (see Methods). (b) EEG channels’ topographic distribution. Red channels correspond to 

red traces in a. (c) Localization of pre-central and post-central ROIs utilized for analysing EEG 

source activity. (d) Grand averages across subjects of time averaged absolute cortical source 

activity within each time window defined in a. Dashed line boxes indicate windows in which 

significant differences were found between conditions. (e) Box plots of averaged source activity 

at pre-central and post-central ROIs from each subject in time windows that revealed significant 

differences between conditions (windows 6 and 10 highlighted with dashed 2line boxes in d). * 

In d and e denotes significant difference (p< 0.01).  
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Figure 3: Decoding of wrist deviation 

(a) Top, subject-averaged decoding accuracy (DA) in time-frequency space using EEG signals. 

White ticks within the color map indicate time-frequency bins with maximum DA from each 

subject; the time of these bins is also shown with purple ticks beneath the color map. Bottom, 

average absolute displacement (    ) across subjects. Vertical dashed lines represent 

‘informative’ and ‘go’ cue onsets. (b) Box plots of DA from each subject using EEG signals. (c) 

Box plots of maximum DA from each subject using EOG signals. Horizontal dotted and dashed 

lines represent chance level of 50% and the value above which DA deviates significantly (p < 

0.05) from the chance level. *Significant pairwise difference (p< 0.01).  
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Figure 4: Cortical source activity during maximum DA 

(a) Subject-averaged absolute value of cortical source activity at time bins of maximum DA (see 

white ticks in Fig. 3a). Spatial goodness of fit of source activity in each condition is indicated by 

averaged R
2
 values. White outlines define contralateral pre-central and post-central ROIs. (b, c) 

Box plots of averaged source activity at pre-central and post-central ROIs from each subject. 

*Significant pairwise difference (p< 0.01). 
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